1.处理了90°,k不存在的情况。

2.重命名了一些函数。
3.增加了一些不绕击的判断。
This commit is contained in:
facat 2021-09-13 01:34:21 +08:00
parent b98d2534ab
commit ef60e1474b
1 changed files with 83 additions and 54 deletions

137
main.py
View File

@ -4,6 +4,7 @@ import numpy as np
gCAD = None
gMSP = None
gCount = 1
class Draw:
@ -59,9 +60,9 @@ def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
# 圆与地面线交点
def solve_circle_line_intersection(rc, rg, h_cav, dgc):
def solve_circle_line_intersection(radius, rg, center_y, center_x):
# TODO: 需要考虑地面捕雷线与暴露弧完全没交点的情况
r = (rc ** 2 - (rg - h_cav) ** 2) ** 0.5 + dgc
r = (radius ** 2 - (rg - center_y) ** 2) ** 0.5 + center_x
return [r, rg]
@ -93,11 +94,11 @@ def rc_fun(i, u_ph):
return r
def rg_fun(i, h_cav):
def rg_fun(i_curt, h_cav):
if h_cav < 40:
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) ** 0.65
else:
rg = 5.5 * (i ** 0.65)
rg = 5.5 * (i_curt ** 0.65)
return rg
@ -148,17 +149,17 @@ def fun_calculus_pw(theta, max_w):
return r_pw
def cal_bd(theta, rc, rs, rg, dgc, h_cav, h_gav):
def calculus_bd(theta, rc, rs, rg, dgc, h_cav, h_gav): # 对θ进行积分
# 求暴露弧上一点的切线
line_x = math.cos(theta) * rc + dgc
line_y = math.sin(theta) * rc + h_cav
max_w = theta + math.pi / 2 # 入射角
k = math.tan(max_w)
k = math.tan(theta + math.pi / 2) # 入射角
# 求保护弧到直线的距离,判断是否相交
d_to_rs = distance_point_line(0, h_gav, line_x, line_y, k)
if d_to_rs < rs: # 相交
# 要用过直线上一点到暴露弧的切线
new_k = tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
if not new_k:
a = 12
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
@ -169,18 +170,21 @@ def cal_bd(theta, rc, rs, rg, dgc, h_cav, h_gav):
if max_w < 0:
abc = 123
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
global gCount
gCount += 1
if gCount % 1000 == 0:
# intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
# gMSP.add_circle((0, h_gav), rs)
# gMSP.add_circle((dgc, h_cav), rc)
# gMSP.add_line((dgc, h_cav), (line_x, line_y))
# gMSP.add_line(
# (-500, k * (-500 - line_x) + line_y), (500, k * (500 - line_x) + line_y)
# )
# gMSP.add_line((0, rg), (1000, rg))
# gCAD.save()
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
pass
gMSP.add_circle((0, h_gav), rs)
gMSP.add_circle((dgc, h_cav), rc)
gMSP.add_line((dgc, h_cav), (line_x, line_y))
gMSP.add_line(
(-500, new_k * (-500 - line_x) + line_y),
(500, new_k * (500 - line_x) + line_y),
)
gMSP.add_line((0, rg), (1000, rg))
gCAD.save()
else:
max_w = theta + math.pi / 2 # 入射角
r = rc / math.cos(theta) * fun_calculus_pw(theta, max_w)
return r
@ -195,11 +199,11 @@ def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
theta_sample, d_theta = np.linspace(
theta1, theta2, int((theta2 - theta1) / theta_fineness) + 1, retstep=True
)
for cal_theta in theta_sample[:-1]:
for calculus_theta in theta_sample[:-1]:
r_bd += (
(
cal_bd(cal_theta, rc, rs, rg, dgc, h_cav, h_gav)
+ cal_bd(cal_theta + d_theta, rc, rs, rg, dgc, h_cav, h_gav)
calculus_bd(calculus_theta, rc, rs, rg, dgc, h_cav, h_gav)
+ calculus_bd(calculus_theta + d_theta, rc, rs, rg, dgc, h_cav, h_gav)
)
/ 2
* d_theta
@ -217,31 +221,44 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
# 牛顿法求解k
# f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心
# TODO:需要检验k值不存在的情况
k_candidate = [-100, 100]
for ind, k_cdi in enumerate(list(k_candidate)):
k = k_candidate[ind]
k_candidate[ind] = None
for bar in range(0, 30):
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (
radius ** 2
) * (k ** 2 + 1)
d_fk = (
2
* (k * center_x - center_y - k * line_x + line_y)
* (center_x - line_x)
- 2 * (radius ** 2) * k
)
d_k = -fk / d_fk
k += d_k
if abs(d_k) < 1e-5:
dd = distance_point_line(center_x, center_y, line_x, line_y, k)
if abs(dd - radius) < 1e-5:
k_candidate[ind] = k
k_candidate = [-100, 100]
if abs(center_y - line_y) < 1e-4 and abs(line_x - center_x - radius) < 1e-4:
# k不存在
k_candidate = [99999999, 99999999]
else:
for ind, k_cdi in enumerate(list(k_candidate)):
k = k_candidate[ind]
k_candidate[ind] = None
for bar in range(0, 30):
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (
radius ** 2
) * (k ** 2 + 1)
d_fk = (
2
* (k * center_x - center_y - k * line_x + line_y)
* (center_x - line_x)
- 2 * (radius ** 2) * k
)
if abs(d_fk) < 1e-5 and abs(line_x - center_x - radius) < 1e-5:
# k不存在角度为90°k取一个很大的正数
k_candidate[ind] = 99999999999999
break
d_k = -fk / d_fk
k += d_k
if abs(d_k) < 1e-4:
dd = distance_point_line(center_x, center_y, line_x, line_y, k)
if abs(dd - radius) < 1e-5:
k_candidate[ind] = k
break
# 把k转化成相应的角度从x开始逆时针为正
k_angle = []
for kk in k_candidate:
if kk == None:
abc = 123
tangent_line_k(line_x, line_y, center_x, center_y, radius)
pass
if kk >= 0:
k_angle.append(math.atan(kk))
if kk < 0:
@ -253,9 +270,9 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
def egm():
for u_bar in range(1):
u_ph = math.sqrt(2) * 750 * math.cos(2 * math.pi / 6 * 0) / 1.732 # 运行相电压
h_cav = 90 # 导线对地平均高
h_gav = h_cav + 9.5 + 2.7
dgc = 2.9 # 导地线水平距离
h_gav = 30
h_cav = h_gav - 9.5 - 2.7 - 5 # 导线对地平均高
dgc = -2.9 # 导地线水平距离
# 迭代法计算最大电流
i_max = 0
_min_i = 20 # 尝试的最小电流
@ -263,23 +280,20 @@ def egm():
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.1)): # 雷电流
print(f"尝试计算电流为{i_bar:.2f}")
rs = rs_fun(i_bar)
# if not np.isreal(rs):
# continue
rc = rc_fun(i_bar, u_ph)
# if not np.isreal(rc):
# continue
rg = rg_fun(i_bar, h_cav)
# if not np.isreal(rg):
# continue
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
if not circle_intersection: # if circle_intersection is []
continue
circle_line_intersection = solve_circle_line_intersection(
circle_rc_line_intersection = solve_circle_line_intersection(
rc, rg, h_cav, dgc
)
min_distance_intersection = (
np.sum(
(np.array(circle_intersection) - np.array(circle_line_intersection))
(
np.array(circle_intersection)
- np.array(circle_rc_line_intersection)
)
** 2
)
** 0.5
@ -287,14 +301,29 @@ def egm():
i_max = i_bar
if min_distance_intersection < 0.1:
break
if circle_intersection[1] < circle_rc_line_intersection[1]:
circle_rs_line_intersection = solve_circle_line_intersection(
rs, rg, h_gav, 0
)
# 判断与保护弧的交点是否在暴露弧外面
distance = (
np.sum(
(np.array(circle_rs_line_intersection) - np.array([dgc, h_cav]))
** 2
)
** 0.5
)
if distance > rc:
print("暴露弧已经完全被屏蔽")
break
i_min = min_i(6.78, u_ph / 1.732)
cad = Draw()
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6)
cad.save()
# 判断是否导线已经被完全保护
if abs(i_max - _max_i) < 1e-5:
print("无法找到最大电流,可能是杆塔较高。")
i_max = 300
print(f"最大电流设置为自然界最大电流{i_max}kA")
print(f"最大电流为{i_max:.2f}")
print(f"最小电流为{i_min:.2f}")
@ -328,6 +357,6 @@ def egm():
if __name__ == "__main__":
thunder_density(2)
tangent_line_k(1, 0, 0, 0, 1)
egm()
print("Finished.")