egm/main.py

168 lines
6.7 KiB
Python
Raw Normal View History

2021-09-21 01:35:42 +08:00
import numpy as np
2021-09-20 20:51:09 +08:00
from core import *
import timeit
2021-09-11 09:29:04 +08:00
def egm():
2021-09-21 15:51:12 +08:00
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
2021-09-21 20:00:03 +08:00
voltage_n = 1 # 工作电压分成多少份来计算
2021-09-21 00:36:09 +08:00
ng = func_ng(20)
h_whole = 140 # 杆塔全高
insulator_c_len = 6.8 # 串子绝缘长度
string_c_len = 9.2
string_g_len = 0.5
2021-09-21 20:00:03 +08:00
rc_x = -0.0 # 导地线水平距离
rs_x = 0
rg_x = 0
2021-09-21 00:36:09 +08:00
vertical_dgc = 2.7 # 导地线挂点垂直距离
h_g_avr_sag = 11.67 * 2 / 3
2021-09-21 15:51:12 +08:00
h_c_avr_sag = 14.43 * 2 / 3
2021-09-21 20:00:03 +08:00
rs_y = h_whole - string_g_len - h_g_avr_sag # 地线对地平均高
rc_y = h_whole - string_c_len - vertical_dgc - h_c_avr_sag # 导线对地平均高
rg_y = rc_y - 20
shield_angle = (
math.atan(rc_x / (vertical_dgc + string_c_len)) * 180 / math.pi
) # 保护角
2021-09-21 00:36:09 +08:00
print(f"保护角{shield_angle:.3f}°")
2021-09-21 20:00:03 +08:00
rg_type = "c"
2021-09-21 00:36:09 +08:00
for u_bar in range(voltage_n):
u_ph = (
math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732
) # 运行相电压
2021-09-12 22:56:03 +08:00
# 迭代法计算最大电流
i_max = 0
i_min = min_i(insulator_c_len, u_ph / 1.732)
_min_i = i_min # 尝试的最小电流
2021-09-13 02:06:51 +08:00
_max_i = 200 # 尝试的最大电流
cad = Draw()
2021-09-21 20:00:03 +08:00
# cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
2021-09-12 22:56:03 +08:00
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.1)): # 雷电流
2021-09-21 20:00:03 +08:00
print(f"尝试计算电流为{i_bar:.2f}")
2021-09-12 22:56:03 +08:00
rs = rs_fun(i_bar)
rc = rc_fun(i_bar, u_ph)
2021-09-21 20:00:03 +08:00
rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
#######
2021-09-21 15:51:12 +08:00
# cccCount += 1
# if cccCount % 30 == 0:
# import core
#
# core.gMSP.add_circle((0, h_gav), rs)
# core.gMSP.add_circle(
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
# )
# core.gMSP.add_circle((dgc, h_cav), rc)
#######
2021-09-21 20:00:03 +08:00
rg_rc_circle_intersection = solve_circle_intersection(
rs, rc, rs_x, rs_y, rc_x, rc_y
2021-09-11 09:29:04 +08:00
)
2021-09-21 20:00:03 +08:00
if not rg_rc_circle_intersection: # if circle_intersection is []
print("保护弧和暴露弧无交点,检查设置参数。程序退出。")
continue
circle_rc_line_or_rg_intersection = None
if rg_type == "g":
circle_rc_line_or_rg_intersection = solve_circle_line_intersection(
rc, rg, rc_x, rc_y
)
elif rg_type == "c":
circle_rc_line_or_rg_intersection = solve_circle_intersection(
rg, rc, rg_x, rg_y, rc_x, rc_y
)
if not circle_rc_line_or_rg_intersection:
2021-09-20 20:51:09 +08:00
continue
2021-09-12 22:56:03 +08:00
min_distance_intersection = (
np.sum(
(
2021-09-21 20:00:03 +08:00
np.array(rg_rc_circle_intersection)
- np.array(circle_rc_line_or_rg_intersection)
)
2021-09-12 22:56:03 +08:00
** 2
)
** 0.5
) # 计算两圆交点和地面直线交点的最小距离
i_max = i_bar
if min_distance_intersection < 0.1:
break
2021-09-21 20:00:03 +08:00
# 判断是否以完全被保护
if rg_rc_circle_intersection[1] < circle_rc_line_or_rg_intersection[1]:
circle_rs_line_or_rg_intersection = None
if rg_type == "g":
circle_rs_line_or_rg_intersection = solve_circle_line_intersection(
rs, rg, rs_x, rs_y
)
if rg_type == "c":
circle_rs_line_or_rg_intersection = solve_circle_intersection(
rs, rg, rs_x, rs_y, rg_x, rg_y
)
# 判断与保护弧的交点是否在暴露弧外面
distance = (
np.sum(
2021-09-21 20:00:03 +08:00
(
np.array(circle_rs_line_or_rg_intersection)
- np.array([rc_x, rc_y])
)
** 2
)
** 0.5
)
if distance > rc:
print("暴露弧已经完全被屏蔽")
break
2021-09-21 20:00:03 +08:00
cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
cad.draw(i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 6)
2021-09-12 22:56:03 +08:00
cad.save()
# 判断是否导线已经被完全保护
2021-09-12 22:56:03 +08:00
if abs(i_max - _max_i) < 1e-5:
print("无法找到最大电流,可能是杆塔较高。")
print(f"最大电流设置为自然界最大电流{i_max}kA")
print(f"最大电流为{i_max:.2f}")
print(f"最小电流为{i_min:.2f}")
curt_fineness = 0.1 # 电流积分细度
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
print("最大电流小于最小电流,没有暴露弧,程序结束。")
return
# 开始积分
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
i_curt_samples, d_curt = np.linspace(
i_min, i_max, curt_segment_n + 1, retstep=True
2021-09-11 09:29:04 +08:00
)
2021-09-21 01:35:42 +08:00
bd_area_vec = np.vectorize(bd_area)
cal_bd_np = bd_area_vec(
2021-09-21 20:00:03 +08:00
i_curt_samples, u_ph, rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, rg_type
2021-09-21 01:35:42 +08:00
) * thunder_density(i_curt_samples)
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
# for i_curt in i_curt_samples[:-1]:
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
# cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
# cal_thunder_density_first = thunder_density(i_curt)
# cal_thunder_density_second = thunder_density(i_curt + d_curt)
# calculus += (
# (
# cal_bd_first * cal_thunder_density_first
# + cal_bd_second * cal_thunder_density_second
# )
# / 2
# * d_curt
# )
# if abs(calculus-0.05812740052770032)<1e-5:
# abc=123
# pass
2021-09-21 00:36:09 +08:00
n_sf = (
2 * ng / 10 * calculus
) # 跳闸率 利用QGDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
avr_n_sf += n_sf / voltage_n
print(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
print(f"跳闸率是{avr_n_sf:.6}")
2021-09-11 09:29:04 +08:00
2021-09-20 20:51:09 +08:00
def speed():
a = 0
for bar in range(100000000):
a += bar
2021-09-11 09:29:04 +08:00
if __name__ == "__main__":
2021-09-20 20:51:09 +08:00
run_time = timeit.timeit("egm()", globals=globals(), number=1)
print(f"运行时间:{run_time:.2f}s")
2021-09-11 09:29:04 +08:00
print("Finished.")