egm/main.py

237 lines
10 KiB
Python
Raw Normal View History

2021-09-26 21:25:08 +08:00
import sys
2021-09-22 11:22:13 +08:00
2021-09-26 21:25:08 +08:00
from loguru import logger
2021-09-20 20:51:09 +08:00
from core import *
import timeit
2021-09-11 09:29:04 +08:00
def egm():
2021-09-22 00:18:06 +08:00
h_g_avr_sag = 11.67 * 2 / 3
h_c_avr_sag = 14.43 * 2 / 3
2021-09-26 21:25:08 +08:00
h_whole = 130 # 杆塔全高
2021-09-22 00:18:06 +08:00
voltage_n = 3 # 工作电压分成多少份来计算
td = 20 # 雷暴日
2021-09-26 21:25:08 +08:00
insulator_c_len = 6.6 # 串子绝缘长度
2021-09-21 00:36:09 +08:00
string_c_len = 9.2
string_g_len = 0.5
2021-09-26 21:25:08 +08:00
gc_x = [17.9, 17, 15, 17.0]
2021-09-22 00:18:06 +08:00
# 以后考虑地形角度,地面线
def ground_surface(x):
return 0
gc_y = [
h_whole - string_g_len - h_g_avr_sag, # 地线对地平均高
2021-09-26 21:25:08 +08:00
# h_whole - string_c_len - h_c_avr_sag - 2.7, # 导线对地平均高
2021-09-22 00:18:06 +08:00
h_whole - string_c_len - h_c_avr_sag - 20, # 导线对地平均高
2021-09-26 21:25:08 +08:00
# h_whole - string_c_len - h_c_avr_sag - 35.7, # 导线对地平均高
2021-09-22 00:18:06 +08:00
]
if len(gc_y) > 2: # 双回路
phase_n = 3 # 边相导线数量
else:
phase_n = 1
#########################################################
rg_type = None
# 以上是需要设置的参数
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
rg_x = None
rg_y = None
cad = Draw()
2021-09-23 00:15:30 +08:00
# 跳闸率 利用QGDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
ng = func_ng(td)
2021-09-22 11:22:13 +08:00
n_sf_phases = np.zeros((phase_n, voltage_n)) # 计算每一相的跳闸率
2021-09-23 00:15:30 +08:00
if np.any(np.array(gc_y) < 0):
2021-09-26 21:25:08 +08:00
logger.info("导线可能掉地面了,程序退出。")
2021-09-23 00:15:30 +08:00
return 0
for phase_conductor_foo in range(phase_n):
exposed_curve_shielded = False
rs_x = gc_x[phase_conductor_foo]
rs_y = gc_y[phase_conductor_foo]
rc_x = gc_x[phase_conductor_foo + 1]
rc_y = gc_y[phase_conductor_foo + 1]
2021-09-22 00:18:06 +08:00
if phase_n == 1:
rg_type = "g"
if phase_n > 1: # 多回路
2021-09-23 00:15:30 +08:00
if phase_conductor_foo < 2:
2021-09-22 00:18:06 +08:00
rg_type = "c"
2021-09-23 00:15:30 +08:00
rg_x = gc_x[phase_conductor_foo + 2]
rg_y = gc_y[phase_conductor_foo + 2]
2021-09-22 00:18:06 +08:00
else:
rg_type = "g"
# TODO 保护角公式可能有问题,后面改
shield_angle = (
2021-09-23 00:15:30 +08:00
math.atan((rc_x - rs_x) / ((rs_y - rc_y) + string_c_len)) * 180 / math.pi
2021-09-22 00:18:06 +08:00
) # 保护角
2021-09-26 21:25:08 +08:00
logger.info(f"保护角{shield_angle:.3f}°")
logger.debug(f"最低相防护标识{rg_type}")
2021-09-22 00:18:06 +08:00
for u_bar in range(voltage_n):
u_ph = (
2021-09-26 21:25:08 +08:00
-math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732
2021-09-22 00:18:06 +08:00
) # 运行相电压
2021-09-26 21:25:08 +08:00
logger.info(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV")
2021-09-22 00:18:06 +08:00
# 迭代法计算最大电流
i_max = 0
i_min = min_i(insulator_c_len, u_ph / 1.732)
_min_i = i_min # 尝试的最小电流
_max_i = 200 # 尝试的最大电流
# cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
for i_bar in np.linspace(
_min_i, _max_i, int((_max_i - _min_i) / 0.1)
): # 雷电流
2021-09-26 21:25:08 +08:00
# logger.info(f"尝试计算电流为{i_bar:.2f}")
2021-09-22 00:18:06 +08:00
rs = rs_fun(i_bar)
rc = rc_fun(i_bar, u_ph)
rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
#######
# cccCount += 1
# if cccCount % 30 == 0:
# import core
#
# core.gMSP.add_circle((0, h_gav), rs)
# core.gMSP.add_circle(
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
# )
# core.gMSP.add_circle((dgc, h_cav), rc)
#######
rg_rc_circle_intersection = solve_circle_intersection(
rs, rc, rs_x, rs_y, rc_x, rc_y
2021-09-12 22:56:03 +08:00
)
2021-09-22 00:18:06 +08:00
i_max = i_bar
if not rg_rc_circle_intersection: # if circle_intersection is []
2021-09-26 21:25:08 +08:00
logger.debug("保护弧和暴露弧无交点,检查设置参数。")
2021-09-22 00:18:06 +08:00
continue
circle_rc_line_or_rg_intersection = None
2021-09-21 20:00:03 +08:00
if rg_type == "g":
2021-09-22 00:18:06 +08:00
circle_rc_line_or_rg_intersection = solve_circle_line_intersection(
rc, rg, rc_x, rc_y
2021-09-21 20:00:03 +08:00
)
2021-09-22 00:18:06 +08:00
elif rg_type == "c":
circle_rc_line_or_rg_intersection = solve_circle_intersection(
rg, rc, rg_x, rg_y, rc_x, rc_y
2021-09-21 20:00:03 +08:00
)
2021-09-22 00:18:06 +08:00
if not circle_rc_line_or_rg_intersection:
# 暴露弧和捕捉弧无交点
if rg_type == "g":
if rg > rc_y:
i_min = i_bar
2021-09-26 21:25:08 +08:00
logger.info(f"捕捉弧在暴露弧之上,设置最小电流为{i_min:.2f}")
2021-09-22 00:18:06 +08:00
else:
2021-09-26 21:25:08 +08:00
logger.info("暴露弧和捕捉弧无交点,检查设置参数。")
2021-09-22 00:18:06 +08:00
continue
else:
2021-09-26 21:25:08 +08:00
logger.info("暴露弧和捕捉弧无交点,检查设置参数。")
2021-09-22 00:18:06 +08:00
continue
min_distance_intersection = (
np.sum(
2021-09-21 20:00:03 +08:00
(
2021-09-22 00:18:06 +08:00
np.array(rg_rc_circle_intersection)
- np.array(circle_rc_line_or_rg_intersection)
2021-09-21 20:00:03 +08:00
)
** 2
)
** 0.5
2021-09-22 00:18:06 +08:00
) # 计算两圆交点和地面直线交点的最小距离
if min_distance_intersection < 0.1:
break
2021-09-22 00:18:06 +08:00
# 判断是否以完全被保护
if rg_rc_circle_intersection[1] < circle_rc_line_or_rg_intersection[1]:
circle_rs_line_or_rg_intersection = None
if rg_type == "g":
circle_rs_line_or_rg_intersection = (
solve_circle_line_intersection(rs, rg, rs_x, rs_y)
)
if rg_type == "c":
circle_rs_line_or_rg_intersection = solve_circle_intersection(
rs, rg, rs_x, rs_y, rg_x, rg_y
)
# 判断与保护弧的交点是否在暴露弧外面
distance = (
np.sum(
(
np.array(circle_rs_line_or_rg_intersection)
- np.array([rc_x, rc_y])
)
** 2
)
** 0.5
)
if distance > rc:
2021-09-26 21:25:08 +08:00
logger.info("暴露弧已经完全被屏蔽")
2021-09-23 00:15:30 +08:00
exposed_curve_shielded = True
2021-09-22 00:18:06 +08:00
break
2021-09-23 00:15:30 +08:00
# if phase_conductor_foo == 2:
cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
cad.draw(i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 6)
2021-09-26 21:25:08 +08:00
cad.save_as(f"egm{phase_conductor_foo + 1}.dxf")
2021-09-22 00:18:06 +08:00
# 判断是否导线已经被完全保护
if abs(i_max - _max_i) < 1e-5:
2021-09-26 21:25:08 +08:00
logger.info("无法找到最大电流,可能是杆塔较高。")
logger.info(f"最大电流设置为自然界最大电流{i_max}kA")
logger.info(f"最大电流为{i_max:.2f}")
logger.info(f"最小电流为{i_min:.2f}")
2021-09-23 00:15:30 +08:00
if exposed_curve_shielded:
2021-09-26 21:25:08 +08:00
logger.info("暴露弧已经完全被屏蔽,不会跳闸。")
2021-09-23 00:15:30 +08:00
continue
2021-09-22 00:18:06 +08:00
curt_fineness = 0.1 # 电流积分细度
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
2021-09-26 21:25:08 +08:00
logger.info("最大电流小于最小电流,没有暴露弧。")
2021-09-22 00:18:06 +08:00
continue
# 开始积分
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
i_curt_samples, d_curt = np.linspace(
i_min, i_max, curt_segment_n + 1, retstep=True
)
bd_area_vec = np.vectorize(bd_area)
cal_bd_np = (
bd_area_vec(
i_curt_samples,
u_ph,
rc_x,
rc_y,
rs_x,
rs_y,
rg_x,
rg_y,
ground_surface,
rg_type,
)
* thunder_density(i_curt_samples)
)
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
# for i_curt in i_curt_samples[:-1]:
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
# cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
# cal_thunder_density_first = thunder_density(i_curt)
# cal_thunder_density_second = thunder_density(i_curt + d_curt)
# calculus += (
# (
# cal_bd_first * cal_thunder_density_first
# + cal_bd_second * cal_thunder_density_second
# )
# / 2
# * d_curt
# )
# if abs(calculus-0.05812740052770032)<1e-5:
# abc=123
# pass
2021-09-26 21:25:08 +08:00
n_sf = 2 * ng / 10 * calculus * arc_possibility(750, insulator_c_len)
2021-09-22 00:18:06 +08:00
avr_n_sf += n_sf / voltage_n
2021-09-23 00:15:30 +08:00
n_sf_phases[phase_conductor_foo][u_bar] = n_sf
2021-09-26 21:25:08 +08:00
logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
logger.info(f"跳闸率是{avr_n_sf:.6f}")
logger.info(f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=6)}")
2021-09-11 09:29:04 +08:00
2021-09-20 20:51:09 +08:00
def speed():
a = 0
for bar in range(100000000):
a += bar
2021-09-11 09:29:04 +08:00
if __name__ == "__main__":
2021-09-26 21:25:08 +08:00
logger.remove()
logger.add(sys.stderr, level="DEBUG")
2021-09-20 20:51:09 +08:00
run_time = timeit.timeit("egm()", globals=globals(), number=1)
print(f"运行时间:{run_time:.2f}s")
2021-09-11 09:29:04 +08:00
print("Finished.")