Compare commits
12 Commits
7f03fc2b9c
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7a5bb05f58 | ||
|
|
13e25832ed | ||
|
|
5dc1613d2a | ||
|
|
9b852235f1 | ||
|
|
510daf0516 | ||
|
|
4c4c0e036b | ||
|
|
791f7c281f | ||
|
|
ee2d6477ee | ||
|
|
27730075dc | ||
|
|
8ec26aa3a3 | ||
|
|
cc98c27800 | ||
|
|
6a123b6213 |
13
.gitignore
vendored
Normal file
13
.gitignore
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
*.dxf
|
||||
build
|
||||
__pycache__
|
||||
CSharp
|
||||
.idea
|
||||
dist
|
||||
*.spec
|
||||
*.dwg
|
||||
历史
|
||||
.venv
|
||||
*.toml
|
||||
launch.json
|
||||
settings.json
|
||||
14
Makefile
Normal file
14
Makefile
Normal file
@@ -0,0 +1,14 @@
|
||||
target: dist build
|
||||
create-version-file metadata.yml --outfile build/file_version_info.txt
|
||||
pyinstaller -F main.py --version-file build/file_version_info.txt -n Lightening
|
||||
|
||||
dist:
|
||||
mkdir dist
|
||||
|
||||
build:
|
||||
mkdir build
|
||||
|
||||
.PHONY:clean
|
||||
|
||||
clean:
|
||||
rm -fr build
|
||||
94
animation.py
Normal file
94
animation.py
Normal file
@@ -0,0 +1,94 @@
|
||||
import matplotlib.pyplot as plt
|
||||
from functools import wraps
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Animation:
|
||||
def __init__(self) -> None:
|
||||
fig, ax = plt.subplots()
|
||||
self._fig = fig
|
||||
self._ax = ax
|
||||
self._ticks = 0
|
||||
self._disable = False
|
||||
self.init_fig()
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def switch_decorator(func):
|
||||
@wraps(func)
|
||||
def not_run(cls, *args, **kwargs):
|
||||
# print("not run")
|
||||
pass
|
||||
|
||||
@wraps(func)
|
||||
def wrapTheFunction(cls, *args, **kwargs):
|
||||
if not cls._disable:
|
||||
# print("desc")
|
||||
return func(cls, *args, **kwargs)
|
||||
return not_run(cls, *args, **kwargs)
|
||||
|
||||
return wrapTheFunction
|
||||
|
||||
def disable(self, _disable):
|
||||
self._disable = _disable
|
||||
|
||||
@switch_decorator
|
||||
def init_fig(self):
|
||||
ax = self._ax
|
||||
ax.set_aspect(1)
|
||||
ax.set_xlim([-500, 500])
|
||||
ax.set_ylim([-500, 500])
|
||||
|
||||
@switch_decorator
|
||||
def show(self):
|
||||
self._fig.show()
|
||||
|
||||
@switch_decorator
|
||||
def add_rg_line(self, line_func):
|
||||
ax = self._ax
|
||||
x = np.linspace(0, 300)
|
||||
y = line_func(x)
|
||||
ax.plot(x, y)
|
||||
|
||||
@switch_decorator
|
||||
def add_rs(self, rs, rs_x, rs_y):
|
||||
ax = self._ax
|
||||
ax.add_artist(plt.Circle((rs_x, rs_y), rs, fill=False))
|
||||
|
||||
@switch_decorator
|
||||
def add_rc(self, rc, rc_x, rc_y):
|
||||
ax = self._ax
|
||||
ax.add_artist(plt.Circle((rc_x, rc_y), rc, fill=False))
|
||||
|
||||
# 增加暴露弧范围
|
||||
@switch_decorator
|
||||
def add_expose_area(
|
||||
self,
|
||||
rc_x,
|
||||
rc_y,
|
||||
intersection_x1,
|
||||
intersection_y1,
|
||||
intersection_x2,
|
||||
intersection_y2,
|
||||
):
|
||||
ax = self._ax
|
||||
ax.plot([rc_x, intersection_x1], [rc_y, intersection_y1], color="red")
|
||||
ax.plot([rc_x, intersection_x2], [rc_y, intersection_y2], color="red")
|
||||
pass
|
||||
|
||||
@switch_decorator
|
||||
def clear(self):
|
||||
ax = self._ax
|
||||
ax.cla()
|
||||
|
||||
@switch_decorator
|
||||
def pause(self):
|
||||
ax = self._ax
|
||||
self._ticks += 1
|
||||
ticks = self._ticks
|
||||
ax.set_title(f"{ticks}")
|
||||
plt.pause(0.02)
|
||||
self.clear()
|
||||
self.init_fig()
|
||||
|
||||
pass
|
||||
18
article-第一版论文的参数.toml
Normal file
18
article-第一版论文的参数.toml
Normal file
@@ -0,0 +1,18 @@
|
||||
title = "绕击跳闸率计算文件"
|
||||
[parameter]
|
||||
rated_voltage=750 #额定电压等级
|
||||
h_c_sag = 14.43 # 导线弧垂
|
||||
h_g_sag = 11.67 # 地线弧垂
|
||||
h_whole = 100 # 杆塔全高
|
||||
insulator_c_len = 6.8 # 导线串子绝缘长度
|
||||
string_c_len = 9.2 # 导线串长
|
||||
string_g_len = 0.5 # 地线串长
|
||||
h_arm = [100,80] # 导、地线挂点垂直距离
|
||||
gc_x = [17.9,17] # 导、地线水平坐标,计算的是中相
|
||||
ground_angels = [0] # 地面倾角,向下为正,单位°
|
||||
altitude = 1000 # 海拔,单位米
|
||||
max_i = 200 # 最大尝试电流,单位kA
|
||||
td=20#雷暴日
|
||||
|
||||
[optional]
|
||||
voltage_n=3 #计算时电压分成多少份
|
||||
23
article.toml
Normal file
23
article.toml
Normal file
@@ -0,0 +1,23 @@
|
||||
title = "绕击跳闸率计算文件"
|
||||
[parameter]
|
||||
rated_voltage = 750 # 额定电压等级
|
||||
h_c_sag = 14.43 # 导线弧垂
|
||||
h_g_sag = 11.67 # 地线弧垂
|
||||
insulator_c_len = 7.0 # 导线串子绝缘长度
|
||||
string_c_len = 9.2 # 导线串长
|
||||
string_g_len = 0.5 # 地线串长
|
||||
h_arm = [100, 80] # 导、地线挂点垂直距离,计算的是中相
|
||||
gc_x = [17.9, 17] # 导、地线水平坐标,计算的是中相
|
||||
ground_angels = [0] # 地面倾角,向下为正,单位°
|
||||
altitude = 1500 # 海拔,单位米
|
||||
td = 20 # 雷暴日
|
||||
[advance]
|
||||
# ng=29.6 #地闪密度 !!注意!! 如果地闪密度大于0,则不会通过雷暴日计算地闪密度。填-1则忽略该项数据。
|
||||
# Ip_a=19.896 #概率密度曲线系数a !!注意!! 如果该值大于0,则不会通过雷暴日计算雷电流概率。填-1则忽略该项数据。
|
||||
# Ip_b=3.012 #概率密度曲线系数b !!注意!! 如果该值大于0,则不会通过雷暴日计算雷电流概率。填-1则忽略该项数据。
|
||||
ng = -1 # 地闪密度 !!注意!! 如果地闪密度大于0,则不会通过雷暴日计算地闪密度。填-1则忽略该项数据。
|
||||
Ip_a = -1 # 概率密度曲线系数a !!注意!! 如果该值大于0,则不会通过雷暴日计算雷电流概率。填-1则忽略该项数据。
|
||||
Ip_b = -1 # 概率密度曲线系数b !!注意!! 如果该值大于0,则不会通过雷暴日计算雷电流概率。填-1则忽略该项数据。
|
||||
[optional]
|
||||
voltage_n = 3 # 计算时电压分成多少份
|
||||
max_i = 200 # 最大尝试电流,单位kA
|
||||
102
core.py
102
core.py
@@ -1,6 +1,7 @@
|
||||
import math
|
||||
import ezdxf
|
||||
import numpy as np
|
||||
from typing import List
|
||||
|
||||
gCAD = None
|
||||
gMSP = None
|
||||
@@ -10,17 +11,20 @@ gCount = 1
|
||||
class Parameter:
|
||||
h_g_sag: float # 地线弧垂
|
||||
h_c_sag: float # 导线弧垂
|
||||
h_whole: float # 杆塔全高
|
||||
voltage_n: int # 工作电压分成多少份来计算
|
||||
td: int # 雷暴日
|
||||
insulator_c_len: float # 串子绝缘长度
|
||||
string_c_len: float
|
||||
string_g_len: float
|
||||
gc_x: [float] # 导、地线水平坐标
|
||||
ground_angels: [float] # 地面倾角,向下为正
|
||||
gc_x: List[float] # 导、地线水平坐标
|
||||
ground_angels: List[float] # 地面倾角,向下为正
|
||||
h_arm: float # 导、地线垂直坐标
|
||||
altitude: int # 海拔,单位米
|
||||
max_i: float # 最大尝试电流,单位kA
|
||||
rated_voltage: float # 额定电压
|
||||
ng: float # 地闪密度 次/(每平方公里·每年)
|
||||
Ip_a: float # 概率密度曲线系数a
|
||||
Ip_b: float # 概率密度曲线系数b
|
||||
|
||||
|
||||
para = Parameter()
|
||||
@@ -128,14 +132,14 @@ def solve_circle_intersection(
|
||||
x = radius2 + center_x2 # 初始值
|
||||
y = radius2 + center_y2 # 初始值
|
||||
# TODO 考虑出现2个解的情况
|
||||
for bar in range(0, 10):
|
||||
for _ in range(0, 10):
|
||||
A = [
|
||||
[-2 * (x - center_x1), -2 * (y - center_y1)],
|
||||
[-2 * (x - center_x2), -2 * (y - center_y2)],
|
||||
]
|
||||
b = [
|
||||
(x - center_x1) ** 2 + (y - center_y1) ** 2 - radius1 ** 2,
|
||||
(x - center_x2) ** 2 + (y - center_y2) ** 2 - radius2 ** 2,
|
||||
(x - center_x1) ** 2 + (y - center_y1) ** 2 - radius1**2,
|
||||
(x - center_x2) ** 2 + (y - center_y2) ** 2 - radius2**2,
|
||||
]
|
||||
X_set = np.linalg.solve(A, b)
|
||||
x += X_set[0]
|
||||
@@ -163,22 +167,22 @@ def solve_circle_line_intersection(
|
||||
b = center_y
|
||||
c = y0
|
||||
d = x0
|
||||
bb = -2 * a + 2 * c * k - 2 * d * (k ** 2) - 2 * b * k
|
||||
aa = 1 + k ** 2
|
||||
bb = -2 * a + 2 * c * k - 2 * d * (k**2) - 2 * b * k
|
||||
aa = 1 + k**2
|
||||
rr = radius
|
||||
cc = (
|
||||
a ** 2
|
||||
+ c ** 2
|
||||
a**2
|
||||
+ c**2
|
||||
- 2 * c * k * d
|
||||
+ (k ** 2) * (d ** 2)
|
||||
+ (k**2) * (d**2)
|
||||
- 2 * b * (c - k * d)
|
||||
+ b ** 2
|
||||
- rr ** 2
|
||||
+ b**2
|
||||
- rr**2
|
||||
)
|
||||
_x = (-bb + (bb ** 2 - 4 * aa * cc) ** 0.5) / 2 / aa
|
||||
_x = (-bb + (bb**2 - 4 * aa * cc) ** 0.5) / 2 / aa
|
||||
_y = ground_surface_func(_x)
|
||||
# 验算结果
|
||||
equ = (center_x - _x) ** 2 + (center_y - _y) ** 2 - radius ** 2
|
||||
equ = (center_x - _x) ** 2 + (center_y - _y) ** 2 - radius**2
|
||||
assert abs(equ) < 1e-5
|
||||
return [_x, _y]
|
||||
|
||||
@@ -186,23 +190,41 @@ def solve_circle_line_intersection(
|
||||
def min_i(string_len, u_ph):
|
||||
# 海拔修正
|
||||
altitude = para.altitude
|
||||
k_a = math.exp(altitude / 8150) # 气隙海拔修正
|
||||
if altitude > 1000:
|
||||
k_a = math.exp((altitude - 1000) / 8150) # 气隙海拔修正
|
||||
else:
|
||||
k_a = 1
|
||||
u_50 = 1 / k_a * (530 * string_len + 35) # 50045 上附录的公式,实际应该用负极性电压的公式
|
||||
# u_50 = 1 / k_a * (533 * string_len + 132) # 串放电路径 1000m海拔
|
||||
# u_50 = 1 / k_a * (477 * string_len + 99) # 串放电路径 2000m海拔
|
||||
# u_50 = 615 * string_len # 导线对塔身放电 1000m海拔
|
||||
# u_50= 263.32647401+533.90081562*string_len
|
||||
z_0 = 300 # 雷电波阻抗
|
||||
z_c = 251 # 导线波阻抗
|
||||
# 新版大手册公式 3-277
|
||||
r = (u_50 + 2 * z_0 / (2 * z_0 + z_c) * u_ph) * (2 * z_0 + z_c) / (z_0 * z_c)
|
||||
# r = 2 * (u_50 - u_ph) / z_c
|
||||
return r
|
||||
|
||||
|
||||
def thunder_density(i): # l雷电流幅值密度函数
|
||||
td = para.td
|
||||
def thunder_density(i, td, ip_a, ip_b): # 雷电流幅值密度函数
|
||||
# td = para.td
|
||||
r = None
|
||||
if td == 20:
|
||||
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44) # 雷暴日20d
|
||||
if td == 40:
|
||||
r = -(10 ** (-i / 88)) * math.log(10) * (-1 / 88) # 雷暴日40d
|
||||
return r
|
||||
# ip_a = para.Ip_a
|
||||
# ip_b = para.Ip_b
|
||||
if ip_a > 0 and ip_b > 0:
|
||||
r = -(
|
||||
-ip_b / ip_a / ((1 + (i / ip_a) ** ip_b) ** 2) * ((i / ip_a) ** (ip_b - 1))
|
||||
)
|
||||
return r
|
||||
else:
|
||||
if td == 20:
|
||||
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44) # 雷暴日20d
|
||||
return r
|
||||
if td == 40:
|
||||
r = -(10 ** (-i / 88)) * math.log(10) * (-1 / 88) # 雷暴日40d
|
||||
return r
|
||||
raise Exception("检查雷电参数!")
|
||||
|
||||
|
||||
def angel_density(angle): # 入射角密度函数 angle单位是弧度
|
||||
@@ -211,12 +233,12 @@ def angel_density(angle): # 入射角密度函数 angle单位是弧度
|
||||
|
||||
|
||||
def rs_fun(i):
|
||||
r = 10 * (i ** 0.65) # 新版大手册公式3-271
|
||||
r = 10 * (i**0.65) # 新版大手册公式3-271
|
||||
return r
|
||||
|
||||
|
||||
def rc_fun(i, u_ph):
|
||||
r = 1.63 * ((5.015 * (i ** 0.578) - 0.001 * u_ph) ** 1.125) # 新版大手册公式3-272
|
||||
r = 1.63 * ((5.015 * (i**0.578) - 0.001 * u_ph * 1) ** 1.125) # 新版大手册公式3-272
|
||||
return r
|
||||
|
||||
|
||||
@@ -225,9 +247,9 @@ def rg_fun(i_curt, h_cav, u_ph, typ="g"):
|
||||
rg = None
|
||||
if typ == "g":
|
||||
if h_cav < 40:
|
||||
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) * (i_curt ** 0.65) # 新版大手册公式3-273
|
||||
rg = (3.6 + 1.7 * math.log(43 - h_cav)) * (i_curt**0.65) # 新版大手册公式3-273
|
||||
else:
|
||||
rg = 5.5 * (i_curt ** 0.65) # 新版大手册公式3-273
|
||||
rg = 5.5 * (i_curt**0.65) # 新版大手册公式3-273
|
||||
elif typ == "c": # 此时返回的是圆半径
|
||||
rg = rc_fun(i_curt, u_ph)
|
||||
return rg
|
||||
@@ -284,7 +306,7 @@ def intersection_angle(
|
||||
|
||||
# 点到直线的距离
|
||||
def distance_point_line(point_x, point_y, line_x, line_y, k) -> float:
|
||||
d = abs(k * point_x - point_y - k * line_x + line_y) / ((k ** 2 + 1) ** 0.5)
|
||||
d = abs(k * point_x - point_y - k * line_x + line_y) / ((k**2 + 1) ** 0.5)
|
||||
return d
|
||||
|
||||
|
||||
@@ -394,14 +416,14 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
||||
max_iteration = 30
|
||||
for bar in range(0, max_iteration):
|
||||
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (
|
||||
radius ** 2
|
||||
) * (k ** 2 + 1)
|
||||
radius**2
|
||||
) * (k**2 + 1)
|
||||
|
||||
d_fk = (
|
||||
2
|
||||
* (k * center_x - center_y - k * line_x + line_y)
|
||||
* (center_x - line_x)
|
||||
- 2 * (radius ** 2) * k
|
||||
- 2 * (radius**2) * k
|
||||
)
|
||||
if abs(d_fk) < 1e-5 and abs(line_x - center_x - radius) < 1e-5:
|
||||
# k不存在,角度为90°,k取一个很大的正数
|
||||
@@ -433,8 +455,12 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
||||
return np.array(k_candidate)[np.max(k_angle) == k_angle].tolist()[-1]
|
||||
|
||||
|
||||
def func_ng(td): # 地闪密度
|
||||
return 0.023 * (td ** 1.3)
|
||||
def func_ng(td): # 地闪密度,通过雷暴日计算
|
||||
if para.ng > 0:
|
||||
r = para.ng
|
||||
else:
|
||||
r = 0.023 * (td**1.3)
|
||||
return r
|
||||
|
||||
|
||||
# 圆和地面线的交点,只去正x轴上的。
|
||||
@@ -442,12 +468,12 @@ def circle_ground_surface_intersection(radius, center_x, center_y, ground_surfac
|
||||
# 最笨的办法,一个个去试
|
||||
x_series = np.linspace(0, radius, int(radius / 0.001)) + center_x
|
||||
part_to_be_squared = (
|
||||
radius ** 2 - (x_series - center_x) ** 2
|
||||
radius**2 - (x_series - center_x) ** 2
|
||||
) # 有可能出现-0.00001的数值,只是一个数值稳定问题。
|
||||
part_to_be_squared[
|
||||
(part_to_be_squared < 0) & (abs(part_to_be_squared) < 1e-3)
|
||||
] = 0 # 强制为0
|
||||
y_series = center_y - part_to_be_squared ** 0.5
|
||||
y_series = center_y - part_to_be_squared**0.5
|
||||
ground_surface_y = ground_surface(x_series)
|
||||
equal_location = np.abs(ground_surface_y - y_series) < 0.5
|
||||
r_x = x_series[equal_location][0]
|
||||
@@ -459,6 +485,8 @@ def circle_ground_surface_intersection(radius, center_x, center_y, ground_surfac
|
||||
# insulator_c_len绝缘子闪络距离
|
||||
def arc_possibility(rated_voltage, insulator_c_len): # 建弧率
|
||||
# 50064 中附录给的公式
|
||||
_e = rated_voltage / (3 ** 0.5) / insulator_c_len
|
||||
r = (4.5 * (_e ** 0.75) - 14) * 1e-2
|
||||
# TODO 需要区分交直流
|
||||
# _e = rated_voltage / (3**0.5) / insulator_c_len #交流
|
||||
_e = abs(rated_voltage) / (1) / insulator_c_len # 直流
|
||||
r = (4.5 * (_e**0.75) - 14) * 1e-2
|
||||
return r
|
||||
|
||||
288
main.py
288
main.py
@@ -1,42 +1,44 @@
|
||||
import math
|
||||
import os.path
|
||||
import sys
|
||||
import time
|
||||
import tomli
|
||||
from loguru import logger
|
||||
from core import *
|
||||
import timeit
|
||||
from animation import Animation
|
||||
|
||||
|
||||
def egm():
|
||||
if len(sys.argv) < 2:
|
||||
toml_file_path = "default.toml"
|
||||
# # logger.info('没指定计算文件!程序结束。')
|
||||
# # sys.exit(0)
|
||||
# h_g_sag = 20 # 地线弧垂
|
||||
# h_c_sag = 20 # 导线弧垂
|
||||
# h_whole = 106.1 # 杆塔全高
|
||||
# voltage_n = 3 # 工作电压分成多少份来计算
|
||||
# td = 20 # 雷暴日
|
||||
# insulator_c_len = 6.98 # 串子绝缘长度
|
||||
# string_c_len = 9.2
|
||||
# string_g_len = 0.63
|
||||
# gc_x = [32.2 / 2, 32.2 / 2, 15, 17.0] # 导、地线水平坐标
|
||||
# ground_angels = [40 / 180 * math.pi] # 地面倾角,向下为正
|
||||
# h_arm = 34
|
||||
# gc_y = [
|
||||
# h_whole - string_g_len - h_g_sag * 2 / 3, # 地线对地平均高
|
||||
# # h_whole - string_c_len - h_c_sag - 2.7, # 导线对地平均高
|
||||
# h_whole - string_c_len - h_c_sag * 2 / 3 - h_arm, # 导线对地平均高
|
||||
# # h_whole - string_c_len - h_c_sag - 35.7, # 导线对地平均高
|
||||
# ]
|
||||
# 打印参数
|
||||
def parameter_display(para_dis: Parameter):
|
||||
logger.info(f"额定电压 kV {para_dis.rated_voltage}")
|
||||
logger.info(f"导线弧垂 m {para_dis.h_c_sag}")
|
||||
logger.info(f"地线弧垂 m {para_dis.h_g_sag}")
|
||||
logger.info(f"全塔高 m {para_dis.h_arm[0]}")
|
||||
logger.info(f"串绝缘距离 m {para_dis.insulator_c_len}")
|
||||
logger.info(f"导线串长 m {para_dis.string_c_len}")
|
||||
logger.info(f"地线串长 m {para_dis.string_g_len}")
|
||||
logger.info(f"挂点垂直坐标 m {para_dis.h_arm}")
|
||||
logger.info(f"挂点水平坐标 m {para_dis.gc_x}")
|
||||
logger.info(f"地面倾角 ° {[an * 180 / math.pi for an in para_dis.ground_angels]}")
|
||||
logger.info(f"海拔高度 m {para_dis.altitude}")
|
||||
if para_dis.ng > 0:
|
||||
logger.info("不采用雷暴日计算地闪密度和雷电流密度")
|
||||
logger.info(f"地闪密度 次/(每平方公里·每年) {para_dis.ng}")
|
||||
logger.info(f"概率密度曲线系数a {para_dis.Ip_a}")
|
||||
logger.info(f"概率密度曲线系数b {para_dis.Ip_b}")
|
||||
pass
|
||||
else:
|
||||
toml_file_path = sys.argv[1]
|
||||
logger.info(f"读取文件{toml_file_path}")
|
||||
logger.info(f"雷暴日 d {para_dis.td}")
|
||||
|
||||
|
||||
def read_parameter(toml_file_path):
|
||||
with open(toml_file_path, "rb") as toml_fs:
|
||||
toml_dict = tomli.load(toml_fs)
|
||||
toml_parameter = toml_dict["parameter"]
|
||||
para.h_g_sag = toml_parameter["h_g_sag"] # 地线弧垂
|
||||
para.h_c_sag = toml_parameter["h_c_sag"] # 导线弧垂
|
||||
para.h_whole = toml_parameter["h_whole"] # 杆塔全高
|
||||
# para.h_whole = toml_parameter["h_whole"] # 杆塔全高
|
||||
para.td = toml_parameter["td"] # 雷暴日
|
||||
para.insulator_c_len = toml_parameter["insulator_c_len"] # 串子绝缘长度
|
||||
para.string_c_len = toml_parameter["string_c_len"]
|
||||
@@ -47,12 +49,30 @@ def egm():
|
||||
] # 地面倾角,向下为正
|
||||
para.h_arm = toml_parameter["h_arm"]
|
||||
para.altitude = toml_parameter["altitude"]
|
||||
para.max_i = toml_parameter["max_i"]
|
||||
para.rated_voltage = toml_parameter["rated_voltage"]
|
||||
toml_advance = toml_dict["advance"]
|
||||
para.ng = toml_advance["ng"] # 地闪密度
|
||||
para.Ip_a = toml_advance["Ip_a"] # 概率密度曲线系数a
|
||||
para.Ip_b = toml_advance["Ip_b"] # 概率密度曲线系数b
|
||||
toml_optional = toml_dict["optional"]
|
||||
para.voltage_n = toml_optional["voltage_n"] # 工作电压分成多少份来计算
|
||||
para.max_i = toml_optional["max_i"]
|
||||
|
||||
|
||||
def egm():
|
||||
if len(sys.argv) < 2:
|
||||
toml_file_path = r"内自500kV-ZCK上相.toml"
|
||||
else:
|
||||
toml_file_path = sys.argv[1]
|
||||
if not os.path.exists(toml_file_path):
|
||||
logger.info(f"无法找到数据文件{toml_file_path},程序退出。")
|
||||
sys.exit(0)
|
||||
logger.info(f"读取文件{toml_file_path}")
|
||||
read_parameter(toml_file_path)
|
||||
#########################################################
|
||||
# 以上是需要设置的参数
|
||||
h_whole = para.h_whole
|
||||
parameter_display(para)
|
||||
h_whole = para.h_arm[0] # 挂点高
|
||||
string_g_len = para.string_g_len
|
||||
string_c_len = para.string_c_len
|
||||
h_g_sag = para.h_g_sag
|
||||
@@ -64,7 +84,7 @@ def egm():
|
||||
]
|
||||
if len(h_arm) > 1:
|
||||
for hoo in h_arm[1:]:
|
||||
gc_y.append(hoo - string_c_len - h_c_sag * 2 / 3)
|
||||
gc_y.append(hoo - string_c_len - h_c_sag * 2 / 3) # 导线平均高
|
||||
if len(gc_y) > 2: # 双回路
|
||||
phase_n = 3 # 边相导线数量
|
||||
else:
|
||||
@@ -74,12 +94,15 @@ def egm():
|
||||
ng = func_ng(td)
|
||||
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
|
||||
ground_angels = para.ground_angels
|
||||
# 初始化动画
|
||||
animate = Animation()
|
||||
animate.disable(False)
|
||||
# animate.show()
|
||||
for ground_angel in ground_angels:
|
||||
logger.info(f"地面倾角{ground_angel/math.pi*180:.3f}°")
|
||||
rg_type = None
|
||||
rg_x = None
|
||||
rg_y = None
|
||||
cad = Draw()
|
||||
voltage_n = para.voltage_n
|
||||
n_sf_phases = np.zeros((phase_n, voltage_n)) # 存储每一相的跳闸率
|
||||
if np.any(np.array(gc_y) < 0):
|
||||
@@ -95,88 +118,129 @@ def egm():
|
||||
rg_type = "g"
|
||||
if phase_n > 1: # 多回路
|
||||
if phase_conductor_foo < 2:
|
||||
rg_type = "c" # 捕捉弧有下面一相导线的击距代替
|
||||
rg_type = "c" # 捕捉弧由下面一相导线的击距代替
|
||||
rg_x = gc_x[phase_conductor_foo + 2]
|
||||
rg_y = gc_y[phase_conductor_foo + 2]
|
||||
else:
|
||||
rg_type = "g"
|
||||
# TODO 保护角公式可能有问题,后面改
|
||||
shield_angle = (
|
||||
math.atan((rc_x - rs_x) / ((rs_y - rc_y) + string_c_len))
|
||||
shield_angle_at_avg_height = (
|
||||
math.atan(
|
||||
(rc_x - rs_x)
|
||||
/ (
|
||||
(h_arm[0] - string_g_len - h_arm[phase_conductor_foo + 1])
|
||||
+ string_c_len
|
||||
)
|
||||
)
|
||||
* 180
|
||||
/ math.pi
|
||||
) # 保护角
|
||||
logger.info(f"保护角{shield_angle:.3f}°")
|
||||
) # 挂点处保护角
|
||||
logger.info(f"挂点处保护角{shield_angle_at_avg_height:.3f}°")
|
||||
logger.debug(f"最低相防护标识{rg_type}")
|
||||
rated_voltage = para.rated_voltage
|
||||
for u_bar in range(voltage_n): # 计算不同工作电压下的跳闸率
|
||||
u_ph = (
|
||||
math.sqrt(2)
|
||||
* 750
|
||||
* math.cos(2 * math.pi / voltage_n * u_bar)
|
||||
/ 1.732
|
||||
) # 运行相电压
|
||||
# TODO 需要区分交、直流
|
||||
# u_ph = (
|
||||
# math.sqrt(2)
|
||||
# * rated_voltage
|
||||
# * math.cos(2 * math.pi / voltage_n * u_bar)
|
||||
# / 1.732
|
||||
# ) # 运行相电压
|
||||
u_ph = rated_voltage / 1.732
|
||||
logger.info(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV")
|
||||
# 迭代法计算最大电流
|
||||
i_max = 0
|
||||
insulator_c_len = para.insulator_c_len
|
||||
i_min = min_i(insulator_c_len, u_ph / 1.732)
|
||||
# i_min = min_i(insulator_c_len, u_ph / 1.732)
|
||||
# TODO 需要考虑交、直流
|
||||
i_min = min_i(insulator_c_len, u_ph)
|
||||
_min_i = i_min # 尝试的最小电流
|
||||
_max_i = para.max_i # 尝试的最大电流
|
||||
# cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
|
||||
for i_bar in np.linspace(
|
||||
_min_i, _max_i, int((_max_i - _min_i) / 0.1)
|
||||
_min_i, _max_i, int((_max_i - _min_i) / 1)
|
||||
): # 雷电流
|
||||
# logger.info(f"尝试计算电流为{i_bar:.2f}")
|
||||
logger.info(f"尝试计算电流为{i_bar:.2f}")
|
||||
rs = rs_fun(i_bar)
|
||||
animate.add_rs(rs, rs_x, rs_y)
|
||||
rc = rc_fun(i_bar, u_ph)
|
||||
animate.add_rc(rc, rc_x, rc_y)
|
||||
rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
|
||||
rg_line_func = None
|
||||
if rg_type == "g":
|
||||
rg_line_func = rg_line_function_factory(rg, ground_angel)
|
||||
#######
|
||||
# cccCount += 1
|
||||
# if cccCount % 30 == 0:
|
||||
# import core
|
||||
#
|
||||
# core.gMSP.add_circle((0, h_gav), rs)
|
||||
# core.gMSP.add_circle(
|
||||
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
|
||||
# )
|
||||
# core.gMSP.add_circle((dgc, h_cav), rc)
|
||||
#######
|
||||
rg_rc_circle_intersection = solve_circle_intersection(
|
||||
animate.add_rg_line(rg_line_func)
|
||||
rs_rc_circle_intersection = solve_circle_intersection(
|
||||
rs, rc, rs_x, rs_y, rc_x, rc_y
|
||||
)
|
||||
i_max = i_bar
|
||||
if not rg_rc_circle_intersection: # if circle_intersection is []
|
||||
if not rs_rc_circle_intersection: # if circle_intersection is []
|
||||
logger.debug("保护弧和暴露弧无交点,检查设置参数。")
|
||||
continue
|
||||
circle_rc_line_or_rg_intersection = None
|
||||
circle_rc_or_rg_line_intersection = None
|
||||
if rg_type == "g":
|
||||
circle_rc_line_or_rg_intersection = (
|
||||
circle_rc_or_rg_line_intersection = (
|
||||
solve_circle_line_intersection(rc, rc_x, rc_y, rg_line_func)
|
||||
)
|
||||
elif rg_type == "c":
|
||||
circle_rc_line_or_rg_intersection = solve_circle_intersection(
|
||||
circle_rc_or_rg_line_intersection = solve_circle_intersection(
|
||||
rg, rc, rg_x, rg_y, rc_x, rc_y
|
||||
)
|
||||
if not circle_rc_line_or_rg_intersection:
|
||||
if not circle_rc_or_rg_line_intersection:
|
||||
# 暴露弧和捕捉弧无交点
|
||||
if rg_type == "g":
|
||||
if rg_line_func(rc_x) > rc_y:
|
||||
i_min = i_bar # 用于后面判断最小和最大电流是否相等,相等意味着暴露弧一直被屏蔽
|
||||
logger.info(f"捕捉面在暴露弧之上,设置最小电流为{i_min:.2f}")
|
||||
logger.info(
|
||||
f"捕捉面在暴露弧之上,设置最小电流为{i_min:.2f}"
|
||||
)
|
||||
else:
|
||||
logger.info("暴露弧和地面捕捉弧无交点,检查设置参数。")
|
||||
continue
|
||||
else:
|
||||
logger.info("上面的导地线无法保护下面的导地线,检查设置参数。")
|
||||
logger.info(
|
||||
"上面的导地线无法保护下面的导地线,检查设置参数。"
|
||||
)
|
||||
continue
|
||||
animate.add_expose_area(
|
||||
rc_x,
|
||||
rc_y,
|
||||
*rs_rc_circle_intersection,
|
||||
*circle_rc_or_rg_line_intersection,
|
||||
)
|
||||
cad = Draw()
|
||||
cad.draw(
|
||||
i_min,
|
||||
u_ph,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
rg_type,
|
||||
ground_angel,
|
||||
2,
|
||||
) # 最小电流时
|
||||
cad.draw(
|
||||
i_max,
|
||||
u_ph,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
rg_type,
|
||||
ground_angel,
|
||||
6,
|
||||
) # 最大电流时
|
||||
cad.save_as(f"egm{phase_conductor_foo + 1}.dxf")
|
||||
min_distance_intersection = (
|
||||
np.sum(
|
||||
(
|
||||
np.array(rg_rc_circle_intersection)
|
||||
- np.array(circle_rc_line_or_rg_intersection)
|
||||
np.array(rs_rc_circle_intersection)
|
||||
- np.array(circle_rc_or_rg_line_intersection)
|
||||
)
|
||||
** 2
|
||||
)
|
||||
@@ -186,8 +250,8 @@ def egm():
|
||||
break # 已经找到了最大电流
|
||||
# 判断是否以完全被保护
|
||||
if (
|
||||
rg_rc_circle_intersection[1]
|
||||
< circle_rc_line_or_rg_intersection[1]
|
||||
rs_rc_circle_intersection[1]
|
||||
< circle_rc_or_rg_line_intersection[1]
|
||||
):
|
||||
circle_rs_line_or_rg_intersection = None
|
||||
if rg_type == "g":
|
||||
@@ -214,46 +278,19 @@ def egm():
|
||||
** 0.5
|
||||
)
|
||||
if distance > rc:
|
||||
logger.info("暴露弧已经完全被屏蔽")
|
||||
logger.info(f"电流为{i_bar}kV时,暴露弧已经完全被屏蔽")
|
||||
exposed_curve_shielded = True
|
||||
break
|
||||
# if phase_conductor_foo == 2:
|
||||
cad.draw(
|
||||
i_min,
|
||||
u_ph,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
rg_type,
|
||||
ground_angel,
|
||||
2,
|
||||
)
|
||||
cad.draw(
|
||||
i_max,
|
||||
u_ph,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
rg_type,
|
||||
ground_angel,
|
||||
6,
|
||||
)
|
||||
cad.save_as(f"egm{phase_conductor_foo + 1}.dxf")
|
||||
animate.pause()
|
||||
# 判断是否导线已经被完全保护
|
||||
if abs(i_max - _max_i) < 1e-5:
|
||||
logger.info("无法找到最大电流,可能是杆塔较高。")
|
||||
logger.info(f"最大电流设置为自然界最大电流{i_max}kA")
|
||||
logger.info(f"最大电流为{i_max:.2f}")
|
||||
logger.info(f"最小电流为{i_min:.2f}")
|
||||
if exposed_curve_shielded:
|
||||
logger.info("暴露弧已经完全被屏蔽,不会跳闸。")
|
||||
continue
|
||||
# if exposed_curve_shielded:
|
||||
# logger.info("暴露弧已经完全被屏蔽,不会跳闸。")
|
||||
# continue
|
||||
curt_fineness = 0.1 # 电流积分细度
|
||||
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
|
||||
logger.info("最大电流小于等于最小电流,没有暴露弧。")
|
||||
@@ -264,21 +301,25 @@ def egm():
|
||||
i_min, i_max, curt_segment_n + 1, retstep=True
|
||||
)
|
||||
bd_area_vec = np.vectorize(bd_area)
|
||||
cal_bd_np = (
|
||||
bd_area_vec(
|
||||
i_curt_samples,
|
||||
u_ph,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
ground_angel,
|
||||
rg_type,
|
||||
)
|
||||
* thunder_density(i_curt_samples)
|
||||
td = para.td
|
||||
ip_a = para.Ip_a
|
||||
ip_b = para.Ip_b
|
||||
bd_area_vec_result = bd_area_vec(
|
||||
i_curt_samples,
|
||||
u_ph,
|
||||
rc_x,
|
||||
rc_y,
|
||||
rs_x,
|
||||
rs_y,
|
||||
rg_x,
|
||||
rg_y,
|
||||
ground_angel,
|
||||
rg_type,
|
||||
)
|
||||
thunder_density_result = thunder_density(
|
||||
i_curt_samples, td, ip_a, ip_b
|
||||
) # 雷电流幅值密度函数
|
||||
cal_bd_np = bd_area_vec_result * thunder_density_result
|
||||
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
|
||||
# for i_curt in i_curt_samples[:-1]:
|
||||
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
||||
@@ -296,13 +337,20 @@ def egm():
|
||||
# if abs(calculus-0.05812740052770032)<1e-5:
|
||||
# abc=123
|
||||
# pass
|
||||
n_sf = 2 * ng / 10 * calculus * arc_possibility(750, insulator_c_len)
|
||||
rated_voltage = para.rated_voltage
|
||||
n_sf = (
|
||||
2
|
||||
* ng
|
||||
/ 10
|
||||
* calculus
|
||||
* arc_possibility(rated_voltage, insulator_c_len)
|
||||
)
|
||||
avr_n_sf += n_sf / voltage_n
|
||||
n_sf_phases[phase_conductor_foo][u_bar] = n_sf
|
||||
logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
|
||||
logger.info(f"跳闸率是{avr_n_sf:.6f}")
|
||||
logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.16f}次/(100km·a)")
|
||||
logger.info(f"线路跳闸率是{avr_n_sf:.16f}次/(100km·a)")
|
||||
logger.info(
|
||||
f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=6)}"
|
||||
f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=16)}次/(100km·a)"
|
||||
)
|
||||
|
||||
|
||||
@@ -315,6 +363,8 @@ def speed():
|
||||
if __name__ == "__main__":
|
||||
logger.remove()
|
||||
logger.add(sys.stderr, level="DEBUG")
|
||||
run_time = timeit.timeit("egm()", globals=globals(), number=1)
|
||||
print(f"运行时间:{run_time:.2f}s")
|
||||
print("Finished.")
|
||||
egm()
|
||||
# run_time = timeit.timeit("egm()", globals=globals(), number=1)
|
||||
# logger.info(f"运行时间:{run_time:.2f}s")
|
||||
# input('enter any key to exit.')
|
||||
logger.info("Finished.")
|
||||
|
||||
7
metadata.yml
Normal file
7
metadata.yml
Normal file
@@ -0,0 +1,7 @@
|
||||
Version: 1.2.0.2
|
||||
#CompanyName: My Imaginary Company
|
||||
#FileDescription: Simple App
|
||||
#InternalName: Simple App
|
||||
#LegalCopyright: © My Imaginary Company. All rights reserved.
|
||||
#OriginalFilename: SimpleApp.exe
|
||||
ProductName: Lightening
|
||||
75
parameter_test.py
Normal file
75
parameter_test.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import datetime
|
||||
|
||||
import pymongo
|
||||
from easyprocess import EasyProcess
|
||||
import numpy as np
|
||||
import re
|
||||
|
||||
if __name__ == "__main__":
|
||||
result = {}
|
||||
utc_now = datetime.datetime.utcnow()
|
||||
print(f"当前utc时间{utc_now}")
|
||||
client = pymongo.MongoClient(
|
||||
"mongodb+srv://dmy:uqXLtjkJRKzWYnSpK8jF@cluster0.x0ged.mongodb.net/db?retryWrites=true&w=majority"
|
||||
)
|
||||
db = client["db"]
|
||||
result_collection = db["result_collection"]
|
||||
with open("article_parameter.toml", encoding="utf-8") as toml_file:
|
||||
toml_string = toml_file.read()
|
||||
for altitude in np.arange(1500, 4000, 500):
|
||||
for height in np.arange(100, 160, 10):
|
||||
for ground_arm_length in np.arange(17, 25, 0.01):
|
||||
replaced_toml_string = toml_string
|
||||
replaced_toml_string = replaced_toml_string.replace(
|
||||
"ARM", f"{ground_arm_length:.3f}"
|
||||
)
|
||||
replaced_toml_string = replaced_toml_string.replace(
|
||||
"HEIGHT", str(height)
|
||||
)
|
||||
replaced_toml_string = replaced_toml_string.replace(
|
||||
"MID", str(height - 20)
|
||||
)
|
||||
replaced_toml_string = replaced_toml_string.replace(
|
||||
"ALTITUDE", str(altitude)
|
||||
)
|
||||
with open(
|
||||
"abc_parameter.toml", "w", encoding="utf-8"
|
||||
) as parameter_toml_file:
|
||||
parameter_toml_file.write(replaced_toml_string)
|
||||
print(f"计算{altitude}m海拔,{height}m全塔高,{ground_arm_length:.3f}m横担长的跳闸率")
|
||||
console_output = (
|
||||
EasyProcess(
|
||||
[
|
||||
"python",
|
||||
"d:/code/EGM/main.py",
|
||||
"d:/code/EGM/abc_parameter.toml",
|
||||
]
|
||||
)
|
||||
.call()
|
||||
.stderr
|
||||
)
|
||||
tripout_rate = re.findall("不同相跳闸率是\[(.*)\]", console_output)[0]
|
||||
print(f"跳闸率是{tripout_rate}")
|
||||
if float(tripout_rate) < 0.14:
|
||||
print(f"最短地线横担是{ground_arm_length:.3f}m")
|
||||
if altitude not in result:
|
||||
result[altitude] = {}
|
||||
if height not in result[altitude]:
|
||||
result[altitude][height] = {}
|
||||
result[altitude][height] = ground_arm_length
|
||||
record_id = result_collection.insert_one(
|
||||
{
|
||||
"cate": "最短地线横担长度",
|
||||
"utc_time": utc_now,
|
||||
"altitude": float(altitude),
|
||||
"height": float(height),
|
||||
"地线横担长度": float(ground_arm_length),
|
||||
"跳闸率": tripout_rate,
|
||||
}
|
||||
)
|
||||
print(f"id{record_id}")
|
||||
break
|
||||
for altitude in np.arange(1500, 4000, 500):
|
||||
for height in np.arange(100, 160, 10):
|
||||
ground_arm_length = result[altitude][height]
|
||||
print(f"{altitude}m海拔,{height}m全塔高,需要最短{ground_arm_length:.3f}m横担")
|
||||
100
plot.py
Normal file
100
plot.py
Normal file
@@ -0,0 +1,100 @@
|
||||
import matplotlib
|
||||
from plot_data import *
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as mticker
|
||||
|
||||
matplotlib.use("Qt5Agg")
|
||||
# 解决中文乱码
|
||||
plt.rcParams["font.sans-serif"] = ["simsun"]
|
||||
plt.rcParams["font.family"] = "sans-serif"
|
||||
# plt.rcParams["font.weight"] = "bold"
|
||||
# 解决负号无法显示的问题
|
||||
plt.rcParams["axes.unicode_minus"] = False
|
||||
plt.rcParams["savefig.dpi"] = 1200 # 图片像素
|
||||
# plt.savefig("port.png", dpi=600, bbox_inches="tight")
|
||||
fontsize = 12
|
||||
################################################
|
||||
witdh_of_bar=0.3
|
||||
color=plt.cm.BuPu(np.linspace(152/255, 251/255,152/255))
|
||||
percent1 = data_150m塔高_不同地线保护角[:, 1] / data_150m塔高_不同地线保护角[:, 0]
|
||||
# percent1 = data_66m串长_不同塔高[:, 1] / data_66m串长_不同塔高[:, 0]
|
||||
# percent2 = data_68m串长_不同塔高[:, 1] / data_68m串长_不同塔高[:, 0]
|
||||
fig, ax = plt.subplots()
|
||||
x = np.arange(len(category_names_150m塔高_不同地线保护角)) # the label locations
|
||||
p1 = ax.bar(category_names_150m塔高_不同地线保护角, percent1, witdh_of_bar, label="绕击/反击跳闸率比值",color=color,hatch='-')
|
||||
# p1 = ax.bar(x - 0.3 / 2, percent1, 0.3, label="6.6m绝缘距离")
|
||||
# p2 = ax.bar(x + 0.3 / 2, percent2, 0.3, label="6.8m绝缘距离")
|
||||
ax.xaxis.set_major_locator(mticker.FixedLocator(x))
|
||||
ax.set_xticklabels(category_names_150m塔高_不同地线保护角)
|
||||
ax.set_ylabel("比值", fontsize=fontsize)
|
||||
ax.set_xlabel("地线保护角(°)", fontsize=fontsize)
|
||||
# ax.set_xlabel("接地电阻(Ω)", fontsize=fontsize)
|
||||
plt.xticks(fontsize=fontsize)
|
||||
plt.yticks(fontsize=fontsize)
|
||||
ax.bar_label(p1, padding=0, fontsize=fontsize)
|
||||
# ax.bar_label(p2, padding=0, fontsize=fontsize)
|
||||
ax.legend(fontsize=fontsize)
|
||||
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
# results = {
|
||||
# "100m": 100 * data[0, :] / np.sum(data[0, :]),
|
||||
# "110m": data[1, :] / np.sum(data[1, :]),
|
||||
# "120m": data[2, :] / np.sum(data[2, :]),
|
||||
# "130m": data[3, :] / np.sum(data[3, :]),
|
||||
# "140m": data[4, :] / np.sum(data[4, :]),
|
||||
# "150m": data[5, :] / np.sum(data[5, :]),
|
||||
# }
|
||||
|
||||
|
||||
# def survey(results, category_names):
|
||||
# """
|
||||
# Parameters
|
||||
# ----------
|
||||
# results : dict
|
||||
# A mapping from question labels to a list of answers per category.
|
||||
# It is assumed all lists contain the same number of entries and that
|
||||
# it matches the length of *category_names*.
|
||||
# category_names : list of str
|
||||
# The category labels.
|
||||
# """
|
||||
# labels = list(results.keys())
|
||||
# data = np.array(list(results.values()))
|
||||
# data_cum = data.cumsum(axis=1)
|
||||
# category_colors = plt.get_cmap("RdYlGn")(np.linspace(0.15, 0.85, data.shape[1]))
|
||||
#
|
||||
# fig, ax = plt.subplots(figsize=(9.2, 5))
|
||||
# ax.invert_yaxis()
|
||||
# ax.xaxis.set_visible(False)
|
||||
# ax.set_xlim(0, np.sum(data, axis=1).max())
|
||||
#
|
||||
# for i, (colname, color) in enumerate(zip(category_names, category_colors)):
|
||||
# widths = data[:, i]
|
||||
# starts = data_cum[:, i] - widths
|
||||
# rects = ax.barh(
|
||||
# labels, widths, left=starts, height=0.5, label=colname, color=color
|
||||
# )
|
||||
#
|
||||
# r, g, b, _ = color
|
||||
# text_color = "white" if r * g * b < 0.5 else "darkgrey"
|
||||
# ax.bar_label(rects, label_type="center", color=text_color)
|
||||
# ax.legend(
|
||||
# ncol=len(category_names),
|
||||
# bbox_to_anchor=(0, 1),
|
||||
# loc="lower left",
|
||||
# fontsize="small",
|
||||
# )
|
||||
#
|
||||
# return fig, ax
|
||||
|
||||
# percent=data/np.sum(data,axis=1)[:,None]*100
|
||||
# percent = data[:, 1] / data[:, 0]
|
||||
# plt.bar(category_names, percent, 0.3, label="黑")
|
||||
# # plt.bar(category_names, percent[:,0], 0.2, label="r")
|
||||
#
|
||||
# # plt.bar(category_names, [0.014094 / 100, 0.025094 / 100], 0.2, label="h")
|
||||
# plt.legend()
|
||||
# # survey(results, category_names)
|
||||
# plt.show()
|
||||
@@ -14,6 +14,7 @@ class CalculationParameter(BaseModel):
|
||||
h_whole: float # 杆塔全高
|
||||
gc_x: tuple[float] # 导、地线水平坐标
|
||||
ground_angels: tuple[float] # 地面倾角,向下为正
|
||||
rated_voltage: float # 额定电压
|
||||
|
||||
|
||||
fastapi_app = FastAPI()
|
||||
|
||||
29
untest.py
Normal file
29
untest.py
Normal file
@@ -0,0 +1,29 @@
|
||||
import unittest
|
||||
from core import thunder_density
|
||||
from main import read_parameter
|
||||
import numpy as np
|
||||
import sympy
|
||||
|
||||
|
||||
class Testing(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
# read_parameter('default.toml')
|
||||
pass
|
||||
|
||||
def test_thunder_density(self):
|
||||
i = sympy.symbols("i")
|
||||
a = np.random.random()
|
||||
b = np.random.random()
|
||||
p = 1-1 / (1 + (i / a) ** b)
|
||||
d_p = sympy.diff(p, i)
|
||||
random_i = np.random.randint(10, 100)
|
||||
v_from_thunder_density = thunder_density(random_i, 0, a, b)
|
||||
v_from_diff = d_p.evalf(subs={i: random_i})
|
||||
self.assertTrue(
|
||||
abs(v_from_thunder_density - v_from_diff) < 1e-5, "与自动微分结果不一致"
|
||||
) # add assertion here
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
Reference in New Issue
Block a user