parent
b98d2534ab
commit
ef60e1474b
137
main.py
137
main.py
|
|
@ -4,6 +4,7 @@ import numpy as np
|
|||
|
||||
gCAD = None
|
||||
gMSP = None
|
||||
gCount = 1
|
||||
|
||||
|
||||
class Draw:
|
||||
|
|
@ -59,9 +60,9 @@ def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
|
|||
|
||||
|
||||
# 圆与地面线交点
|
||||
def solve_circle_line_intersection(rc, rg, h_cav, dgc):
|
||||
def solve_circle_line_intersection(radius, rg, center_y, center_x):
|
||||
# TODO: 需要考虑地面捕雷线与暴露弧完全没交点的情况
|
||||
r = (rc ** 2 - (rg - h_cav) ** 2) ** 0.5 + dgc
|
||||
r = (radius ** 2 - (rg - center_y) ** 2) ** 0.5 + center_x
|
||||
return [r, rg]
|
||||
|
||||
|
||||
|
|
@ -93,11 +94,11 @@ def rc_fun(i, u_ph):
|
|||
return r
|
||||
|
||||
|
||||
def rg_fun(i, h_cav):
|
||||
def rg_fun(i_curt, h_cav):
|
||||
if h_cav < 40:
|
||||
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) ** 0.65
|
||||
else:
|
||||
rg = 5.5 * (i ** 0.65)
|
||||
rg = 5.5 * (i_curt ** 0.65)
|
||||
return rg
|
||||
|
||||
|
||||
|
|
@ -148,17 +149,17 @@ def fun_calculus_pw(theta, max_w):
|
|||
return r_pw
|
||||
|
||||
|
||||
def cal_bd(theta, rc, rs, rg, dgc, h_cav, h_gav):
|
||||
def calculus_bd(theta, rc, rs, rg, dgc, h_cav, h_gav): # 对θ进行积分
|
||||
# 求暴露弧上一点的切线
|
||||
line_x = math.cos(theta) * rc + dgc
|
||||
line_y = math.sin(theta) * rc + h_cav
|
||||
max_w = theta + math.pi / 2 # 入射角
|
||||
k = math.tan(max_w)
|
||||
k = math.tan(theta + math.pi / 2) # 入射角
|
||||
# 求保护弧到直线的距离,判断是否相交
|
||||
d_to_rs = distance_point_line(0, h_gav, line_x, line_y, k)
|
||||
if d_to_rs < rs: # 相交
|
||||
# 要用过直线上一点到暴露弧的切线
|
||||
new_k = tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
||||
|
||||
if not new_k:
|
||||
a = 12
|
||||
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
||||
|
|
@ -169,18 +170,21 @@ def cal_bd(theta, rc, rs, rg, dgc, h_cav, h_gav):
|
|||
if max_w < 0:
|
||||
abc = 123
|
||||
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
||||
global gCount
|
||||
gCount += 1
|
||||
if gCount % 1000 == 0:
|
||||
# intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
|
||||
# gMSP.add_circle((0, h_gav), rs)
|
||||
# gMSP.add_circle((dgc, h_cav), rc)
|
||||
# gMSP.add_line((dgc, h_cav), (line_x, line_y))
|
||||
# gMSP.add_line(
|
||||
# (-500, k * (-500 - line_x) + line_y), (500, k * (500 - line_x) + line_y)
|
||||
# )
|
||||
# gMSP.add_line((0, rg), (1000, rg))
|
||||
# gCAD.save()
|
||||
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
||||
|
||||
pass
|
||||
gMSP.add_circle((0, h_gav), rs)
|
||||
gMSP.add_circle((dgc, h_cav), rc)
|
||||
gMSP.add_line((dgc, h_cav), (line_x, line_y))
|
||||
gMSP.add_line(
|
||||
(-500, new_k * (-500 - line_x) + line_y),
|
||||
(500, new_k * (500 - line_x) + line_y),
|
||||
)
|
||||
gMSP.add_line((0, rg), (1000, rg))
|
||||
gCAD.save()
|
||||
else:
|
||||
max_w = theta + math.pi / 2 # 入射角
|
||||
r = rc / math.cos(theta) * fun_calculus_pw(theta, max_w)
|
||||
return r
|
||||
|
||||
|
|
@ -195,11 +199,11 @@ def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
|
|||
theta_sample, d_theta = np.linspace(
|
||||
theta1, theta2, int((theta2 - theta1) / theta_fineness) + 1, retstep=True
|
||||
)
|
||||
for cal_theta in theta_sample[:-1]:
|
||||
for calculus_theta in theta_sample[:-1]:
|
||||
r_bd += (
|
||||
(
|
||||
cal_bd(cal_theta, rc, rs, rg, dgc, h_cav, h_gav)
|
||||
+ cal_bd(cal_theta + d_theta, rc, rs, rg, dgc, h_cav, h_gav)
|
||||
calculus_bd(calculus_theta, rc, rs, rg, dgc, h_cav, h_gav)
|
||||
+ calculus_bd(calculus_theta + d_theta, rc, rs, rg, dgc, h_cav, h_gav)
|
||||
)
|
||||
/ 2
|
||||
* d_theta
|
||||
|
|
@ -217,31 +221,44 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
|||
# 牛顿法求解k
|
||||
# f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心
|
||||
# TODO:需要检验k值不存在的情况
|
||||
k_candidate = [-100, 100]
|
||||
for ind, k_cdi in enumerate(list(k_candidate)):
|
||||
k = k_candidate[ind]
|
||||
k_candidate[ind] = None
|
||||
for bar in range(0, 30):
|
||||
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (
|
||||
radius ** 2
|
||||
) * (k ** 2 + 1)
|
||||
|
||||
d_fk = (
|
||||
2
|
||||
* (k * center_x - center_y - k * line_x + line_y)
|
||||
* (center_x - line_x)
|
||||
- 2 * (radius ** 2) * k
|
||||
)
|
||||
d_k = -fk / d_fk
|
||||
k += d_k
|
||||
if abs(d_k) < 1e-5:
|
||||
dd = distance_point_line(center_x, center_y, line_x, line_y, k)
|
||||
if abs(dd - radius) < 1e-5:
|
||||
k_candidate[ind] = k
|
||||
k_candidate = [-100, 100]
|
||||
if abs(center_y - line_y) < 1e-4 and abs(line_x - center_x - radius) < 1e-4:
|
||||
# k不存在
|
||||
k_candidate = [99999999, 99999999]
|
||||
else:
|
||||
for ind, k_cdi in enumerate(list(k_candidate)):
|
||||
k = k_candidate[ind]
|
||||
k_candidate[ind] = None
|
||||
for bar in range(0, 30):
|
||||
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (
|
||||
radius ** 2
|
||||
) * (k ** 2 + 1)
|
||||
|
||||
d_fk = (
|
||||
2
|
||||
* (k * center_x - center_y - k * line_x + line_y)
|
||||
* (center_x - line_x)
|
||||
- 2 * (radius ** 2) * k
|
||||
)
|
||||
if abs(d_fk) < 1e-5 and abs(line_x - center_x - radius) < 1e-5:
|
||||
# k不存在,角度为90°,k取一个很大的正数
|
||||
k_candidate[ind] = 99999999999999
|
||||
break
|
||||
d_k = -fk / d_fk
|
||||
k += d_k
|
||||
if abs(d_k) < 1e-4:
|
||||
dd = distance_point_line(center_x, center_y, line_x, line_y, k)
|
||||
if abs(dd - radius) < 1e-5:
|
||||
k_candidate[ind] = k
|
||||
break
|
||||
# 把k转化成相应的角度,从x开始,逆时针为正
|
||||
k_angle = []
|
||||
for kk in k_candidate:
|
||||
if kk == None:
|
||||
abc = 123
|
||||
tangent_line_k(line_x, line_y, center_x, center_y, radius)
|
||||
pass
|
||||
if kk >= 0:
|
||||
k_angle.append(math.atan(kk))
|
||||
if kk < 0:
|
||||
|
|
@ -253,9 +270,9 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
|||
def egm():
|
||||
for u_bar in range(1):
|
||||
u_ph = math.sqrt(2) * 750 * math.cos(2 * math.pi / 6 * 0) / 1.732 # 运行相电压
|
||||
h_cav = 90 # 导线对地平均高
|
||||
h_gav = h_cav + 9.5 + 2.7
|
||||
dgc = 2.9 # 导地线水平距离
|
||||
h_gav = 30
|
||||
h_cav = h_gav - 9.5 - 2.7 - 5 # 导线对地平均高
|
||||
dgc = -2.9 # 导地线水平距离
|
||||
# 迭代法计算最大电流
|
||||
i_max = 0
|
||||
_min_i = 20 # 尝试的最小电流
|
||||
|
|
@ -263,23 +280,20 @@ def egm():
|
|||
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.1)): # 雷电流
|
||||
print(f"尝试计算电流为{i_bar:.2f}")
|
||||
rs = rs_fun(i_bar)
|
||||
# if not np.isreal(rs):
|
||||
# continue
|
||||
rc = rc_fun(i_bar, u_ph)
|
||||
# if not np.isreal(rc):
|
||||
# continue
|
||||
rg = rg_fun(i_bar, h_cav)
|
||||
# if not np.isreal(rg):
|
||||
# continue
|
||||
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||
if not circle_intersection: # if circle_intersection is []
|
||||
continue
|
||||
circle_line_intersection = solve_circle_line_intersection(
|
||||
circle_rc_line_intersection = solve_circle_line_intersection(
|
||||
rc, rg, h_cav, dgc
|
||||
)
|
||||
min_distance_intersection = (
|
||||
np.sum(
|
||||
(np.array(circle_intersection) - np.array(circle_line_intersection))
|
||||
(
|
||||
np.array(circle_intersection)
|
||||
- np.array(circle_rc_line_intersection)
|
||||
)
|
||||
** 2
|
||||
)
|
||||
** 0.5
|
||||
|
|
@ -287,14 +301,29 @@ def egm():
|
|||
i_max = i_bar
|
||||
if min_distance_intersection < 0.1:
|
||||
break
|
||||
if circle_intersection[1] < circle_rc_line_intersection[1]:
|
||||
circle_rs_line_intersection = solve_circle_line_intersection(
|
||||
rs, rg, h_gav, 0
|
||||
)
|
||||
# 判断与保护弧的交点是否在暴露弧外面
|
||||
distance = (
|
||||
np.sum(
|
||||
(np.array(circle_rs_line_intersection) - np.array([dgc, h_cav]))
|
||||
** 2
|
||||
)
|
||||
** 0.5
|
||||
)
|
||||
if distance > rc:
|
||||
print("暴露弧已经完全被屏蔽")
|
||||
break
|
||||
i_min = min_i(6.78, u_ph / 1.732)
|
||||
cad = Draw()
|
||||
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
|
||||
cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6)
|
||||
cad.save()
|
||||
# 判断是否导线已经被完全保护
|
||||
if abs(i_max - _max_i) < 1e-5:
|
||||
print("无法找到最大电流,可能是杆塔较高。")
|
||||
i_max = 300
|
||||
print(f"最大电流设置为自然界最大电流{i_max}kA")
|
||||
print(f"最大电流为{i_max:.2f}")
|
||||
print(f"最小电流为{i_min:.2f}")
|
||||
|
|
@ -328,6 +357,6 @@ def egm():
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
thunder_density(2)
|
||||
tangent_line_k(1, 0, 0, 0, 1)
|
||||
egm()
|
||||
print("Finished.")
|
||||
|
|
|
|||
Loading…
Reference in New Issue