加入了计算最大入射角度的公式
This commit is contained in:
parent
5cbf463ab0
commit
db2788f116
130
main.py
130
main.py
|
|
@ -2,30 +2,37 @@ import math
|
|||
import ezdxf
|
||||
import numpy as np
|
||||
|
||||
gCAD = None
|
||||
gMSP = None
|
||||
|
||||
|
||||
class Draw:
|
||||
def __init__(self):
|
||||
self._doc = ezdxf.new(dxfversion="R2010")
|
||||
self._doc.layers.add("EGM", color=2)
|
||||
global gCAD
|
||||
gCAD = self
|
||||
|
||||
def draw(self, i_curt, u_ph, h_gav, h_cav, dgc):
|
||||
def draw(self, i_curt, u_ph, h_gav, h_cav, dgc, color):
|
||||
doc = self._doc
|
||||
msp = doc.modelspace()
|
||||
global gMSP
|
||||
gMSP = msp
|
||||
rs = rs_fun(i_curt)
|
||||
rc = rc_fun(i_curt, u_ph)
|
||||
rg = rg_fun(i_curt, h_cav)
|
||||
msp.add_circle((0, h_gav), rs)
|
||||
msp.add_circle((0, h_gav), rs, dxfattribs={"color": color})
|
||||
msp.add_line((0, 0), (0, h_gav)) # 地线
|
||||
msp.add_circle((dgc, h_cav), rc)
|
||||
msp.add_circle((dgc, h_cav), rc, dxfattribs={"color": color})
|
||||
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
|
||||
msp.add_line((0, h_gav), (dgc, h_cav))
|
||||
msp.add_line((0, rg), (200, rg))
|
||||
msp.add_line((0, rg), (200, rg), dxfattribs={"color": color})
|
||||
# 计算圆交点
|
||||
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||
msp.add_line((0, h_gav), circle_intersection) # 地线
|
||||
msp.add_line((dgc, h_cav), circle_intersection) # 导线
|
||||
circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
|
||||
msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
|
||||
# circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||
# msp.add_line((0, h_gav), circle_intersection) # 地线
|
||||
# msp.add_line((dgc, h_cav), circle_intersection) # 导线
|
||||
# circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
|
||||
# msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
|
||||
|
||||
def save(self):
|
||||
doc = self._doc
|
||||
|
|
@ -34,12 +41,6 @@ class Draw:
|
|||
|
||||
# 圆交点
|
||||
def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
|
||||
# x = Symbol('x', real=True)
|
||||
# y = Symbol('y', real=True)
|
||||
# equ = [
|
||||
# x ** 2 + (y - hgav) ** 2 - rs ** 2,
|
||||
# (x - dgc) ** 2 + (y - hcav) ** 2 - rc ** 2,
|
||||
# ]
|
||||
# 用牛顿法求解
|
||||
x = 300
|
||||
y = 300
|
||||
|
|
@ -55,22 +56,12 @@ def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
|
|||
if np.all(np.abs(X_set) < 1e-5):
|
||||
return [x, y]
|
||||
return []
|
||||
# list_set = list(X_set)
|
||||
# solve_set = nonlinsolve(equ, [x, y])
|
||||
# print(ask(Q.real(solve_set)))
|
||||
# list_set = list(solve_set)
|
||||
# pprint(list_set)
|
||||
# if not np.all(np.isreal(list_set)):
|
||||
# return []
|
||||
# for value in list_set:
|
||||
# if value[0] > 0 and value[1] > 1:
|
||||
# return value
|
||||
# return []
|
||||
|
||||
|
||||
# 圆与地面线交点
|
||||
def solve_circle_line_intersection(rc, rg, hcav, dgc):
|
||||
r = (rc ** 2 - (rg - hcav) ** 2) ** 0.5 + dgc
|
||||
def solve_circle_line_intersection(rc, rg, h_cav, dgc):
|
||||
# TODO: 需要考虑地面捕雷线与暴露弧完全没交点的情况
|
||||
r = (rc ** 2 - (rg - h_cav) ** 2) ** 0.5 + dgc
|
||||
return [r, rg]
|
||||
|
||||
|
||||
|
|
@ -110,27 +101,62 @@ def rg_fun(i, h_cav):
|
|||
return rg
|
||||
|
||||
|
||||
def intersection_angel(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度
|
||||
def intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度
|
||||
rs = rs_fun(i_curt)
|
||||
rc = rc_fun(i_curt, u_ph)
|
||||
rg = rg_fun(i_curt, h_cav)
|
||||
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||
circle_line_intersection = solve_circle_line_intersection(rc, rg, h_cav, dgc)
|
||||
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) # 两圆的交点
|
||||
circle_line_intersection = solve_circle_line_intersection(
|
||||
rc, rg, h_cav, dgc
|
||||
) # 暴露圆和补雷线的交点
|
||||
np_circle_intersection = np.array(circle_intersection)
|
||||
theta2_line = np_circle_intersection - np.array([dgc, h_cav])
|
||||
theta2 = math.atan(theta2_line[1] / theta2_line[0])
|
||||
np_circle_line_intersection = np.array(circle_line_intersection)
|
||||
theta1_line = np_circle_line_intersection - np.array([dgc, h_cav])
|
||||
theta1 = math.atan(theta1_line[1] / theta1_line[0])
|
||||
if theta1 < 0:
|
||||
# print(f"θ_1角度为负数{theta1:.4f},人为设置为0")
|
||||
theta1 = 0
|
||||
# 考虑雷电入射角度,所以theta1可以小于0,即计算从侧面击中的雷
|
||||
# if theta1 < 0:
|
||||
# # print(f"θ_1角度为负数{theta1:.4f},人为设置为0")
|
||||
# theta1 = 0
|
||||
return np.array([theta1, theta2])
|
||||
|
||||
|
||||
def distance_point_line(point_x, point_y, line_x, line_y, k):
|
||||
d = abs(k * point_x - point_y - k * line_x + line_y) / ((k ** 2 + 1) ** 0.5)
|
||||
return d
|
||||
|
||||
|
||||
def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
|
||||
theta1, theta2 = intersection_angel(dgc, h_gav, h_cav, i_curt, u_ph)
|
||||
theta1, theta2 = intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
|
||||
rc = rc_fun(i_curt, u_ph)
|
||||
rs = rs_fun(i_curt)
|
||||
rg = rg_fun(i_curt, h_cav)
|
||||
# 求暴露弧上一点的切线
|
||||
line_x = math.cos(theta1) * rc + dgc
|
||||
line_y = math.sin(theta1) * rc + h_cav
|
||||
max_w = 0 # 入射角
|
||||
if theta1 < 0:
|
||||
max_w = theta1 + math.pi / 2
|
||||
k = math.tan(max_w)
|
||||
# 求保护弧到直线的距离,判断是否相交
|
||||
d_to_rs = distance_point_line(0, h_gav, line_x, line_y, k)
|
||||
if d_to_rs < rs: # 相交
|
||||
# 要用过直线上一点到暴露弧的切线
|
||||
new_k = tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
||||
max_w = math.atan(new_k) # 用于保护弧相切的角度
|
||||
intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
|
||||
gMSP.add_circle((0, h_gav), rs)
|
||||
gMSP.add_circle((dgc, h_cav), rc)
|
||||
gMSP.add_line((dgc, h_cav), (line_x, line_y))
|
||||
gMSP.add_line(
|
||||
(-500, k * (-500 - line_x) + line_y), (500, k * (500 - line_x) + line_y)
|
||||
)
|
||||
gMSP.add_line((0, rg), (1000, rg))
|
||||
gCAD.save()
|
||||
pass
|
||||
|
||||
# k=tangent_line_k(point_x, point_y, dgc, h_cav,rc)
|
||||
# 暂时不考虑雷电入射角的影响
|
||||
r = (math.cos(theta1) - math.cos(theta2)) * rc
|
||||
return r
|
||||
|
|
@ -140,11 +166,35 @@ def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
|
|||
# for calculus_arv_angle in np.linspace()
|
||||
|
||||
|
||||
def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
||||
# 直线方程为 y-y0=k(x-x0),x0和y0为经过直线的任意一点
|
||||
# 牛顿法求解k
|
||||
# f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心
|
||||
# TODO:应该找到两个角度值后再比较
|
||||
k = init_k
|
||||
for bar in range(0, 30):
|
||||
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (radius ** 2) * (
|
||||
k ** 2 + 1
|
||||
)
|
||||
|
||||
d_fk = (
|
||||
2 * (k * center_x - center_y - k * line_x + line_y) * (center_x - line_x)
|
||||
- 2 * (radius ** 2) * k
|
||||
)
|
||||
d_k = -fk / d_fk
|
||||
k += d_k
|
||||
if abs(d_k) < 1e-5:
|
||||
dd = distance_point_line(center_x, center_y, line_x, line_y, k)
|
||||
if abs(dd - radius) < 1e-5:
|
||||
return k
|
||||
return None
|
||||
|
||||
|
||||
def egm():
|
||||
u_ph = 750 / 1.732 # 运行相电压
|
||||
h_cav = 160 # 导线对地平均高
|
||||
h_gav = h_cav + 9.5 + 2.2
|
||||
dgc = 2 # 导地线水平距离
|
||||
h_gav = h_cav + 9.5 + 2.7
|
||||
dgc = -2 # 导地线水平距离
|
||||
# 迭代法计算最大电流
|
||||
i_max = 0
|
||||
_min_i = 20 # 尝试的最小电流
|
||||
|
|
@ -176,8 +226,8 @@ def egm():
|
|||
break
|
||||
i_min = min_i(6.78, 750 / 1.732)
|
||||
cad = Draw()
|
||||
cad.draw(i_min, u_ph, h_gav, h_cav, dgc)
|
||||
cad.draw(i_max, u_ph, h_gav, h_cav, dgc)
|
||||
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
|
||||
cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6)
|
||||
cad.save()
|
||||
if abs(i_max - _max_i) < 1e-5:
|
||||
print("无法找到最大电流,可能是杆塔较高。")
|
||||
|
|
@ -189,7 +239,7 @@ def egm():
|
|||
print("最大电流小于最小电流,没有暴露弧,程序结束。")
|
||||
return
|
||||
# 开始积分
|
||||
curt_fineness = 0.001 # 电流积分细度
|
||||
curt_fineness = 0.1 # 电流积分细度
|
||||
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
||||
calculus = 0
|
||||
i_curt_samples, d_curt = np.linspace(i_min, i_max, curt_segment_n + 1, retstep=True)
|
||||
|
|
|
|||
Loading…
Reference in New Issue