egm/main.py

355 lines
15 KiB
Python
Raw Normal View History

2021-12-22 16:11:14 +08:00
import math
2022-01-19 10:59:29 +08:00
import os.path
2021-09-26 21:25:08 +08:00
import sys
2021-12-22 16:11:14 +08:00
import tomli
2021-09-26 21:25:08 +08:00
from loguru import logger
2021-09-20 20:51:09 +08:00
from core import *
import timeit
# 打印参数
def parameter_display(para_dis: Parameter):
logger.info(f"额定电压 kV {para_dis.rated_voltage}")
logger.info(f"导线弧垂 m {para_dis.h_c_sag}")
logger.info(f"地线弧垂 m {para_dis.h_g_sag}")
logger.info(f"全塔高 m {para_dis.h_arm[0]}")
logger.info(f"串绝缘距离 m {para_dis.insulator_c_len}")
logger.info(f"导线串长 m {para_dis.string_c_len}")
logger.info(f"地线串长 m {para_dis.string_g_len}")
logger.info(f"挂点垂直坐标 m {para_dis.h_arm}")
logger.info(f"挂点水平坐标 m {para_dis.gc_x}")
logger.info(f"地面倾角 ° {[an * 180 / math.pi for an in para_dis.ground_angels]}")
logger.info(f"海拔高度 m {para_dis.altitude}")
if para_dis.ng > 0:
logger.info("不采用雷暴日计算地闪密度和雷电流密度")
logger.info(f"地闪密度 次/(每平方公里·每年) {para_dis.ng}")
logger.info(f"概率密度曲线系数a {para_dis.Ip_a}")
logger.info(f"概率密度曲线系数b {para_dis.Ip_b}")
pass
else:
logger.info(f"雷暴日 d {para_dis.td}")
def read_parameter(toml_file_path):
2021-12-22 16:11:14 +08:00
with open(toml_file_path, "rb") as toml_fs:
toml_dict = tomli.load(toml_fs)
toml_parameter = toml_dict["parameter"]
para.h_g_sag = toml_parameter["h_g_sag"] # 地线弧垂
para.h_c_sag = toml_parameter["h_c_sag"] # 导线弧垂
# para.h_whole = toml_parameter["h_whole"] # 杆塔全高
2021-12-22 16:11:14 +08:00
para.td = toml_parameter["td"] # 雷暴日
para.insulator_c_len = toml_parameter["insulator_c_len"] # 串子绝缘长度
para.string_c_len = toml_parameter["string_c_len"]
para.string_g_len = toml_parameter["string_g_len"]
para.gc_x = toml_parameter["gc_x"] # 导、地线水平坐标
para.ground_angels = [
angel / 180 * math.pi for angel in toml_parameter["ground_angels"]
] # 地面倾角,向下为正
para.h_arm = toml_parameter["h_arm"]
para.altitude = toml_parameter["altitude"]
2021-12-22 16:15:19 +08:00
para.rated_voltage = toml_parameter["rated_voltage"]
toml_advance = toml_dict["advance"]
para.ng = toml_advance["ng"] # 地闪密度
para.Ip_a = toml_advance["Ip_a"] # 概率密度曲线系数a
para.Ip_b = toml_advance["Ip_b"] # 概率密度曲线系数b
2021-12-22 16:11:14 +08:00
toml_optional = toml_dict["optional"]
para.voltage_n = toml_optional["voltage_n"] # 工作电压分成多少份来计算
2022-01-16 21:39:54 +08:00
para.max_i = toml_optional["max_i"]
def egm():
if len(sys.argv) < 2:
2022-07-15 12:47:43 +08:00
toml_file_path = r"article.toml"
else:
toml_file_path = sys.argv[1]
if not os.path.exists(toml_file_path):
logger.info(f"无法找到数据文件{toml_file_path},程序退出。")
sys.exit(0)
logger.info(f"读取文件{toml_file_path}")
read_parameter(toml_file_path)
2021-12-22 16:11:14 +08:00
#########################################################
# 以上是需要设置的参数
parameter_display(para)
h_whole = para.h_arm[0] # 塔全高
2021-12-22 16:11:14 +08:00
string_g_len = para.string_g_len
string_c_len = para.string_c_len
h_g_sag = para.h_g_sag
h_c_sag = para.h_c_sag
gc_x = para.gc_x
h_arm = para.h_arm
2021-09-22 00:18:06 +08:00
gc_y = [
2021-12-22 16:11:14 +08:00
h_whole - string_g_len - h_g_sag * 2 / 3, # 地线对地平均高
2021-09-22 00:18:06 +08:00
]
2021-12-22 16:11:14 +08:00
if len(h_arm) > 1:
for hoo in h_arm[1:]:
gc_y.append(hoo - string_c_len - h_c_sag * 2 / 3)
2021-09-22 00:18:06 +08:00
if len(gc_y) > 2: # 双回路
phase_n = 3 # 边相导线数量
else:
phase_n = 1
2021-12-22 16:11:14 +08:00
# 地闪密度 利用QGDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
td = para.td
2021-09-23 00:15:30 +08:00
ng = func_ng(td)
2021-12-22 16:11:14 +08:00
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
ground_angels = para.ground_angels
for ground_angel in ground_angels:
logger.info(f"地面倾角{ground_angel/math.pi*180:.3f}°")
rg_type = None
rg_x = None
rg_y = None
cad = Draw()
voltage_n = para.voltage_n
n_sf_phases = np.zeros((phase_n, voltage_n)) # 存储每一相的跳闸率
if np.any(np.array(gc_y) < 0):
logger.info("导线可能掉地面下了,程序退出。")
return 0
for phase_conductor_foo in range(phase_n):
exposed_curve_shielded = False
rs_x = gc_x[phase_conductor_foo]
rs_y = gc_y[phase_conductor_foo]
rc_x = gc_x[phase_conductor_foo + 1]
rc_y = gc_y[phase_conductor_foo + 1]
if phase_n == 1:
2021-09-22 00:18:06 +08:00
rg_type = "g"
2021-12-22 16:11:14 +08:00
if phase_n > 1: # 多回路
if phase_conductor_foo < 2:
rg_type = "c" # 捕捉弧有下面一相导线的击距代替
rg_x = gc_x[phase_conductor_foo + 2]
rg_y = gc_y[phase_conductor_foo + 2]
else:
rg_type = "g"
# TODO 保护角公式可能有问题,后面改
shield_angle = (
2022-01-16 21:39:54 +08:00
math.atan(
(rc_x - rs_x)
/ (
(h_arm[0] - string_g_len - h_arm[phase_conductor_foo + 1])
+ string_c_len
)
)
2021-12-22 16:11:14 +08:00
* 180
/ math.pi
) # 保护角
logger.info(f"保护角{shield_angle:.3f}°")
logger.debug(f"最低相防护标识{rg_type}")
for u_bar in range(voltage_n): # 计算不同工作电压下的跳闸率
u_ph = (
math.sqrt(2)
* 750
* math.cos(2 * math.pi / voltage_n * u_bar)
/ 1.732
) # 运行相电压
logger.info(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV")
# 迭代法计算最大电流
i_max = 0
insulator_c_len = para.insulator_c_len
i_min = min_i(insulator_c_len, u_ph / 1.732)
_min_i = i_min # 尝试的最小电流
_max_i = para.max_i # 尝试的最大电流
# cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
for i_bar in np.linspace(
_min_i, _max_i, int((_max_i - _min_i) / 0.1)
): # 雷电流
# logger.info(f"尝试计算电流为{i_bar:.2f}")
rs = rs_fun(i_bar)
rc = rc_fun(i_bar, u_ph)
rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
rg_line_func = None
2021-09-22 00:18:06 +08:00
if rg_type == "g":
2021-12-22 16:11:14 +08:00
rg_line_func = rg_line_function_factory(rg, ground_angel)
#######
# cccCount += 1
# if cccCount % 30 == 0:
# import core
#
# core.gMSP.add_circle((0, h_gav), rs)
# core.gMSP.add_circle(
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
# )
# core.gMSP.add_circle((dgc, h_cav), rc)
#######
rg_rc_circle_intersection = solve_circle_intersection(
rs, rc, rs_x, rs_y, rc_x, rc_y
)
2021-12-22 16:11:14 +08:00
i_max = i_bar
if not rg_rc_circle_intersection: # if circle_intersection is []
logger.debug("保护弧和暴露弧无交点,检查设置参数。")
continue
circle_rc_line_or_rg_intersection = None
2021-09-22 00:18:06 +08:00
if rg_type == "g":
2021-12-22 16:11:14 +08:00
circle_rc_line_or_rg_intersection = (
solve_circle_line_intersection(rc, rc_x, rc_y, rg_line_func)
2021-09-22 00:18:06 +08:00
)
2021-12-22 16:11:14 +08:00
elif rg_type == "c":
circle_rc_line_or_rg_intersection = solve_circle_intersection(
rg, rc, rg_x, rg_y, rc_x, rc_y
2021-09-22 00:18:06 +08:00
)
2021-12-22 16:11:14 +08:00
if not circle_rc_line_or_rg_intersection:
# 暴露弧和捕捉弧无交点
if rg_type == "g":
if rg_line_func(rc_x) > rc_y:
i_min = i_bar # 用于后面判断最小和最大电流是否相等,相等意味着暴露弧一直被屏蔽
logger.info(f"捕捉面在暴露弧之上,设置最小电流为{i_min:.2f}")
else:
logger.info("暴露弧和地面捕捉弧无交点,检查设置参数。")
continue
else:
logger.info("上面的导地线无法保护下面的导地线,检查设置参数。")
continue
min_distance_intersection = (
2021-09-22 00:18:06 +08:00
np.sum(
(
2021-12-22 16:11:14 +08:00
np.array(rg_rc_circle_intersection)
- np.array(circle_rc_line_or_rg_intersection)
2021-09-22 00:18:06 +08:00
)
** 2
)
** 0.5
2021-12-22 16:11:14 +08:00
) # 计算两圆交点和地面直线交点的最小距离
if min_distance_intersection < 0.1:
break # 已经找到了最大电流
# 判断是否以完全被保护
if (
rg_rc_circle_intersection[1]
< circle_rc_line_or_rg_intersection[1]
):
circle_rs_line_or_rg_intersection = None
if rg_type == "g":
circle_rs_line_or_rg_intersection = (
solve_circle_line_intersection(
rs, rs_x, rs_y, rg_line_func
) # 保护弧和捕雷弧的交点
)
if rg_type == "c":
circle_rs_line_or_rg_intersection = (
solve_circle_intersection(
rs, rg, rs_x, rs_y, rg_x, rg_y
)
)
# 判断与保护弧的交点是否在暴露弧外面
distance = (
np.sum(
(
np.array(circle_rs_line_or_rg_intersection)
- np.array([rc_x, rc_y])
)
** 2
)
** 0.5
)
if distance > rc:
logger.info(f"电流为{i_bar}kV时暴露弧已经完全被屏蔽")
2021-12-22 16:11:14 +08:00
exposed_curve_shielded = True
break
# if phase_conductor_foo == 2:
cad.draw(
i_min,
2021-09-22 00:18:06 +08:00
u_ph,
2021-12-22 16:11:14 +08:00
rs_x,
rs_y,
2021-09-22 00:18:06 +08:00
rc_x,
rc_y,
2021-12-22 16:11:14 +08:00
rg_x,
rg_y,
rg_type,
ground_angel,
2,
)
cad.draw(
i_max,
u_ph,
2021-09-22 00:18:06 +08:00
rs_x,
rs_y,
2021-12-22 16:11:14 +08:00
rc_x,
rc_y,
2021-09-22 00:18:06 +08:00
rg_x,
rg_y,
rg_type,
2021-12-22 16:11:14 +08:00
ground_angel,
6,
)
cad.save_as(f"egm{phase_conductor_foo + 1}.dxf")
# 判断是否导线已经被完全保护
if abs(i_max - _max_i) < 1e-5:
logger.info("无法找到最大电流,可能是杆塔较高。")
logger.info(f"最大电流设置为自然界最大电流{i_max}kA")
logger.info(f"最大电流为{i_max:.2f}")
logger.info(f"最小电流为{i_min:.2f}")
if exposed_curve_shielded:
logger.info("暴露弧已经完全被屏蔽,不会跳闸。")
continue
curt_fineness = 0.1 # 电流积分细度
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
logger.info("最大电流小于等于最小电流,没有暴露弧。")
continue
# 开始积分
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
i_curt_samples, d_curt = np.linspace(
i_min, i_max, curt_segment_n + 1, retstep=True
2021-09-22 00:18:06 +08:00
)
2021-12-22 16:11:14 +08:00
bd_area_vec = np.vectorize(bd_area)
td = para.td
ip_a = para.Ip_a
ip_b = para.Ip_b
2021-12-22 16:11:14 +08:00
cal_bd_np = (
bd_area_vec(
i_curt_samples,
u_ph,
rc_x,
rc_y,
rs_x,
rs_y,
rg_x,
rg_y,
ground_angel,
rg_type,
)
* thunder_density(i_curt_samples, td, ip_a, ip_b)
2021-12-22 16:11:14 +08:00
)
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
# for i_curt in i_curt_samples[:-1]:
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
# cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
# cal_thunder_density_first = thunder_density(i_curt)
# cal_thunder_density_second = thunder_density(i_curt + d_curt)
# calculus += (
# (
# cal_bd_first * cal_thunder_density_first
# + cal_bd_second * cal_thunder_density_second
# )
# / 2
# * d_curt
# )
# if abs(calculus-0.05812740052770032)<1e-5:
# abc=123
# pass
2021-12-22 16:15:19 +08:00
rated_voltage = para.rated_voltage
n_sf = (
2
* ng
/ 10
* calculus
* arc_possibility(rated_voltage, insulator_c_len)
)
2021-12-22 16:11:14 +08:00
avr_n_sf += n_sf / voltage_n
n_sf_phases[phase_conductor_foo][u_bar] = n_sf
2022-07-15 12:47:43 +08:00
logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.16f}次/(km·a)")
logger.info(f"线路跳闸率是{avr_n_sf:.16f}次/(km·a)")
2021-12-22 16:11:14 +08:00
logger.info(
2022-07-15 12:47:43 +08:00
f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=16)}次/(km·a)"
2021-12-22 16:11:14 +08:00
)
2021-09-11 09:29:04 +08:00
2021-09-20 20:51:09 +08:00
def speed():
a = 0
for bar in range(100000000):
a += bar
2021-09-11 09:29:04 +08:00
if __name__ == "__main__":
2021-09-26 21:25:08 +08:00
logger.remove()
logger.add(sys.stderr, level="DEBUG")
2021-09-20 20:51:09 +08:00
run_time = timeit.timeit("egm()", globals=globals(), number=1)
print(f"运行时间:{run_time:.2f}s")
2021-09-11 09:29:04 +08:00
print("Finished.")