一些小细节的修改。
This commit is contained in:
parent
257d5bb23b
commit
476c8de80f
41
core.py
41
core.py
|
|
@ -1,6 +1,5 @@
|
|||
import math
|
||||
import ezdxf
|
||||
import numba
|
||||
import numpy as np
|
||||
|
||||
gCAD = None
|
||||
|
|
@ -47,9 +46,10 @@ class Draw:
|
|||
rg_rc_intersection = solve_circle_intersection(
|
||||
rg, rc, rg_x, rg_y, rc_x, rc_y
|
||||
)
|
||||
msp.add_line(
|
||||
(rc_x, rc_y), rg_rc_intersection, dxfattribs={"color": color}
|
||||
) # 圆和圆的交点
|
||||
if rg_rc_intersection:
|
||||
msp.add_line(
|
||||
(rc_x, rc_y), rg_rc_intersection, dxfattribs={"color": color}
|
||||
) # 圆和圆的交点
|
||||
# 计算圆交点
|
||||
|
||||
# msp.add_line((dgc, h_cav), circle_intersection) # 导线
|
||||
|
|
@ -58,6 +58,10 @@ class Draw:
|
|||
doc = self._doc
|
||||
doc.saveas("egm.dxf")
|
||||
|
||||
def saveas(self, file_name):
|
||||
doc = self._doc
|
||||
doc.saveas(file_name)
|
||||
|
||||
|
||||
# 圆交点
|
||||
def solve_circle_intersection(
|
||||
|
|
@ -69,8 +73,8 @@ def solve_circle_intersection(
|
|||
center_y2,
|
||||
):
|
||||
# 用牛顿法求解
|
||||
x = radius2 # 初始值
|
||||
y = radius2 # 初始值
|
||||
x = radius2 + center_x2 # 初始值
|
||||
y = radius2 + center_y2 # 初始值
|
||||
# TODO 考虑出现2个解的情况
|
||||
for bar in range(0, 10):
|
||||
A = [
|
||||
|
|
@ -89,7 +93,7 @@ def solve_circle_intersection(
|
|||
return []
|
||||
|
||||
|
||||
# 圆与地面线交点
|
||||
# 圆与捕雷线交点
|
||||
def solve_circle_line_intersection(radius, rg, center_x, center_y):
|
||||
distance = distance_point_line(center_x, center_y, 0, rg, 0) # 捕雷线到暴露圆中点的距离
|
||||
if distance > radius:
|
||||
|
|
@ -259,9 +263,10 @@ def bd_area(
|
|||
rc = rc_fun(i_curt, u_ph)
|
||||
rs = rs_fun(i_curt)
|
||||
rg = rg_fun(i_curt, rc_y, u_ph, typ=rg_type)
|
||||
theta_sample, d_theta = np.linspace(
|
||||
theta1, theta2, int((theta2 - theta1) / theta_fineness), retstep=True
|
||||
)
|
||||
theta_segments = int((theta2 - theta1) / theta_fineness)
|
||||
if theta_segments < 2:
|
||||
return 0
|
||||
theta_sample, d_theta = np.linspace(theta1, theta2, theta_segments, retstep=True)
|
||||
if len(theta_sample) < 2:
|
||||
return 0
|
||||
vec_calculus_bd = np.vectorize(calculus_bd)
|
||||
|
|
@ -322,10 +327,10 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
|||
# 把k转化成相应的角度,从x开始,逆时针为正
|
||||
k_angle = []
|
||||
for kk in k_candidate:
|
||||
if kk is None:
|
||||
abc = 123
|
||||
tangent_line_k(line_x, line_y, center_x, center_y, radius)
|
||||
pass
|
||||
# if kk is None:
|
||||
# abc = 123
|
||||
# tangent_line_k(line_x, line_y, center_x, center_y, radius)
|
||||
# pass
|
||||
if kk >= 0:
|
||||
k_angle.append(math.atan(kk))
|
||||
if kk < 0:
|
||||
|
|
@ -354,3 +359,11 @@ def circle_ground_surface_intersection(radius, center_x, center_y, ground_surfac
|
|||
r_x = x_series[equal_location][0]
|
||||
r_y = ground_surface(r_x)
|
||||
return r_x, r_y
|
||||
|
||||
|
||||
# u_ph是相电压
|
||||
# insulator_c_len绝缘子闪络距离
|
||||
def arc_possibility(rated_voltage, insulator_c_len): # 建弧率
|
||||
_e = rated_voltage / (3 ** 0.5) / insulator_c_len
|
||||
r = (4.5 * (_e ** 0.75) - 14) * 1e-2
|
||||
return r
|
||||
|
|
|
|||
47
main.py
47
main.py
|
|
@ -7,7 +7,7 @@ import timeit
|
|||
def egm():
|
||||
h_g_avr_sag = 11.67 * 2 / 3
|
||||
h_c_avr_sag = 14.43 * 2 / 3
|
||||
h_whole = 260 # 杆塔全高
|
||||
h_whole = 40 # 杆塔全高
|
||||
voltage_n = 3 # 工作电压分成多少份来计算
|
||||
td = 20 # 雷暴日
|
||||
insulator_c_len = 6.8 # 串子绝缘长度
|
||||
|
|
@ -36,33 +36,38 @@ def egm():
|
|||
rg_x = None
|
||||
rg_y = None
|
||||
cad = Draw()
|
||||
# 跳闸率 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
|
||||
ng = func_ng(td)
|
||||
n_sf_phases = np.zeros((phase_n, voltage_n)) # 计算每一相的跳闸率
|
||||
for phase_conductor in range(phase_n):
|
||||
rs_x = gc_x[phase_conductor]
|
||||
rs_y = gc_y[phase_conductor]
|
||||
rc_x = gc_x[phase_conductor + 1]
|
||||
rc_y = gc_y[phase_conductor + 1]
|
||||
if np.any(np.array(gc_y) < 0):
|
||||
print("导线可能掉地面了,程序退出。")
|
||||
return 0
|
||||
for phase_conductor_foo in range(phase_n):
|
||||
exposed_curve_shielded = False
|
||||
rs_x = gc_x[phase_conductor_foo]
|
||||
rs_y = gc_y[phase_conductor_foo]
|
||||
rc_x = gc_x[phase_conductor_foo + 1]
|
||||
rc_y = gc_y[phase_conductor_foo + 1]
|
||||
if phase_n == 1:
|
||||
rg_type = "g"
|
||||
if phase_n > 1: # 多回路
|
||||
if phase_conductor < 2:
|
||||
if phase_conductor_foo < 2:
|
||||
rg_type = "c"
|
||||
rg_x = gc_x[phase_conductor + 2]
|
||||
rg_y = gc_y[phase_conductor + 2]
|
||||
rg_x = gc_x[phase_conductor_foo + 2]
|
||||
rg_y = gc_y[phase_conductor_foo + 2]
|
||||
else:
|
||||
rg_type = "g"
|
||||
# TODO 保护角公式可能有问题,后面改
|
||||
shield_angle = (
|
||||
math.atan(rc_x / ((rc_y - rs_y) + string_c_len)) * 180 / math.pi
|
||||
math.atan((rc_x - rs_x) / ((rs_y - rc_y) + string_c_len)) * 180 / math.pi
|
||||
) # 保护角
|
||||
print(f"保护角{shield_angle:.3f}°")
|
||||
print(f"最低相防护标识{rg_type}")
|
||||
ng = func_ng(td)
|
||||
for u_bar in range(voltage_n):
|
||||
u_ph = (
|
||||
math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732
|
||||
) # 运行相电压
|
||||
print(f"计算第{phase_conductor + 1}相,电压为{u_ph:.2f}kV")
|
||||
print(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV")
|
||||
# 迭代法计算最大电流
|
||||
i_max = 0
|
||||
i_min = min_i(insulator_c_len, u_ph / 1.732)
|
||||
|
|
@ -151,17 +156,21 @@ def egm():
|
|||
)
|
||||
if distance > rc:
|
||||
print("暴露弧已经完全被屏蔽")
|
||||
exposed_curve_shielded = True
|
||||
break
|
||||
if phase_conductor == 2:
|
||||
cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
|
||||
cad.draw(i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 6)
|
||||
cad.save()
|
||||
# if phase_conductor_foo == 2:
|
||||
cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
|
||||
cad.draw(i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 6)
|
||||
cad.saveas(f"egm{phase_conductor_foo+1}.dxf")
|
||||
# 判断是否导线已经被完全保护
|
||||
if abs(i_max - _max_i) < 1e-5:
|
||||
print("无法找到最大电流,可能是杆塔较高。")
|
||||
print(f"最大电流设置为自然界最大电流{i_max}kA")
|
||||
print(f"最大电流为{i_max:.2f}")
|
||||
print(f"最小电流为{i_min:.2f}")
|
||||
if exposed_curve_shielded:
|
||||
print("暴露弧已经完全被屏蔽,不会跳闸。")
|
||||
continue
|
||||
curt_fineness = 0.1 # 电流积分细度
|
||||
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
|
||||
print("最大电流小于最小电流,没有暴露弧。")
|
||||
|
|
@ -204,11 +213,9 @@ def egm():
|
|||
# if abs(calculus-0.05812740052770032)<1e-5:
|
||||
# abc=123
|
||||
# pass
|
||||
n_sf = (
|
||||
2 * ng / 10 * calculus
|
||||
) # 跳闸率 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
|
||||
n_sf = (2 * ng / 10 * calculus) * arc_possibility(750, insulator_c_len)
|
||||
avr_n_sf += n_sf / voltage_n
|
||||
n_sf_phases[phase_conductor][u_bar] = n_sf
|
||||
n_sf_phases[phase_conductor_foo][u_bar] = n_sf
|
||||
print(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
|
||||
print(f"跳闸率是{avr_n_sf:.6f}")
|
||||
print(f"不同相跳闸率是{np.mean(n_sf_phases,axis=1)}")
|
||||
|
|
|
|||
Loading…
Reference in New Issue