参数全部从外部读取
This commit is contained in:
parent
2251966b7e
commit
7f03fc2b9c
163
core.py
163
core.py
|
|
@ -7,6 +7,38 @@ gMSP = None
|
|||
gCount = 1
|
||||
|
||||
|
||||
class Parameter:
|
||||
h_g_sag: float # 地线弧垂
|
||||
h_c_sag: float # 导线弧垂
|
||||
h_whole: float # 杆塔全高
|
||||
voltage_n: int # 工作电压分成多少份来计算
|
||||
td: int # 雷暴日
|
||||
insulator_c_len: float # 串子绝缘长度
|
||||
string_c_len: float
|
||||
string_g_len: float
|
||||
gc_x: [float] # 导、地线水平坐标
|
||||
ground_angels: [float] # 地面倾角,向下为正
|
||||
h_arm: float # 导、地线垂直坐标
|
||||
altitude: int # 海拔,单位米
|
||||
max_i: float # 最大尝试电流,单位kA
|
||||
|
||||
|
||||
para = Parameter()
|
||||
|
||||
|
||||
def rg_line_function_factory(_rg, ground_angel): # 返回一个地面捕雷线的直线方程
|
||||
y_d = _rg / math.cos(ground_angel) # y轴上的截距
|
||||
# 利用公式y-y0=k(x-x0) 得到直线公式
|
||||
y0 = y_d
|
||||
x0 = 0
|
||||
k = math.tan(math.pi - ground_angel)
|
||||
|
||||
def f(x):
|
||||
return y0 + k * (x - x0)
|
||||
|
||||
return f
|
||||
|
||||
|
||||
class Draw:
|
||||
def __init__(self):
|
||||
self._doc = ezdxf.new(dxfversion="R2010")
|
||||
|
|
@ -14,7 +46,20 @@ class Draw:
|
|||
global gCAD
|
||||
gCAD = self
|
||||
|
||||
def draw(self, i_curt, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, color):
|
||||
def draw(
|
||||
self,
|
||||
i_curt,
|
||||
u_ph,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
rg_type,
|
||||
ground_angel,
|
||||
color,
|
||||
):
|
||||
doc = self._doc
|
||||
msp = doc.modelspace()
|
||||
global gMSP
|
||||
|
|
@ -33,8 +78,15 @@ class Draw:
|
|||
(rc_x, rc_y), circle_intersection, dxfattribs={"color": color}
|
||||
) # 地线
|
||||
if rg_type == "g":
|
||||
msp.add_line((0, rg), (2000, rg), dxfattribs={"color": color})
|
||||
circle_line_section = solve_circle_line_intersection(rc, rg, rc_x, rc_y)
|
||||
ground_angel_func = rg_line_function_factory(rg, ground_angel)
|
||||
msp.add_line(
|
||||
(0, ground_angel_func(0)),
|
||||
(2000, ground_angel_func(2000)),
|
||||
dxfattribs={"color": color},
|
||||
)
|
||||
circle_line_section = solve_circle_line_intersection(
|
||||
rc, rc_x, rc_y, ground_angel_func
|
||||
)
|
||||
if not circle_line_section:
|
||||
pass
|
||||
else:
|
||||
|
|
@ -94,40 +146,77 @@ def solve_circle_intersection(
|
|||
|
||||
|
||||
# 圆与捕雷线交点
|
||||
def solve_circle_line_intersection(radius, rg, center_x, center_y):
|
||||
distance = distance_point_line(center_x, center_y, 0, rg, 0) # 捕雷线到暴露圆中点的距离
|
||||
def solve_circle_line_intersection(
|
||||
radius, center_x, center_y, ground_surface_func
|
||||
): # 返回交点的x和y坐标
|
||||
x0 = 0
|
||||
y0 = ground_surface_func(x0)
|
||||
x1 = 1
|
||||
y1 = ground_surface_func(x1)
|
||||
k = (y1 - y0) / (x1 - x0)
|
||||
distance = distance_point_line(center_x, center_y, x0, y0, k) # 捕雷线到暴露圆中点的距离
|
||||
if distance > radius:
|
||||
return []
|
||||
else:
|
||||
r = (radius ** 2 - (rg - center_y) ** 2) ** 0.5 + center_x
|
||||
return [r, rg]
|
||||
# r = (radius ** 2 - (rg - center_y) ** 2) ** 0.5 + center_x
|
||||
a = center_x
|
||||
b = center_y
|
||||
c = y0
|
||||
d = x0
|
||||
bb = -2 * a + 2 * c * k - 2 * d * (k ** 2) - 2 * b * k
|
||||
aa = 1 + k ** 2
|
||||
rr = radius
|
||||
cc = (
|
||||
a ** 2
|
||||
+ c ** 2
|
||||
- 2 * c * k * d
|
||||
+ (k ** 2) * (d ** 2)
|
||||
- 2 * b * (c - k * d)
|
||||
+ b ** 2
|
||||
- rr ** 2
|
||||
)
|
||||
_x = (-bb + (bb ** 2 - 4 * aa * cc) ** 0.5) / 2 / aa
|
||||
_y = ground_surface_func(_x)
|
||||
# 验算结果
|
||||
equ = (center_x - _x) ** 2 + (center_y - _y) ** 2 - radius ** 2
|
||||
assert abs(equ) < 1e-5
|
||||
return [_x, _y]
|
||||
|
||||
|
||||
def min_i(string_len, u_ph):
|
||||
u_50 = 530 * string_len + 35
|
||||
# 海拔修正
|
||||
altitude = para.altitude
|
||||
k_a = math.exp(altitude / 8150) # 气隙海拔修正
|
||||
u_50 = 1 / k_a * (530 * string_len + 35) # 50045 上附录的公式,实际应该用负极性电压的公式
|
||||
z_0 = 300 # 雷电波阻抗
|
||||
z_c = 251 # 导线波阻抗
|
||||
# 新版大手册公式 3-277
|
||||
r = (u_50 + 2 * z_0 / (2 * z_0 + z_c) * u_ph) * (2 * z_0 + z_c) / (z_0 * z_c)
|
||||
return r
|
||||
|
||||
|
||||
def thunder_density(i): # l雷电流幅值密度函数
|
||||
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44)
|
||||
td = para.td
|
||||
r = None
|
||||
if td == 20:
|
||||
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44) # 雷暴日20d
|
||||
if td == 40:
|
||||
r = -(10 ** (-i / 88)) * math.log(10) * (-1 / 88) # 雷暴日40d
|
||||
return r
|
||||
|
||||
|
||||
def angel_density(angle): # 入射角密度函数 angle单位是弧度
|
||||
r = 0.75 * abs((np.cos(angle - math.pi / 2) ** 3))
|
||||
r = 0.75 * abs((np.cos(angle - math.pi / 2) ** 3)) # 新版大手册公式3-275
|
||||
return r
|
||||
|
||||
|
||||
def rs_fun(i):
|
||||
r = 10 * (i ** 0.65)
|
||||
r = 10 * (i ** 0.65) # 新版大手册公式3-271
|
||||
return r
|
||||
|
||||
|
||||
def rc_fun(i, u_ph):
|
||||
r = 1.63 * ((5.015 * (i ** 0.578) - 0.001 * u_ph) ** 1.125)
|
||||
r = 1.63 * ((5.015 * (i ** 0.578) - 0.001 * u_ph) ** 1.125) # 新版大手册公式3-272
|
||||
return r
|
||||
|
||||
|
||||
|
|
@ -136,16 +225,16 @@ def rg_fun(i_curt, h_cav, u_ph, typ="g"):
|
|||
rg = None
|
||||
if typ == "g":
|
||||
if h_cav < 40:
|
||||
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) * (i_curt ** 0.65)
|
||||
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) * (i_curt ** 0.65) # 新版大手册公式3-273
|
||||
else:
|
||||
rg = 5.5 * (i_curt ** 0.65)
|
||||
rg = 5.5 * (i_curt ** 0.65) # 新版大手册公式3-273
|
||||
elif typ == "c": # 此时返回的是圆半径
|
||||
rg = rc_fun(i_curt, u_ph)
|
||||
return rg
|
||||
|
||||
|
||||
def intersection_angle(
|
||||
rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, i_curt, u_ph, ground_surface, rg_type
|
||||
rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, i_curt, u_ph, ground_angel, rg_type
|
||||
): # 暴露弧的角度
|
||||
rs = rs_fun(i_curt)
|
||||
rc = rc_fun(i_curt, u_ph)
|
||||
|
|
@ -154,35 +243,38 @@ def intersection_angle(
|
|||
rs, rc, rs_x, rs_y, rc_x, rc_y
|
||||
) # 两圆的交点
|
||||
circle_line_or_rg_intersection = None
|
||||
rg_line_func = rg_line_function_factory(rg, ground_angel)
|
||||
if rg_type == "g":
|
||||
circle_line_or_rg_intersection = solve_circle_line_intersection(
|
||||
rc, rg, rc_x, rc_y
|
||||
rc, rc_x, rc_y, rg_line_func
|
||||
) # 暴露圆和补雷线的交点
|
||||
if rg_type == "c":
|
||||
circle_line_or_rg_intersection = solve_circle_intersection(
|
||||
rg, rc, rg_x, rg_y, rc_x, rc_y
|
||||
) # 两圆的交点
|
||||
if circle_line_or_rg_intersection:
|
||||
(
|
||||
circle_line_or_rg_intersection_x,
|
||||
circle_line_or_rg_intersection_y,
|
||||
) = circle_line_or_rg_intersection
|
||||
if (
|
||||
ground_surface(circle_line_or_rg_intersection_x)
|
||||
> circle_line_or_rg_intersection_y
|
||||
): # 交点在地面线以下,就可以不积分
|
||||
# 找到暴露弧和地面线的交点
|
||||
circle_line_or_rg_intersection = circle_ground_surface_intersection(
|
||||
rc, rc_x, rc_y, ground_surface
|
||||
)
|
||||
# TODO 应该是不存在落到地面线以下的情况,先把以下注释掉
|
||||
|
||||
# if circle_line_or_rg_intersection:
|
||||
# (
|
||||
# circle_line_or_rg_intersection_x,
|
||||
# circle_line_or_rg_intersection_y,
|
||||
# ) = circle_line_or_rg_intersection
|
||||
# if (
|
||||
# ground_surface(rg, circle_line_or_rg_intersection_x)
|
||||
# > circle_line_or_rg_intersection_y
|
||||
# ): # 交点在地面线以下,就可以不积分
|
||||
# # 找到暴露弧和地面线的交点
|
||||
# circle_line_or_rg_intersection = circle_ground_surface_intersection(
|
||||
# rc, rc_x, rc_y, ground_surface
|
||||
# )
|
||||
theta1 = None
|
||||
np_circle_intersection = np.array(circle_intersection)
|
||||
theta2_line = np_circle_intersection - np.array([rc_x, rc_y])
|
||||
theta2 = math.atan(theta2_line[1] / theta2_line[0])
|
||||
np_circle_line_or_rg_intersection = np.array(circle_line_or_rg_intersection)
|
||||
if not circle_line_or_rg_intersection:
|
||||
if rc_y - rc > rg: # rg在rc下面
|
||||
# 捕捉线太低了,对高塔无保护,θ_1从-90°开始计算。
|
||||
if rc_y - rc > rg_line_func(rc_x): # rg在rc下面
|
||||
# 捕捉线太低了,对高塔无保护,θ_1从-90°开始计算,即从与地面垂直的角度开始就已经暴露了。
|
||||
theta1 = -math.pi / 2
|
||||
else:
|
||||
theta1_line = np_circle_line_or_rg_intersection - np.array([rc_x, rc_y])
|
||||
|
|
@ -202,6 +294,7 @@ def func_calculus_pw(theta, max_w):
|
|||
if segments < 2: # 最大最小太小,没有可以积分的
|
||||
return 0
|
||||
w_samples, d_w = np.linspace(0, max_w, segments, retstep=True)
|
||||
# 童中宇 750KV信洛Ⅰ线雷电防护性能研究 公式 3-10
|
||||
cal_w_np = abs(angel_density(w_samples)) * np.sin(theta - (w_samples - math.pi / 2))
|
||||
r_pw = np.sum((cal_w_np[:-1] + cal_w_np[1:])) / 2 * d_w
|
||||
return r_pw
|
||||
|
|
@ -216,7 +309,7 @@ def calculus_bd(theta, rc, rs, rg, rc_x, rc_y, rs_x, rs_y): # 对θ进行积分
|
|||
# 求保护弧到直线的距离,判断是否相交
|
||||
d_to_rs = distance_point_line(rs_x, rs_y, line_x, line_y, k)
|
||||
if d_to_rs < rs: # 相交
|
||||
# 要用过直线上一点到暴露弧的切线
|
||||
# 要用过这一点到保护弧的切线
|
||||
new_k = tangent_line_k(line_x, line_y, rs_x, rs_y, rs, init_k=k)
|
||||
if new_k >= 0:
|
||||
max_w = math.atan(new_k) # 用于保护弧相切的角度
|
||||
|
|
@ -249,15 +342,16 @@ def calculus_bd(theta, rc, rs, rg, rc_x, rc_y, rs_x, rs_y): # 对θ进行积分
|
|||
# )
|
||||
# gCAD.save()
|
||||
pass
|
||||
# 童中宇 750KV信洛Ⅰ线雷电防护性能研究 公式 3-10
|
||||
r = rc / math.cos(theta) * func_calculus_pw(theta, max_w)
|
||||
return r
|
||||
|
||||
|
||||
def bd_area(
|
||||
i_curt, u_ph, rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, ground_surface, rg_type
|
||||
i_curt, u_ph, rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, ground_angel, rg_type
|
||||
): # 暴露弧的投影面积
|
||||
theta1, theta2 = intersection_angle(
|
||||
rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, i_curt, u_ph, ground_surface, rg_type
|
||||
rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, i_curt, u_ph, ground_angel, rg_type
|
||||
) # θ角度
|
||||
theta_fineness = 0.01
|
||||
rc = rc_fun(i_curt, u_ph)
|
||||
|
|
@ -364,6 +458,7 @@ def circle_ground_surface_intersection(radius, center_x, center_y, ground_surfac
|
|||
# u_ph是相电压
|
||||
# insulator_c_len绝缘子闪络距离
|
||||
def arc_possibility(rated_voltage, insulator_c_len): # 建弧率
|
||||
# 50064 中附录给的公式
|
||||
_e = rated_voltage / (3 ** 0.5) / insulator_c_len
|
||||
r = (4.5 * (_e ** 0.75) - 14) * 1e-2
|
||||
return r
|
||||
|
|
|
|||
468
main.py
468
main.py
|
|
@ -1,225 +1,309 @@
|
|||
import math
|
||||
import sys
|
||||
|
||||
import tomli
|
||||
from loguru import logger
|
||||
from core import *
|
||||
import timeit
|
||||
|
||||
|
||||
def egm():
|
||||
h_g_avr_sag = 11.67 * 2 / 3
|
||||
h_c_avr_sag = 14.43 * 2 / 3
|
||||
h_whole = 130 # 杆塔全高
|
||||
voltage_n = 3 # 工作电压分成多少份来计算
|
||||
td = 20 # 雷暴日
|
||||
insulator_c_len = 6.6 # 串子绝缘长度
|
||||
string_c_len = 9.2
|
||||
string_g_len = 0.5
|
||||
gc_x = [17.9, 17, 15, 17.0]
|
||||
|
||||
# 以后考虑地形角度,地面线
|
||||
def ground_surface(x):
|
||||
return 0
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
toml_file_path = "default.toml"
|
||||
# # logger.info('没指定计算文件!程序结束。')
|
||||
# # sys.exit(0)
|
||||
# h_g_sag = 20 # 地线弧垂
|
||||
# h_c_sag = 20 # 导线弧垂
|
||||
# h_whole = 106.1 # 杆塔全高
|
||||
# voltage_n = 3 # 工作电压分成多少份来计算
|
||||
# td = 20 # 雷暴日
|
||||
# insulator_c_len = 6.98 # 串子绝缘长度
|
||||
# string_c_len = 9.2
|
||||
# string_g_len = 0.63
|
||||
# gc_x = [32.2 / 2, 32.2 / 2, 15, 17.0] # 导、地线水平坐标
|
||||
# ground_angels = [40 / 180 * math.pi] # 地面倾角,向下为正
|
||||
# h_arm = 34
|
||||
# gc_y = [
|
||||
# h_whole - string_g_len - h_g_sag * 2 / 3, # 地线对地平均高
|
||||
# # h_whole - string_c_len - h_c_sag - 2.7, # 导线对地平均高
|
||||
# h_whole - string_c_len - h_c_sag * 2 / 3 - h_arm, # 导线对地平均高
|
||||
# # h_whole - string_c_len - h_c_sag - 35.7, # 导线对地平均高
|
||||
# ]
|
||||
else:
|
||||
toml_file_path = sys.argv[1]
|
||||
logger.info(f"读取文件{toml_file_path}")
|
||||
with open(toml_file_path, "rb") as toml_fs:
|
||||
toml_dict = tomli.load(toml_fs)
|
||||
toml_parameter = toml_dict["parameter"]
|
||||
para.h_g_sag = toml_parameter["h_g_sag"] # 地线弧垂
|
||||
para.h_c_sag = toml_parameter["h_c_sag"] # 导线弧垂
|
||||
para.h_whole = toml_parameter["h_whole"] # 杆塔全高
|
||||
para.td = toml_parameter["td"] # 雷暴日
|
||||
para.insulator_c_len = toml_parameter["insulator_c_len"] # 串子绝缘长度
|
||||
para.string_c_len = toml_parameter["string_c_len"]
|
||||
para.string_g_len = toml_parameter["string_g_len"]
|
||||
para.gc_x = toml_parameter["gc_x"] # 导、地线水平坐标
|
||||
para.ground_angels = [
|
||||
angel / 180 * math.pi for angel in toml_parameter["ground_angels"]
|
||||
] # 地面倾角,向下为正
|
||||
para.h_arm = toml_parameter["h_arm"]
|
||||
para.altitude = toml_parameter["altitude"]
|
||||
para.max_i = toml_parameter["max_i"]
|
||||
toml_optional = toml_dict["optional"]
|
||||
para.voltage_n = toml_optional["voltage_n"] # 工作电压分成多少份来计算
|
||||
#########################################################
|
||||
# 以上是需要设置的参数
|
||||
h_whole = para.h_whole
|
||||
string_g_len = para.string_g_len
|
||||
string_c_len = para.string_c_len
|
||||
h_g_sag = para.h_g_sag
|
||||
h_c_sag = para.h_c_sag
|
||||
gc_x = para.gc_x
|
||||
h_arm = para.h_arm
|
||||
gc_y = [
|
||||
h_whole - string_g_len - h_g_avr_sag, # 地线对地平均高
|
||||
# h_whole - string_c_len - h_c_avr_sag - 2.7, # 导线对地平均高
|
||||
h_whole - string_c_len - h_c_avr_sag - 20, # 导线对地平均高
|
||||
# h_whole - string_c_len - h_c_avr_sag - 35.7, # 导线对地平均高
|
||||
h_whole - string_g_len - h_g_sag * 2 / 3, # 地线对地平均高
|
||||
]
|
||||
if len(h_arm) > 1:
|
||||
for hoo in h_arm[1:]:
|
||||
gc_y.append(hoo - string_c_len - h_c_sag * 2 / 3)
|
||||
if len(gc_y) > 2: # 双回路
|
||||
phase_n = 3 # 边相导线数量
|
||||
else:
|
||||
phase_n = 1
|
||||
#########################################################
|
||||
rg_type = None
|
||||
# 以上是需要设置的参数
|
||||
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
|
||||
rg_x = None
|
||||
rg_y = None
|
||||
cad = Draw()
|
||||
# 跳闸率 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
|
||||
# 地闪密度 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
|
||||
td = para.td
|
||||
ng = func_ng(td)
|
||||
n_sf_phases = np.zeros((phase_n, voltage_n)) # 计算每一相的跳闸率
|
||||
if np.any(np.array(gc_y) < 0):
|
||||
logger.info("导线可能掉地面了,程序退出。")
|
||||
return 0
|
||||
for phase_conductor_foo in range(phase_n):
|
||||
exposed_curve_shielded = False
|
||||
rs_x = gc_x[phase_conductor_foo]
|
||||
rs_y = gc_y[phase_conductor_foo]
|
||||
rc_x = gc_x[phase_conductor_foo + 1]
|
||||
rc_y = gc_y[phase_conductor_foo + 1]
|
||||
if phase_n == 1:
|
||||
rg_type = "g"
|
||||
if phase_n > 1: # 多回路
|
||||
if phase_conductor_foo < 2:
|
||||
rg_type = "c"
|
||||
rg_x = gc_x[phase_conductor_foo + 2]
|
||||
rg_y = gc_y[phase_conductor_foo + 2]
|
||||
else:
|
||||
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
|
||||
ground_angels = para.ground_angels
|
||||
for ground_angel in ground_angels:
|
||||
logger.info(f"地面倾角{ground_angel/math.pi*180:.3f}°")
|
||||
rg_type = None
|
||||
rg_x = None
|
||||
rg_y = None
|
||||
cad = Draw()
|
||||
voltage_n = para.voltage_n
|
||||
n_sf_phases = np.zeros((phase_n, voltage_n)) # 存储每一相的跳闸率
|
||||
if np.any(np.array(gc_y) < 0):
|
||||
logger.info("导线可能掉地面下了,程序退出。")
|
||||
return 0
|
||||
for phase_conductor_foo in range(phase_n):
|
||||
exposed_curve_shielded = False
|
||||
rs_x = gc_x[phase_conductor_foo]
|
||||
rs_y = gc_y[phase_conductor_foo]
|
||||
rc_x = gc_x[phase_conductor_foo + 1]
|
||||
rc_y = gc_y[phase_conductor_foo + 1]
|
||||
if phase_n == 1:
|
||||
rg_type = "g"
|
||||
# TODO 保护角公式可能有问题,后面改
|
||||
shield_angle = (
|
||||
math.atan((rc_x - rs_x) / ((rs_y - rc_y) + string_c_len)) * 180 / math.pi
|
||||
) # 保护角
|
||||
logger.info(f"保护角{shield_angle:.3f}°")
|
||||
logger.debug(f"最低相防护标识{rg_type}")
|
||||
for u_bar in range(voltage_n):
|
||||
u_ph = (
|
||||
-math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732
|
||||
) # 运行相电压
|
||||
logger.info(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV")
|
||||
# 迭代法计算最大电流
|
||||
i_max = 0
|
||||
i_min = min_i(insulator_c_len, u_ph / 1.732)
|
||||
_min_i = i_min # 尝试的最小电流
|
||||
_max_i = 200 # 尝试的最大电流
|
||||
# cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
|
||||
for i_bar in np.linspace(
|
||||
_min_i, _max_i, int((_max_i - _min_i) / 0.1)
|
||||
): # 雷电流
|
||||
# logger.info(f"尝试计算电流为{i_bar:.2f}")
|
||||
rs = rs_fun(i_bar)
|
||||
rc = rc_fun(i_bar, u_ph)
|
||||
rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
|
||||
#######
|
||||
# cccCount += 1
|
||||
# if cccCount % 30 == 0:
|
||||
# import core
|
||||
#
|
||||
# core.gMSP.add_circle((0, h_gav), rs)
|
||||
# core.gMSP.add_circle(
|
||||
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
|
||||
# )
|
||||
# core.gMSP.add_circle((dgc, h_cav), rc)
|
||||
#######
|
||||
rg_rc_circle_intersection = solve_circle_intersection(
|
||||
rs, rc, rs_x, rs_y, rc_x, rc_y
|
||||
)
|
||||
i_max = i_bar
|
||||
if not rg_rc_circle_intersection: # if circle_intersection is []
|
||||
logger.debug("保护弧和暴露弧无交点,检查设置参数。")
|
||||
continue
|
||||
circle_rc_line_or_rg_intersection = None
|
||||
if rg_type == "g":
|
||||
circle_rc_line_or_rg_intersection = solve_circle_line_intersection(
|
||||
rc, rg, rc_x, rc_y
|
||||
)
|
||||
elif rg_type == "c":
|
||||
circle_rc_line_or_rg_intersection = solve_circle_intersection(
|
||||
rg, rc, rg_x, rg_y, rc_x, rc_y
|
||||
)
|
||||
if not circle_rc_line_or_rg_intersection:
|
||||
# 暴露弧和捕捉弧无交点
|
||||
if phase_n > 1: # 多回路
|
||||
if phase_conductor_foo < 2:
|
||||
rg_type = "c" # 捕捉弧有下面一相导线的击距代替
|
||||
rg_x = gc_x[phase_conductor_foo + 2]
|
||||
rg_y = gc_y[phase_conductor_foo + 2]
|
||||
else:
|
||||
rg_type = "g"
|
||||
# TODO 保护角公式可能有问题,后面改
|
||||
shield_angle = (
|
||||
math.atan((rc_x - rs_x) / ((rs_y - rc_y) + string_c_len))
|
||||
* 180
|
||||
/ math.pi
|
||||
) # 保护角
|
||||
logger.info(f"保护角{shield_angle:.3f}°")
|
||||
logger.debug(f"最低相防护标识{rg_type}")
|
||||
for u_bar in range(voltage_n): # 计算不同工作电压下的跳闸率
|
||||
u_ph = (
|
||||
math.sqrt(2)
|
||||
* 750
|
||||
* math.cos(2 * math.pi / voltage_n * u_bar)
|
||||
/ 1.732
|
||||
) # 运行相电压
|
||||
logger.info(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV")
|
||||
# 迭代法计算最大电流
|
||||
i_max = 0
|
||||
insulator_c_len = para.insulator_c_len
|
||||
i_min = min_i(insulator_c_len, u_ph / 1.732)
|
||||
_min_i = i_min # 尝试的最小电流
|
||||
_max_i = para.max_i # 尝试的最大电流
|
||||
# cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
|
||||
for i_bar in np.linspace(
|
||||
_min_i, _max_i, int((_max_i - _min_i) / 0.1)
|
||||
): # 雷电流
|
||||
# logger.info(f"尝试计算电流为{i_bar:.2f}")
|
||||
rs = rs_fun(i_bar)
|
||||
rc = rc_fun(i_bar, u_ph)
|
||||
rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
|
||||
rg_line_func = None
|
||||
if rg_type == "g":
|
||||
if rg > rc_y:
|
||||
i_min = i_bar
|
||||
logger.info(f"捕捉弧在暴露弧之上,设置最小电流为{i_min:.2f}")
|
||||
rg_line_func = rg_line_function_factory(rg, ground_angel)
|
||||
#######
|
||||
# cccCount += 1
|
||||
# if cccCount % 30 == 0:
|
||||
# import core
|
||||
#
|
||||
# core.gMSP.add_circle((0, h_gav), rs)
|
||||
# core.gMSP.add_circle(
|
||||
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
|
||||
# )
|
||||
# core.gMSP.add_circle((dgc, h_cav), rc)
|
||||
#######
|
||||
rg_rc_circle_intersection = solve_circle_intersection(
|
||||
rs, rc, rs_x, rs_y, rc_x, rc_y
|
||||
)
|
||||
i_max = i_bar
|
||||
if not rg_rc_circle_intersection: # if circle_intersection is []
|
||||
logger.debug("保护弧和暴露弧无交点,检查设置参数。")
|
||||
continue
|
||||
circle_rc_line_or_rg_intersection = None
|
||||
if rg_type == "g":
|
||||
circle_rc_line_or_rg_intersection = (
|
||||
solve_circle_line_intersection(rc, rc_x, rc_y, rg_line_func)
|
||||
)
|
||||
elif rg_type == "c":
|
||||
circle_rc_line_or_rg_intersection = solve_circle_intersection(
|
||||
rg, rc, rg_x, rg_y, rc_x, rc_y
|
||||
)
|
||||
if not circle_rc_line_or_rg_intersection:
|
||||
# 暴露弧和捕捉弧无交点
|
||||
if rg_type == "g":
|
||||
if rg_line_func(rc_x) > rc_y:
|
||||
i_min = i_bar # 用于后面判断最小和最大电流是否相等,相等意味着暴露弧一直被屏蔽
|
||||
logger.info(f"捕捉面在暴露弧之上,设置最小电流为{i_min:.2f}")
|
||||
else:
|
||||
logger.info("暴露弧和地面捕捉弧无交点,检查设置参数。")
|
||||
continue
|
||||
else:
|
||||
logger.info("暴露弧和捕捉弧无交点,检查设置参数。")
|
||||
continue
|
||||
else:
|
||||
logger.info("暴露弧和捕捉弧无交点,检查设置参数。")
|
||||
continue
|
||||
min_distance_intersection = (
|
||||
np.sum(
|
||||
(
|
||||
np.array(rg_rc_circle_intersection)
|
||||
- np.array(circle_rc_line_or_rg_intersection)
|
||||
)
|
||||
** 2
|
||||
)
|
||||
** 0.5
|
||||
) # 计算两圆交点和地面直线交点的最小距离
|
||||
if min_distance_intersection < 0.1:
|
||||
break
|
||||
# 判断是否以完全被保护
|
||||
if rg_rc_circle_intersection[1] < circle_rc_line_or_rg_intersection[1]:
|
||||
circle_rs_line_or_rg_intersection = None
|
||||
if rg_type == "g":
|
||||
circle_rs_line_or_rg_intersection = (
|
||||
solve_circle_line_intersection(rs, rg, rs_x, rs_y)
|
||||
)
|
||||
if rg_type == "c":
|
||||
circle_rs_line_or_rg_intersection = solve_circle_intersection(
|
||||
rs, rg, rs_x, rs_y, rg_x, rg_y
|
||||
)
|
||||
# 判断与保护弧的交点是否在暴露弧外面
|
||||
distance = (
|
||||
logger.info("上面的导地线无法保护下面的导地线,检查设置参数。")
|
||||
continue
|
||||
min_distance_intersection = (
|
||||
np.sum(
|
||||
(
|
||||
np.array(circle_rs_line_or_rg_intersection)
|
||||
- np.array([rc_x, rc_y])
|
||||
np.array(rg_rc_circle_intersection)
|
||||
- np.array(circle_rc_line_or_rg_intersection)
|
||||
)
|
||||
** 2
|
||||
)
|
||||
** 0.5
|
||||
)
|
||||
if distance > rc:
|
||||
logger.info("暴露弧已经完全被屏蔽")
|
||||
exposed_curve_shielded = True
|
||||
break
|
||||
# if phase_conductor_foo == 2:
|
||||
cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
|
||||
cad.draw(i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 6)
|
||||
cad.save_as(f"egm{phase_conductor_foo + 1}.dxf")
|
||||
# 判断是否导线已经被完全保护
|
||||
if abs(i_max - _max_i) < 1e-5:
|
||||
logger.info("无法找到最大电流,可能是杆塔较高。")
|
||||
logger.info(f"最大电流设置为自然界最大电流{i_max}kA")
|
||||
logger.info(f"最大电流为{i_max:.2f}")
|
||||
logger.info(f"最小电流为{i_min:.2f}")
|
||||
if exposed_curve_shielded:
|
||||
logger.info("暴露弧已经完全被屏蔽,不会跳闸。")
|
||||
continue
|
||||
curt_fineness = 0.1 # 电流积分细度
|
||||
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
|
||||
logger.info("最大电流小于最小电流,没有暴露弧。")
|
||||
continue
|
||||
# 开始积分
|
||||
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
||||
i_curt_samples, d_curt = np.linspace(
|
||||
i_min, i_max, curt_segment_n + 1, retstep=True
|
||||
)
|
||||
bd_area_vec = np.vectorize(bd_area)
|
||||
cal_bd_np = (
|
||||
bd_area_vec(
|
||||
i_curt_samples,
|
||||
) # 计算两圆交点和地面直线交点的最小距离
|
||||
if min_distance_intersection < 0.1:
|
||||
break # 已经找到了最大电流
|
||||
# 判断是否以完全被保护
|
||||
if (
|
||||
rg_rc_circle_intersection[1]
|
||||
< circle_rc_line_or_rg_intersection[1]
|
||||
):
|
||||
circle_rs_line_or_rg_intersection = None
|
||||
if rg_type == "g":
|
||||
circle_rs_line_or_rg_intersection = (
|
||||
solve_circle_line_intersection(
|
||||
rs, rs_x, rs_y, rg_line_func
|
||||
) # 保护弧和捕雷弧的交点
|
||||
)
|
||||
if rg_type == "c":
|
||||
circle_rs_line_or_rg_intersection = (
|
||||
solve_circle_intersection(
|
||||
rs, rg, rs_x, rs_y, rg_x, rg_y
|
||||
)
|
||||
)
|
||||
# 判断与保护弧的交点是否在暴露弧外面
|
||||
distance = (
|
||||
np.sum(
|
||||
(
|
||||
np.array(circle_rs_line_or_rg_intersection)
|
||||
- np.array([rc_x, rc_y])
|
||||
)
|
||||
** 2
|
||||
)
|
||||
** 0.5
|
||||
)
|
||||
if distance > rc:
|
||||
logger.info("暴露弧已经完全被屏蔽")
|
||||
exposed_curve_shielded = True
|
||||
break
|
||||
# if phase_conductor_foo == 2:
|
||||
cad.draw(
|
||||
i_min,
|
||||
u_ph,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
ground_surface,
|
||||
rg_type,
|
||||
ground_angel,
|
||||
2,
|
||||
)
|
||||
* thunder_density(i_curt_samples)
|
||||
)
|
||||
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
|
||||
# for i_curt in i_curt_samples[:-1]:
|
||||
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
||||
# cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
|
||||
# cal_thunder_density_first = thunder_density(i_curt)
|
||||
# cal_thunder_density_second = thunder_density(i_curt + d_curt)
|
||||
# calculus += (
|
||||
# (
|
||||
# cal_bd_first * cal_thunder_density_first
|
||||
# + cal_bd_second * cal_thunder_density_second
|
||||
# )
|
||||
# / 2
|
||||
# * d_curt
|
||||
# )
|
||||
# if abs(calculus-0.05812740052770032)<1e-5:
|
||||
# abc=123
|
||||
# pass
|
||||
n_sf = 2 * ng / 10 * calculus * arc_possibility(750, insulator_c_len)
|
||||
avr_n_sf += n_sf / voltage_n
|
||||
n_sf_phases[phase_conductor_foo][u_bar] = n_sf
|
||||
logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
|
||||
logger.info(f"跳闸率是{avr_n_sf:.6f}")
|
||||
logger.info(f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=6)}")
|
||||
cad.draw(
|
||||
i_max,
|
||||
u_ph,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
rg_type,
|
||||
ground_angel,
|
||||
6,
|
||||
)
|
||||
cad.save_as(f"egm{phase_conductor_foo + 1}.dxf")
|
||||
# 判断是否导线已经被完全保护
|
||||
if abs(i_max - _max_i) < 1e-5:
|
||||
logger.info("无法找到最大电流,可能是杆塔较高。")
|
||||
logger.info(f"最大电流设置为自然界最大电流{i_max}kA")
|
||||
logger.info(f"最大电流为{i_max:.2f}")
|
||||
logger.info(f"最小电流为{i_min:.2f}")
|
||||
if exposed_curve_shielded:
|
||||
logger.info("暴露弧已经完全被屏蔽,不会跳闸。")
|
||||
continue
|
||||
curt_fineness = 0.1 # 电流积分细度
|
||||
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
|
||||
logger.info("最大电流小于等于最小电流,没有暴露弧。")
|
||||
continue
|
||||
# 开始积分
|
||||
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
||||
i_curt_samples, d_curt = np.linspace(
|
||||
i_min, i_max, curt_segment_n + 1, retstep=True
|
||||
)
|
||||
bd_area_vec = np.vectorize(bd_area)
|
||||
cal_bd_np = (
|
||||
bd_area_vec(
|
||||
i_curt_samples,
|
||||
u_ph,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
ground_angel,
|
||||
rg_type,
|
||||
)
|
||||
* thunder_density(i_curt_samples)
|
||||
)
|
||||
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
|
||||
# for i_curt in i_curt_samples[:-1]:
|
||||
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
||||
# cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
|
||||
# cal_thunder_density_first = thunder_density(i_curt)
|
||||
# cal_thunder_density_second = thunder_density(i_curt + d_curt)
|
||||
# calculus += (
|
||||
# (
|
||||
# cal_bd_first * cal_thunder_density_first
|
||||
# + cal_bd_second * cal_thunder_density_second
|
||||
# )
|
||||
# / 2
|
||||
# * d_curt
|
||||
# )
|
||||
# if abs(calculus-0.05812740052770032)<1e-5:
|
||||
# abc=123
|
||||
# pass
|
||||
n_sf = 2 * ng / 10 * calculus * arc_possibility(750, insulator_c_len)
|
||||
avr_n_sf += n_sf / voltage_n
|
||||
n_sf_phases[phase_conductor_foo][u_bar] = n_sf
|
||||
logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
|
||||
logger.info(f"跳闸率是{avr_n_sf:.6f}")
|
||||
logger.info(
|
||||
f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=6)}"
|
||||
)
|
||||
|
||||
|
||||
def speed():
|
||||
|
|
|
|||
24
plot_data.py
24
plot_data.py
|
|
@ -40,24 +40,24 @@ data_130m塔高_不同接地电阻 = np.array(
|
|||
]
|
||||
)
|
||||
|
||||
category_names_130m塔高_不同地线保护角 = ["-1", "-3", "-6"]
|
||||
category_names_150m塔高_不同地线保护角 = ["-1", "-3", "-6"]
|
||||
|
||||
data_130m塔高_不同地线保护角 = np.array(
|
||||
data_150m塔高_不同地线保护角 = np.array(
|
||||
[
|
||||
[0.000170, 0.103132],
|
||||
[0.000168, 0.079659],
|
||||
[0.000167, 0.055598],
|
||||
[0.000440, 0.155414],
|
||||
[0.000433, 0.128227],
|
||||
[0.000429, 0.099819],
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
category_names_66m串长_不同塔高 = ['100', '120', '140']
|
||||
category_names_66m串长_不同塔高 = ["100", "120", "140"]
|
||||
|
||||
data_66m串长_不同塔高 = np.array(
|
||||
[
|
||||
[0.000053 , 0.023285],
|
||||
[0.000139 , 0.083229],
|
||||
[0.000470 , 0.145586],
|
||||
[0.000053, 0.023285],
|
||||
[0.000139, 0.083229],
|
||||
[0.000470, 0.145586],
|
||||
]
|
||||
)
|
||||
|
||||
|
|
@ -65,8 +65,8 @@ category_names_68m串长_不同塔高 = [100, 120, 140]
|
|||
|
||||
data_68m串长_不同塔高 = np.array(
|
||||
[
|
||||
[0.000039 , 0.019094],
|
||||
[0.000098 , 0.073033],
|
||||
[0.000287 , 0.130923],
|
||||
[0.000039, 0.019094],
|
||||
[0.000098, 0.073033],
|
||||
[0.000287, 0.130923],
|
||||
]
|
||||
)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,33 @@
|
|||
from fastapi import FastAPI
|
||||
import uvicorn
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class CalculationParameter(BaseModel):
|
||||
loop: str # single or double 回路数
|
||||
insulator_c_len: float # 绝缘长度
|
||||
string_c_len: float # 导线串长
|
||||
string_g_len: float # 地线串长
|
||||
td: int # 雷暴日
|
||||
h_g_avr_sag: float # 地线平均弧垂
|
||||
h_c_avr_sag: float # 导线平均弧垂
|
||||
h_whole: float # 杆塔全高
|
||||
gc_x: tuple[float] # 导、地线水平坐标
|
||||
ground_angels: tuple[float] # 地面倾角,向下为正
|
||||
|
||||
|
||||
fastapi_app = FastAPI()
|
||||
|
||||
|
||||
@fastapi_app.post("/calculation")
|
||||
async def calculation(cp: CalculationParameter):
|
||||
print(cp)
|
||||
return {"Hello": "World"}
|
||||
|
||||
|
||||
def server_start():
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run("server:fastapi_app", host="127.0.0.1", port=5000, log_level="info")
|
||||
Loading…
Reference in New Issue