Compare commits

..

18 Commits

Author SHA1 Message Date
dmy
7a5bb05f58 1.每一次计算都重新画画。 2024-11-06 23:32:51 +08:00
n3040
13e25832ed 基本实现了动画。 2024-01-03 16:47:22 +08:00
n3040
5dc1613d2a 加了一些TODO 2024-01-03 14:28:28 +08:00
n3040
9b852235f1 准备进行陇东大跨越计算。 2022-07-15 12:47:43 +08:00
n3040
510daf0516 第二版参数和代码 2022-02-05 23:23:58 +08:00
n3040
4c4c0e036b 修复了没有利用ng的bug。
版本号 Version: 1.2.0.2
2022-01-21 16:08:59 +08:00
n3040
791f7c281f 1.增加Unittest
2.考虑利用实际地闪密度和雷电流曲线。
3.版本号v1.2.0
2022-01-21 15:51:32 +08:00
n3040
ee2d6477ee 增加Makefile 2022-01-19 10:59:29 +08:00
n3040
27730075dc 增加Makefile 2022-01-16 21:39:54 +08:00
n3040
8ec26aa3a3 1.不需要全塔高的数据。
2.海拔修正从1000m开始。
2022-01-10 01:16:09 +08:00
n3040
cc98c27800 1.删除一些无用的注释
2.1000m以下还不不修正气隙
2021-12-26 20:28:03 +08:00
n3040
6a123b6213 电压也从外部读入 2021-12-22 16:15:19 +08:00
n3040
7f03fc2b9c 参数全部从外部读取 2021-12-22 16:11:14 +08:00
2251966b7e 准备进行jit改造 2021-09-26 21:25:08 +08:00
476c8de80f 一些小细节的修改。 2021-09-23 00:15:30 +08:00
257d5bb23b 修复几个边界条件bug 2021-09-22 11:22:13 +08:00
392eeb0168 完善了双回路EGM模型代码。 2021-09-22 00:18:06 +08:00
dd44de030e 初步完成了双回路公式 2021-09-21 20:00:03 +08:00
13 changed files with 1132 additions and 199 deletions

13
.gitignore vendored Normal file
View File

@@ -0,0 +1,13 @@
*.dxf
build
__pycache__
CSharp
.idea
dist
*.spec
*.dwg
历史
.venv
*.toml
launch.json
settings.json

14
Makefile Normal file
View File

@@ -0,0 +1,14 @@
target: dist build
create-version-file metadata.yml --outfile build/file_version_info.txt
pyinstaller -F main.py --version-file build/file_version_info.txt -n Lightening
dist:
mkdir dist
build:
mkdir build
.PHONY:clean
clean:
rm -fr build

94
animation.py Normal file
View File

@@ -0,0 +1,94 @@
import matplotlib.pyplot as plt
from functools import wraps
import numpy as np
class Animation:
def __init__(self) -> None:
fig, ax = plt.subplots()
self._fig = fig
self._ax = ax
self._ticks = 0
self._disable = False
self.init_fig()
pass
@staticmethod
def switch_decorator(func):
@wraps(func)
def not_run(cls, *args, **kwargs):
# print("not run")
pass
@wraps(func)
def wrapTheFunction(cls, *args, **kwargs):
if not cls._disable:
# print("desc")
return func(cls, *args, **kwargs)
return not_run(cls, *args, **kwargs)
return wrapTheFunction
def disable(self, _disable):
self._disable = _disable
@switch_decorator
def init_fig(self):
ax = self._ax
ax.set_aspect(1)
ax.set_xlim([-500, 500])
ax.set_ylim([-500, 500])
@switch_decorator
def show(self):
self._fig.show()
@switch_decorator
def add_rg_line(self, line_func):
ax = self._ax
x = np.linspace(0, 300)
y = line_func(x)
ax.plot(x, y)
@switch_decorator
def add_rs(self, rs, rs_x, rs_y):
ax = self._ax
ax.add_artist(plt.Circle((rs_x, rs_y), rs, fill=False))
@switch_decorator
def add_rc(self, rc, rc_x, rc_y):
ax = self._ax
ax.add_artist(plt.Circle((rc_x, rc_y), rc, fill=False))
# 增加暴露弧范围
@switch_decorator
def add_expose_area(
self,
rc_x,
rc_y,
intersection_x1,
intersection_y1,
intersection_x2,
intersection_y2,
):
ax = self._ax
ax.plot([rc_x, intersection_x1], [rc_y, intersection_y1], color="red")
ax.plot([rc_x, intersection_x2], [rc_y, intersection_y2], color="red")
pass
@switch_decorator
def clear(self):
ax = self._ax
ax.cla()
@switch_decorator
def pause(self):
ax = self._ax
self._ticks += 1
ticks = self._ticks
ax.set_title(f"{ticks}")
plt.pause(0.02)
self.clear()
self.init_fig()
pass

View File

@@ -0,0 +1,18 @@
title = "绕击跳闸率计算文件"
[parameter]
rated_voltage=750 #额定电压等级
h_c_sag = 14.43 # 导线弧垂
h_g_sag = 11.67 # 地线弧垂
h_whole = 100 # 杆塔全高
insulator_c_len = 6.8 # 导线串子绝缘长度
string_c_len = 9.2 # 导线串长
string_g_len = 0.5 # 地线串长
h_arm = [100,80] # 导、地线挂点垂直距离
gc_x = [17.9,17] # 导、地线水平坐标,计算的是中相
ground_angels = [0] # 地面倾角,向下为正,单位°
altitude = 1000 # 海拔,单位米
max_i = 200 # 最大尝试电流单位kA
td=20#雷暴日
[optional]
voltage_n=3 #计算时电压分成多少份

23
article.toml Normal file
View File

@@ -0,0 +1,23 @@
title = "绕击跳闸率计算文件"
[parameter]
rated_voltage = 750 # 额定电压等级
h_c_sag = 14.43 # 导线弧垂
h_g_sag = 11.67 # 地线弧垂
insulator_c_len = 7.0 # 导线串子绝缘长度
string_c_len = 9.2 # 导线串长
string_g_len = 0.5 # 地线串长
h_arm = [100, 80] # 导、地线挂点垂直距离,计算的是中相
gc_x = [17.9, 17] # 导、地线水平坐标,计算的是中相
ground_angels = [0] # 地面倾角,向下为正,单位°
altitude = 1500 # 海拔,单位米
td = 20 # 雷暴日
[advance]
# ng=29.6 #地闪密度 !!注意!! 如果地闪密度大于0则不会通过雷暴日计算地闪密度。填-1则忽略该项数据。
# Ip_a=19.896 #概率密度曲线系数a !!注意!! 如果该值大于0则不会通过雷暴日计算雷电流概率。填-1则忽略该项数据。
# Ip_b=3.012 #概率密度曲线系数b !!注意!! 如果该值大于0则不会通过雷暴日计算雷电流概率。填-1则忽略该项数据。
ng = -1 # 地闪密度 !!注意!! 如果地闪密度大于0则不会通过雷暴日计算地闪密度。填-1则忽略该项数据。
Ip_a = -1 # 概率密度曲线系数a !!注意!! 如果该值大于0则不会通过雷暴日计算雷电流概率。填-1则忽略该项数据。
Ip_b = -1 # 概率密度曲线系数b !!注意!! 如果该值大于0则不会通过雷暴日计算雷电流概率。填-1则忽略该项数据。
[optional]
voltage_n = 3 # 计算时电压分成多少份
max_i = 200 # 最大尝试电流单位kA

366
core.py
View File

@@ -1,13 +1,48 @@
import math import math
import ezdxf import ezdxf
import numba
import numpy as np import numpy as np
from typing import List
gCAD = None gCAD = None
gMSP = None gMSP = None
gCount = 1 gCount = 1
class Parameter:
h_g_sag: float # 地线弧垂
h_c_sag: float # 导线弧垂
voltage_n: int # 工作电压分成多少份来计算
td: int # 雷暴日
insulator_c_len: float # 串子绝缘长度
string_c_len: float
string_g_len: float
gc_x: List[float] # 导、地线水平坐标
ground_angels: List[float] # 地面倾角,向下为正
h_arm: float # 导、地线垂直坐标
altitude: int # 海拔,单位米
max_i: float # 最大尝试电流单位kA
rated_voltage: float # 额定电压
ng: float # 地闪密度 次/(每平方公里·每年)
Ip_a: float # 概率密度曲线系数a
Ip_b: float # 概率密度曲线系数b
para = Parameter()
def rg_line_function_factory(_rg, ground_angel): # 返回一个地面捕雷线的直线方程
y_d = _rg / math.cos(ground_angel) # y轴上的截距
# 利用公式y-y0=k(x-x0) 得到直线公式
y0 = y_d
x0 = 0
k = math.tan(math.pi - ground_angel)
def f(x):
return y0 + k * (x - x0)
return f
class Draw: class Draw:
def __init__(self): def __init__(self):
self._doc = ezdxf.new(dxfversion="R2010") self._doc = ezdxf.new(dxfversion="R2010")
@@ -15,42 +50,96 @@ class Draw:
global gCAD global gCAD
gCAD = self gCAD = self
def draw(self, i_curt, u_ph, h_gav, h_cav, dgc, color): def draw(
self,
i_curt,
u_ph,
rs_x,
rs_y,
rc_x,
rc_y,
rg_x,
rg_y,
rg_type,
ground_angel,
color,
):
doc = self._doc doc = self._doc
msp = doc.modelspace() msp = doc.modelspace()
global gMSP global gMSP
gMSP = msp gMSP = msp
rs = rs_fun(i_curt) rs = rs_fun(i_curt)
rc = rc_fun(i_curt, u_ph) rc = rc_fun(i_curt, u_ph)
rg = rg_fun(i_curt, h_cav) rg = rg_fun(i_curt, rc_y, u_ph, typ=rg_type)
msp.add_circle((0, h_gav), rs, dxfattribs={"color": color}) msp.add_circle((rs_x, rs_y), rs, dxfattribs={"color": color})
msp.add_line((0, 0), (0, h_gav)) # 地线 msp.add_line((0, 0), (rs_x, rs_y)) # 地线
msp.add_circle((dgc, h_cav), rc, dxfattribs={"color": color}) msp.add_circle((rc_x, rc_y), rc, dxfattribs={"color": color + 2})
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线 msp.add_line((rc_x, 0), (rc_x, rc_y)) # 导线
msp.add_line((0, h_gav), (dgc, h_cav)) msp.add_line((rs_x, rs_y), (rc_x, rc_y))
msp.add_line((0, rg), (2000, rg), dxfattribs={"color": color}) # 角度线
circle_intersection = solve_circle_intersection(rs, rc, rs_x, rs_y, rc_x, rc_y)
msp.add_line(
(rc_x, rc_y), circle_intersection, dxfattribs={"color": color}
) # 地线
if rg_type == "g":
ground_angel_func = rg_line_function_factory(rg, ground_angel)
msp.add_line(
(0, ground_angel_func(0)),
(2000, ground_angel_func(2000)),
dxfattribs={"color": color},
)
circle_line_section = solve_circle_line_intersection(
rc, rc_x, rc_y, ground_angel_func
)
if not circle_line_section:
pass
else:
msp.add_line(
(rc_x, rc_y), circle_line_section, dxfattribs={"color": color}
) # 导线和圆的交点
if rg_type == "c":
msp.add_circle((rg_x, rg_y), rg, dxfattribs={"color": color})
rg_rc_intersection = solve_circle_intersection(
rg, rc, rg_x, rg_y, rc_x, rc_y
)
if rg_rc_intersection:
msp.add_line(
(rc_x, rc_y), rg_rc_intersection, dxfattribs={"color": color}
) # 圆和圆的交点
# 计算圆交点 # 计算圆交点
# circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
# msp.add_line((0, h_gav), circle_intersection) # 地线
# msp.add_line((dgc, h_cav), circle_intersection) # 导线 # msp.add_line((dgc, h_cav), circle_intersection) # 导线
# circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
# msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
def save(self): def save(self):
doc = self._doc doc = self._doc
doc.saveas("egm.dxf") doc.saveas("egm.dxf")
def save_as(self, file_name):
doc = self._doc
doc.saveas(file_name)
# 圆交点 # 圆交点
def solve_circle_intersection(rs, rc, h_gav, h_cav, dgc): def solve_circle_intersection(
radius1,
radius2,
center_x1,
center_y1,
center_x2,
center_y2,
):
# 用牛顿法求解 # 用牛顿法求解
x = rc # 初始值 x = radius2 + center_x2 # 初始值
y = rc # 初始值 y = radius2 + center_y2 # 初始值
for bar in range(0, 10): # TODO 考虑出现2个解的情况
A = [[-2 * x, -2 * (y - h_gav)], [-2 * (x - dgc), -2 * (y - h_cav)]] for _ in range(0, 10):
A = [
[-2 * (x - center_x1), -2 * (y - center_y1)],
[-2 * (x - center_x2), -2 * (y - center_y2)],
]
b = [ b = [
x ** 2 + (y - h_gav) ** 2 - rs ** 2, (x - center_x1) ** 2 + (y - center_y1) ** 2 - radius1**2,
(x - dgc) ** 2 + (y - h_cav) ** 2 - rc ** 2, (x - center_x2) ** 2 + (y - center_y2) ** 2 - radius2**2,
] ]
X_set = np.linalg.solve(A, b) X_set = np.linalg.solve(A, b)
x += X_set[0] x += X_set[0]
@@ -60,94 +149,190 @@ def solve_circle_intersection(rs, rc, h_gav, h_cav, dgc):
return [] return []
# 圆与地面线交点 # 圆与捕雷线交点
def solve_circle_line_intersection(radius, rg, center_x, center_y): def solve_circle_line_intersection(
distance = distance_point_line(center_x, center_y, 0, rg, 0) # 捕雷线到暴露圆中点的距离 radius, center_x, center_y, ground_surface_func
): # 返回交点的x和y坐标
x0 = 0
y0 = ground_surface_func(x0)
x1 = 1
y1 = ground_surface_func(x1)
k = (y1 - y0) / (x1 - x0)
distance = distance_point_line(center_x, center_y, x0, y0, k) # 捕雷线到暴露圆中点的距离
if distance > radius: if distance > radius:
return [] return []
else: else:
r = (radius ** 2 - (rg - center_y) ** 2) ** 0.5 + center_x # r = (radius ** 2 - (rg - center_y) ** 2) ** 0.5 + center_x
return [r, rg] a = center_x
b = center_y
c = y0
d = x0
bb = -2 * a + 2 * c * k - 2 * d * (k**2) - 2 * b * k
aa = 1 + k**2
rr = radius
cc = (
a**2
+ c**2
- 2 * c * k * d
+ (k**2) * (d**2)
- 2 * b * (c - k * d)
+ b**2
- rr**2
)
_x = (-bb + (bb**2 - 4 * aa * cc) ** 0.5) / 2 / aa
_y = ground_surface_func(_x)
# 验算结果
equ = (center_x - _x) ** 2 + (center_y - _y) ** 2 - radius**2
assert abs(equ) < 1e-5
return [_x, _y]
def min_i(string_len, u_ph): def min_i(string_len, u_ph):
u_50 = 530 * string_len + 35 # 海拔修正
altitude = para.altitude
if altitude > 1000:
k_a = math.exp((altitude - 1000) / 8150) # 气隙海拔修正
else:
k_a = 1
u_50 = 1 / k_a * (530 * string_len + 35) # 50045 上附录的公式,实际应该用负极性电压的公式
# u_50 = 1 / k_a * (533 * string_len + 132) # 串放电路径 1000m海拔
# u_50 = 1 / k_a * (477 * string_len + 99) # 串放电路径 2000m海拔
# u_50 = 615 * string_len # 导线对塔身放电 1000m海拔
# u_50= 263.32647401+533.90081562*string_len
z_0 = 300 # 雷电波阻抗 z_0 = 300 # 雷电波阻抗
z_c = 251 # 导线波阻抗 z_c = 251 # 导线波阻抗
# 新版大手册公式 3-277
r = (u_50 + 2 * z_0 / (2 * z_0 + z_c) * u_ph) * (2 * z_0 + z_c) / (z_0 * z_c) r = (u_50 + 2 * z_0 / (2 * z_0 + z_c) * u_ph) * (2 * z_0 + z_c) / (z_0 * z_c)
# r = 2 * (u_50 - u_ph) / z_c
return r return r
def thunder_density(i): # l雷电流幅值密度函数 def thunder_density(i, td, ip_a, ip_b): # 雷电流幅值密度函数
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44) # td = para.td
r = None
# ip_a = para.Ip_a
# ip_b = para.Ip_b
if ip_a > 0 and ip_b > 0:
r = -(
-ip_b / ip_a / ((1 + (i / ip_a) ** ip_b) ** 2) * ((i / ip_a) ** (ip_b - 1))
)
return r return r
else:
if td == 20:
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44) # 雷暴日20d
return r
if td == 40:
r = -(10 ** (-i / 88)) * math.log(10) * (-1 / 88) # 雷暴日40d
return r
raise Exception("检查雷电参数!")
def angel_density(angle): # 入射角密度函数 angle单位是弧度 def angel_density(angle): # 入射角密度函数 angle单位是弧度
r = 0.75 * (np.cos(angle - math.pi / 2) ** 3) r = 0.75 * abs((np.cos(angle - math.pi / 2) ** 3)) # 新版大手册公式3-275
return r return r
def rs_fun(i): def rs_fun(i):
r = 10 * (i ** 0.65) r = 10 * (i**0.65) # 新版大手册公式3-271
return r return r
def rc_fun(i, u_ph): def rc_fun(i, u_ph):
r = 1.63 * ((5.015 * (i ** 0.578) - 0.001 * u_ph) ** 1.125) r = 1.63 * ((5.015 * (i**0.578) - 0.001 * u_ph * 1) ** 1.125) # 新版大手册公式3-272
# r=14.7*(i**0.42)
return r return r
def rg_fun(i_curt, h_cav): # typ 如果是g代表捕雷线公式c代表暴露弧公式
def rg_fun(i_curt, h_cav, u_ph, typ="g"):
rg = None
if typ == "g":
if h_cav < 40: if h_cav < 40:
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) * (i_curt ** 0.65) rg = (3.6 + 1.7 * math.log(43 - h_cav)) * (i_curt**0.65) # 新版大手册公式3-273
else: else:
rg = 5.5 * (i_curt ** 0.65) rg = 5.5 * (i_curt**0.65) # 新版大手册公式3-273
elif typ == "c": # 此时返回的是圆半径
rg = rc_fun(i_curt, u_ph)
return rg return rg
def intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度 def intersection_angle(
rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, i_curt, u_ph, ground_angel, rg_type
): # 暴露弧的角度
rs = rs_fun(i_curt) rs = rs_fun(i_curt)
rc = rc_fun(i_curt, u_ph) rc = rc_fun(i_curt, u_ph)
rg = rg_fun(i_curt, h_cav) rg = rg_fun(i_curt, rc_y, u_ph, typ=rg_type)
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) # 两圆的交点 circle_intersection = solve_circle_intersection(
circle_line_intersection = solve_circle_line_intersection( rs, rc, rs_x, rs_y, rc_x, rc_y
rc, rg, dgc, h_cav ) # 两圆的交点
circle_line_or_rg_intersection = None
rg_line_func = rg_line_function_factory(rg, ground_angel)
if rg_type == "g":
circle_line_or_rg_intersection = solve_circle_line_intersection(
rc, rc_x, rc_y, rg_line_func
) # 暴露圆和补雷线的交点 ) # 暴露圆和补雷线的交点
if rg_type == "c":
circle_line_or_rg_intersection = solve_circle_intersection(
rg, rc, rg_x, rg_y, rc_x, rc_y
) # 两圆的交点
# TODO 应该是不存在落到地面线以下的情况,先把以下注释掉
# if circle_line_or_rg_intersection:
# (
# circle_line_or_rg_intersection_x,
# circle_line_or_rg_intersection_y,
# ) = circle_line_or_rg_intersection
# if (
# ground_surface(rg, circle_line_or_rg_intersection_x)
# > circle_line_or_rg_intersection_y
# ): # 交点在地面线以下,就可以不积分
# # 找到暴露弧和地面线的交点
# circle_line_or_rg_intersection = circle_ground_surface_intersection(
# rc, rc_x, rc_y, ground_surface
# )
theta1 = None
np_circle_intersection = np.array(circle_intersection) np_circle_intersection = np.array(circle_intersection)
theta2_line = np_circle_intersection - np.array([dgc, h_cav]) theta2_line = np_circle_intersection - np.array([rc_x, rc_y])
theta2 = math.atan(theta2_line[1] / theta2_line[0]) theta2 = math.atan(theta2_line[1] / theta2_line[0])
np_circle_line_intersection = np.array(circle_line_intersection) np_circle_line_or_rg_intersection = np.array(circle_line_or_rg_intersection)
theta1_line = np_circle_line_intersection - np.array([dgc, h_cav]) if not circle_line_or_rg_intersection:
if rc_y - rc > rg_line_func(rc_x): # rg在rc下面
# 捕捉线太低了对高塔无保护θ_1从-90°开始计算即从与地面垂直的角度开始就已经暴露了。
theta1 = -math.pi / 2
else:
theta1_line = np_circle_line_or_rg_intersection - np.array([rc_x, rc_y])
theta1 = math.atan(theta1_line[1] / theta1_line[0]) theta1 = math.atan(theta1_line[1] / theta1_line[0])
return np.array([theta1, theta2]) return np.array([theta1, theta2])
# 点到直线的距离
def distance_point_line(point_x, point_y, line_x, line_y, k) -> float: def distance_point_line(point_x, point_y, line_x, line_y, k) -> float:
d = abs(k * point_x - point_y - k * line_x + line_y) / ((k ** 2 + 1) ** 0.5) d = abs(k * point_x - point_y - k * line_x + line_y) / ((k**2 + 1) ** 0.5)
return d return d
def func_calculus_pw(theta, max_w): def func_calculus_pw(theta, max_w):
w_fineness = 0.01 w_fineness = 0.01
w_samples, d_w = np.linspace(0, max_w, int(max_w / w_fineness), retstep=True) segments = int(max_w / w_fineness)
if segments < 2: # 最大最小太小,没有可以积分的
return 0
w_samples, d_w = np.linspace(0, max_w, segments, retstep=True)
# 童中宇 750KV信洛线雷电防护性能研究 公式 3-10
cal_w_np = abs(angel_density(w_samples)) * np.sin(theta - (w_samples - math.pi / 2)) cal_w_np = abs(angel_density(w_samples)) * np.sin(theta - (w_samples - math.pi / 2))
r_pw = np.sum((cal_w_np[:-1] + cal_w_np[1:])) / 2 * d_w r_pw = np.sum((cal_w_np[:-1] + cal_w_np[1:])) / 2 * d_w
return r_pw return r_pw
def calculus_bd(theta, rc, rs, rg, dgc, h_cav, h_gav): # 对θ进行积分 def calculus_bd(theta, rc, rs, rg, rc_x, rc_y, rs_x, rs_y): # 对θ进行积分
max_w = 0 max_w = 0
# 求暴露弧上一点的切线 # 求暴露弧上一点的切线
line_x = math.cos(theta) * rc + dgc line_x = math.cos(theta) * rc + rc_x
line_y = math.sin(theta) * rc + h_cav line_y = math.sin(theta) * rc + rc_y
k = math.tan(theta + math.pi / 2) # 入射角 k = math.tan(theta + math.pi / 2) # 入射角
# 求保护弧到直线的距离,判断是否相交 # 求保护弧到直线的距离,判断是否相交
d_to_rs = distance_point_line(0, h_gav, line_x, line_y, k) d_to_rs = distance_point_line(rs_x, rs_y, line_x, line_y, k)
if d_to_rs < rs: # 相交 if d_to_rs < rs: # 相交
# 要用过直线上一点到暴露弧的切线 # 要用过一点到保护弧的切线
new_k = tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k) new_k = tangent_line_k(line_x, line_y, rs_x, rs_y, rs, init_k=k)
if new_k >= 0: if new_k >= 0:
max_w = math.atan(new_k) # 用于保护弧相切的角度 max_w = math.atan(new_k) # 用于保护弧相切的角度
elif new_k < 0: elif new_k < 0:
@@ -179,24 +364,29 @@ def calculus_bd(theta, rc, rs, rg, dgc, h_cav, h_gav): # 对θ进行积分
# ) # )
# gCAD.save() # gCAD.save()
pass pass
# 童中宇 750KV信洛线雷电防护性能研究 公式 3-10
r = rc / math.cos(theta) * func_calculus_pw(theta, max_w) r = rc / math.cos(theta) * func_calculus_pw(theta, max_w)
return r return r
def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积 def bd_area(
theta1, theta2 = intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph) # θ角度 i_curt, u_ph, rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, ground_angel, rg_type
): # 暴露弧的投影面积
theta1, theta2 = intersection_angle(
rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, i_curt, u_ph, ground_angel, rg_type
) # θ角度
theta_fineness = 0.01 theta_fineness = 0.01
rc = rc_fun(i_curt, u_ph) rc = rc_fun(i_curt, u_ph)
rs = rs_fun(i_curt) rs = rs_fun(i_curt)
rg = rg_fun(i_curt, h_cav) rg = rg_fun(i_curt, rc_y, u_ph, typ=rg_type)
r_bd = 0 theta_segments = int((theta2 - theta1) / theta_fineness)
theta_sample, d_theta = np.linspace( if theta_segments < 2:
theta1, theta2, int((theta2 - theta1) / theta_fineness), retstep=True return 0
) theta_sample, d_theta = np.linspace(theta1, theta2, theta_segments, retstep=True)
if len(theta_sample) < 2: if len(theta_sample) < 2:
return 0 return 0
vec_calculus_bd = np.vectorize(calculus_bd) vec_calculus_bd = np.vectorize(calculus_bd)
calculus_bd_np = vec_calculus_bd(theta_sample, rc, rs, rg, dgc, h_cav, h_gav) calculus_bd_np = vec_calculus_bd(theta_sample, rc, rs, rg, rc_x, rc_y, rs_x, rs_y)
r_bd = np.sum(calculus_bd_np[:-1] + calculus_bd_np[1:]) / 2 * d_theta r_bd = np.sum(calculus_bd_np[:-1] + calculus_bd_np[1:]) / 2 * d_theta
# for calculus_theta in theta_sample[:-1]: # for calculus_theta in theta_sample[:-1]:
# r_bd += ( # r_bd += (
@@ -214,7 +404,7 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
# 直线方程为 y-y0=k(x-x0)x0和y0为经过直线的任意一点 # 直线方程为 y-y0=k(x-x0)x0和y0为经过直线的任意一点
# 牛顿法求解k # 牛顿法求解k
# f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心 # f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心
# 已考虑两个解的判别
k_candidate = [-100, 100] k_candidate = [-100, 100]
if abs(center_y - line_y) < 1 and abs(line_x - center_x - radius) < 1: if abs(center_y - line_y) < 1 and abs(line_x - center_x - radius) < 1:
# k不存在 # k不存在
@@ -223,16 +413,17 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
for ind, k_cdi in enumerate(list(k_candidate)): for ind, k_cdi in enumerate(list(k_candidate)):
k = k_candidate[ind] k = k_candidate[ind]
k_candidate[ind] = None k_candidate[ind] = None
for bar in range(0, 30): max_iteration = 30
for bar in range(0, max_iteration):
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - ( fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (
radius ** 2 radius**2
) * (k ** 2 + 1) ) * (k**2 + 1)
d_fk = ( d_fk = (
2 2
* (k * center_x - center_y - k * line_x + line_y) * (k * center_x - center_y - k * line_x + line_y)
* (center_x - line_x) * (center_x - line_x)
- 2 * (radius ** 2) * k - 2 * (radius**2) * k
) )
if abs(d_fk) < 1e-5 and abs(line_x - center_x - radius) < 1e-5: if abs(d_fk) < 1e-5 and abs(line_x - center_x - radius) < 1e-5:
# k不存在角度为90°k取一个很大的正数 # k不存在角度为90°k取一个很大的正数
@@ -245,13 +436,17 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
if abs(dd - radius) < 1: if abs(dd - radius) < 1:
k_candidate[ind] = k k_candidate[ind] = k
break break
# 解决数值稳定性
if bar == max_iteration - 1:
if abs(math.atan(k)) * 180 / math.pi > 89:
k_candidate[ind] = k
# 把k转化成相应的角度从x开始逆时针为正 # 把k转化成相应的角度从x开始逆时针为正
k_angle = [] k_angle = []
for kk in k_candidate: for kk in k_candidate:
if kk is None: # if kk is None:
abc = 123 # abc = 123
# tangent_line_k(line_x, line_y, center_x, center_y, radius) # tangent_line_k(line_x, line_y, center_x, center_y, radius)
pass # pass
if kk >= 0: if kk >= 0:
k_angle.append(math.atan(kk)) k_angle.append(math.atan(kk))
if kk < 0: if kk < 0:
@@ -260,5 +455,38 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
return np.array(k_candidate)[np.max(k_angle) == k_angle].tolist()[-1] return np.array(k_candidate)[np.max(k_angle) == k_angle].tolist()[-1]
def func_ng(td): # 地闪密度 def func_ng(td): # 地闪密度,通过雷暴日计算
return 0.023 * (td ** 1.3) if para.ng > 0:
r = para.ng
else:
r = 0.023 * (td**1.3)
return r
# 圆和地面线的交点只去正x轴上的。
def circle_ground_surface_intersection(radius, center_x, center_y, ground_surface):
# 最笨的办法,一个个去试
x_series = np.linspace(0, radius, int(radius / 0.001)) + center_x
part_to_be_squared = (
radius**2 - (x_series - center_x) ** 2
) # 有可能出现-0.00001的数值,只是一个数值稳定问题。
part_to_be_squared[
(part_to_be_squared < 0) & (abs(part_to_be_squared) < 1e-3)
] = 0 # 强制为0
y_series = center_y - part_to_be_squared**0.5
ground_surface_y = ground_surface(x_series)
equal_location = np.abs(ground_surface_y - y_series) < 0.5
r_x = x_series[equal_location][0]
r_y = ground_surface(r_x)
return r_x, r_y
# u_ph是相电压
# insulator_c_len绝缘子闪络距离
def arc_possibility(rated_voltage, insulator_c_len): # 建弧率
# 50064 中附录给的公式
# TODO 需要区分交直流
# _e = rated_voltage / (3**0.5) / insulator_c_len #交流
_e = abs(rated_voltage) / (1) / insulator_c_len # 直流
r = (4.5 * (_e**0.75) - 14) * 1e-2
return r

374
main.py
View File

@@ -1,112 +1,325 @@
import numpy as np import math
import os.path
import sys
import time
import tomli
from loguru import logger
from core import * from core import *
import timeit import timeit
from animation import Animation
# 打印参数
def parameter_display(para_dis: Parameter):
logger.info(f"额定电压 kV {para_dis.rated_voltage}")
logger.info(f"导线弧垂 m {para_dis.h_c_sag}")
logger.info(f"地线弧垂 m {para_dis.h_g_sag}")
logger.info(f"全塔高 m {para_dis.h_arm[0]}")
logger.info(f"串绝缘距离 m {para_dis.insulator_c_len}")
logger.info(f"导线串长 m {para_dis.string_c_len}")
logger.info(f"地线串长 m {para_dis.string_g_len}")
logger.info(f"挂点垂直坐标 m {para_dis.h_arm}")
logger.info(f"挂点水平坐标 m {para_dis.gc_x}")
logger.info(f"地面倾角 ° {[an * 180 / math.pi for an in para_dis.ground_angels]}")
logger.info(f"海拔高度 m {para_dis.altitude}")
if para_dis.ng > 0:
logger.info("不采用雷暴日计算地闪密度和雷电流密度")
logger.info(f"地闪密度 次/(每平方公里·每年) {para_dis.ng}")
logger.info(f"概率密度曲线系数a {para_dis.Ip_a}")
logger.info(f"概率密度曲线系数b {para_dis.Ip_b}")
pass
else:
logger.info(f"雷暴日 d {para_dis.td}")
def read_parameter(toml_file_path):
with open(toml_file_path, "rb") as toml_fs:
toml_dict = tomli.load(toml_fs)
toml_parameter = toml_dict["parameter"]
para.h_g_sag = toml_parameter["h_g_sag"] # 地线弧垂
para.h_c_sag = toml_parameter["h_c_sag"] # 导线弧垂
# para.h_whole = toml_parameter["h_whole"] # 杆塔全高
para.td = toml_parameter["td"] # 雷暴日
para.insulator_c_len = toml_parameter["insulator_c_len"] # 串子绝缘长度
para.string_c_len = toml_parameter["string_c_len"]
para.string_g_len = toml_parameter["string_g_len"]
para.gc_x = toml_parameter["gc_x"] # 导、地线水平坐标
para.ground_angels = [
angel / 180 * math.pi for angel in toml_parameter["ground_angels"]
] # 地面倾角,向下为正
para.h_arm = toml_parameter["h_arm"]
para.altitude = toml_parameter["altitude"]
para.rated_voltage = toml_parameter["rated_voltage"]
toml_advance = toml_dict["advance"]
para.ng = toml_advance["ng"] # 地闪密度
para.Ip_a = toml_advance["Ip_a"] # 概率密度曲线系数a
para.Ip_b = toml_advance["Ip_b"] # 概率密度曲线系数b
toml_optional = toml_dict["optional"]
para.voltage_n = toml_optional["voltage_n"] # 工作电压分成多少份来计算
para.max_i = toml_optional["max_i"]
def egm(): def egm():
if len(sys.argv) < 2:
toml_file_path = r"内自500kV-ZCK上相.toml"
else:
toml_file_path = sys.argv[1]
if not os.path.exists(toml_file_path):
logger.info(f"无法找到数据文件{toml_file_path},程序退出。")
sys.exit(0)
logger.info(f"读取文件{toml_file_path}")
read_parameter(toml_file_path)
#########################################################
# 以上是需要设置的参数
parameter_display(para)
h_whole = para.h_arm[0] # 挂点高
string_g_len = para.string_g_len
string_c_len = para.string_c_len
h_g_sag = para.h_g_sag
h_c_sag = para.h_c_sag
gc_x = para.gc_x
h_arm = para.h_arm
gc_y = [
h_whole - string_g_len - h_g_sag * 2 / 3, # 地线对地平均高
]
if len(h_arm) > 1:
for hoo in h_arm[1:]:
gc_y.append(hoo - string_c_len - h_c_sag * 2 / 3) # 导线平均高
if len(gc_y) > 2: # 双回路
phase_n = 3 # 边相导线数量
else:
phase_n = 1
# 地闪密度 利用QGDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
td = para.td
ng = func_ng(td)
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率 avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
voltage_n = 3 # 工作电压分成多少份来计算 ground_angels = para.ground_angels
ng = func_ng(20) # 初始化动画
h_whole = 140 # 杆塔全高 animate = Animation()
insulator_c_len = 6.8 # 串子绝缘长度 animate.disable(False)
string_c_len = 9.2 # animate.show()
string_g_len = 0.5 for ground_angel in ground_angels:
dgc = -0.0 # 导地线水平距离 logger.info(f"地面倾角{ground_angel/math.pi*180:.3f}°")
vertical_dgc = 2.7 # 导地线挂点垂直距离 rg_type = None
h_g_avr_sag = 11.67 * 2 / 3 rg_x = None
h_c_avr_sag = 14.43 * 2 / 3 rg_y = None
h_gav = h_whole - string_g_len - h_g_avr_sag # 地线对地平均高 voltage_n = para.voltage_n
h_cav = h_whole - string_c_len - vertical_dgc - h_c_avr_sag # 导线对地平均高 n_sf_phases = np.zeros((phase_n, voltage_n)) # 存储每一相的跳闸率
shield_angle = math.atan(dgc / (vertical_dgc + string_c_len)) * 180 / math.pi if np.any(np.array(gc_y) < 0):
print(f"保护角{shield_angle:.3f}°") logger.info("导线可能掉地面下了,程序退出。")
for u_bar in range(voltage_n): return 0
u_ph = ( for phase_conductor_foo in range(phase_n):
math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732 exposed_curve_shielded = False
) # 运行相电压 rs_x = gc_x[phase_conductor_foo]
rs_y = gc_y[phase_conductor_foo]
rc_x = gc_x[phase_conductor_foo + 1]
rc_y = gc_y[phase_conductor_foo + 1]
if phase_n == 1:
rg_type = "g"
if phase_n > 1: # 多回路
if phase_conductor_foo < 2:
rg_type = "c" # 捕捉弧由下面一相导线的击距代替
rg_x = gc_x[phase_conductor_foo + 2]
rg_y = gc_y[phase_conductor_foo + 2]
else:
rg_type = "g"
# TODO 保护角公式可能有问题,后面改
shield_angle_at_avg_height = (
math.atan(
(rc_x - rs_x)
/ (
(h_arm[0] - string_g_len - h_arm[phase_conductor_foo + 1])
+ string_c_len
)
)
* 180
/ math.pi
) # 挂点处保护角
logger.info(f"挂点处保护角{shield_angle_at_avg_height:.3f}°")
logger.debug(f"最低相防护标识{rg_type}")
rated_voltage = para.rated_voltage
for u_bar in range(voltage_n): # 计算不同工作电压下的跳闸率
# TODO 需要区分交、直流
# u_ph = (
# math.sqrt(2)
# * rated_voltage
# * math.cos(2 * math.pi / voltage_n * u_bar)
# / 1.732
# ) # 运行相电压
u_ph = rated_voltage / 1.732
logger.info(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV")
# 迭代法计算最大电流 # 迭代法计算最大电流
i_max = 0 i_max = 0
i_min = min_i(insulator_c_len, u_ph / 1.732) insulator_c_len = para.insulator_c_len
# i_min = min_i(insulator_c_len, u_ph / 1.732)
# TODO 需要考虑交、直流
i_min = min_i(insulator_c_len, u_ph)
_min_i = i_min # 尝试的最小电流 _min_i = i_min # 尝试的最小电流
_max_i = 200 # 尝试的最大电流 _max_i = para.max_i # 尝试的最大电流
cad = Draw() # cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2) for i_bar in np.linspace(
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.1)): # 雷电流 _min_i, _max_i, int((_max_i - _min_i) / 1)
# print(f"尝试计算电流为{i_bar:.2f}") ): # 雷电流
logger.info(f"尝试计算电流为{i_bar:.2f}")
rs = rs_fun(i_bar) rs = rs_fun(i_bar)
animate.add_rs(rs, rs_x, rs_y)
rc = rc_fun(i_bar, u_ph) rc = rc_fun(i_bar, u_ph)
rg = rg_fun(i_bar, h_cav) animate.add_rc(rc, rc_x, rc_y)
####### rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
# cccCount += 1 rg_line_func = None
# if cccCount % 30 == 0: if rg_type == "g":
# import core rg_line_func = rg_line_function_factory(rg, ground_angel)
# animate.add_rg_line(rg_line_func)
# core.gMSP.add_circle((0, h_gav), rs) rs_rc_circle_intersection = solve_circle_intersection(
# core.gMSP.add_circle( rs, rc, rs_x, rs_y, rc_x, rc_y
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
# )
# core.gMSP.add_circle((dgc, h_cav), rc)
#######
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
if not circle_intersection: # if circle_intersection is []
# print("保护弧和暴露弧无交点,检查设置参数。程序退出。")
continue
circle_rc_line_intersection = solve_circle_line_intersection(
rc, rg, dgc, h_cav
) )
if not circle_rc_line_intersection: i_max = i_bar
if not rs_rc_circle_intersection: # if circle_intersection is []
logger.debug("保护弧和暴露弧无交点,检查设置参数。")
continue continue
circle_rc_or_rg_line_intersection = None
if rg_type == "g":
circle_rc_or_rg_line_intersection = (
solve_circle_line_intersection(rc, rc_x, rc_y, rg_line_func)
)
elif rg_type == "c":
circle_rc_or_rg_line_intersection = solve_circle_intersection(
rg, rc, rg_x, rg_y, rc_x, rc_y
)
if not circle_rc_or_rg_line_intersection:
# 暴露弧和捕捉弧无交点
if rg_type == "g":
if rg_line_func(rc_x) > rc_y:
i_min = i_bar # 用于后面判断最小和最大电流是否相等,相等意味着暴露弧一直被屏蔽
logger.info(
f"捕捉面在暴露弧之上,设置最小电流为{i_min:.2f}"
)
else:
logger.info("暴露弧和地面捕捉弧无交点,检查设置参数。")
continue
else:
logger.info(
"上面的导地线无法保护下面的导地线,检查设置参数。"
)
continue
animate.add_expose_area(
rc_x,
rc_y,
*rs_rc_circle_intersection,
*circle_rc_or_rg_line_intersection,
)
cad = Draw()
cad.draw(
i_min,
u_ph,
rs_x,
rs_y,
rc_x,
rc_y,
rg_x,
rg_y,
rg_type,
ground_angel,
2,
) # 最小电流时
cad.draw(
i_max,
u_ph,
rs_x,
rs_y,
rc_x,
rc_y,
rg_x,
rg_y,
rg_type,
ground_angel,
6,
) # 最大电流时
cad.save_as(f"egm{phase_conductor_foo + 1}.dxf")
min_distance_intersection = ( min_distance_intersection = (
np.sum( np.sum(
( (
np.array(circle_intersection) np.array(rs_rc_circle_intersection)
- np.array(circle_rc_line_intersection) - np.array(circle_rc_or_rg_line_intersection)
) )
** 2 ** 2
) )
** 0.5 ** 0.5
) # 计算两圆交点和地面直线交点的最小距离 ) # 计算两圆交点和地面直线交点的最小距离
i_max = i_bar
if min_distance_intersection < 0.1: if min_distance_intersection < 0.1:
break break # 已经找到了最大电流
if circle_intersection[1] < circle_rc_line_intersection[1]: # 判断是否以完全被保护
circle_rs_line_intersection = solve_circle_line_intersection( if (
rs, rg, 0, h_gav rs_rc_circle_intersection[1]
< circle_rc_or_rg_line_intersection[1]
):
circle_rs_line_or_rg_intersection = None
if rg_type == "g":
circle_rs_line_or_rg_intersection = (
solve_circle_line_intersection(
rs, rs_x, rs_y, rg_line_func
) # 保护弧和捕雷弧的交点
)
if rg_type == "c":
circle_rs_line_or_rg_intersection = (
solve_circle_intersection(
rs, rg, rs_x, rs_y, rg_x, rg_y
)
) )
# 判断与保护弧的交点是否在暴露弧外面 # 判断与保护弧的交点是否在暴露弧外面
distance = ( distance = (
np.sum( np.sum(
(np.array(circle_rs_line_intersection) - np.array([dgc, h_cav])) (
np.array(circle_rs_line_or_rg_intersection)
- np.array([rc_x, rc_y])
)
** 2 ** 2
) )
** 0.5 ** 0.5
) )
if distance > rc: if distance > rc:
print("暴露弧已经完全被屏蔽") logger.info(f"电流为{i_bar}kV时暴露弧已经完全被屏蔽")
exposed_curve_shielded = True
break break
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2) animate.pause()
cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6)
cad.save()
# 判断是否导线已经被完全保护 # 判断是否导线已经被完全保护
if abs(i_max - _max_i) < 1e-5: if abs(i_max - _max_i) < 1e-5:
print("无法找到最大电流,可能是杆塔较高。") logger.info("无法找到最大电流,可能是杆塔较高。")
print(f"最大电流设置为自然界最大电流{i_max}kA") logger.info(f"最大电流设置为自然界最大电流{i_max}kA")
print(f"最大电流为{i_max:.2f}") logger.info(f"最大电流为{i_max:.2f}")
print(f"最小电流为{i_min:.2f}") logger.info(f"最小电流为{i_min:.2f}")
# if exposed_curve_shielded:
# logger.info("暴露弧已经完全被屏蔽,不会跳闸。")
# continue
curt_fineness = 0.1 # 电流积分细度 curt_fineness = 0.1 # 电流积分细度
if i_min > i_max or abs(i_min - i_max) < curt_fineness: if i_min > i_max or abs(i_min - i_max) < curt_fineness:
print("最大电流小于最小电流,没有暴露弧,程序结束") logger.info("最大电流小于等于最小电流,没有暴露弧。")
return continue
# 开始积分 # 开始积分
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份 curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
calculus = 0
i_curt_samples, d_curt = np.linspace( i_curt_samples, d_curt = np.linspace(
i_min, i_max, curt_segment_n + 1, retstep=True i_min, i_max, curt_segment_n + 1, retstep=True
) )
bd_area_vec = np.vectorize(bd_area) bd_area_vec = np.vectorize(bd_area)
cal_bd_np = bd_area_vec( td = para.td
i_curt_samples, u_ph, dgc, h_gav, h_cav ip_a = para.Ip_a
) * thunder_density(i_curt_samples) ip_b = para.Ip_b
bd_area_vec_result = bd_area_vec(
i_curt_samples,
u_ph,
rc_x,
rc_y,
rs_x,
rs_y,
rg_x,
rg_y,
ground_angel,
rg_type,
)
thunder_density_result = thunder_density(
i_curt_samples, td, ip_a, ip_b
) # 雷电流幅值密度函数
cal_bd_np = bd_area_vec_result * thunder_density_result
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
# for i_curt in i_curt_samples[:-1]: # for i_curt in i_curt_samples[:-1]:
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav) # cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
@@ -124,12 +337,21 @@ def egm():
# if abs(calculus-0.05812740052770032)<1e-5: # if abs(calculus-0.05812740052770032)<1e-5:
# abc=123 # abc=123
# pass # pass
rated_voltage = para.rated_voltage
n_sf = ( n_sf = (
2 * ng / 10 * calculus 2
) # 跳闸率 利用QGDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13 * ng
/ 10
* calculus
* arc_possibility(rated_voltage, insulator_c_len)
)
avr_n_sf += n_sf / voltage_n avr_n_sf += n_sf / voltage_n
print(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}") n_sf_phases[phase_conductor_foo][u_bar] = n_sf
print(f"跳闸率是{avr_n_sf:.6}") logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.16f}次/(100km·a)")
logger.info(f"线路跳闸率是{avr_n_sf:.16f}次/(100km·a)")
logger.info(
f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=16)}次/(100km·a)"
)
def speed(): def speed():
@@ -139,6 +361,10 @@ def speed():
if __name__ == "__main__": if __name__ == "__main__":
run_time = timeit.timeit("egm()", globals=globals(), number=1) logger.remove()
print(f"运行时间:{run_time:.2f}s") logger.add(sys.stderr, level="DEBUG")
print("Finished.") egm()
# run_time = timeit.timeit("egm()", globals=globals(), number=1)
# logger.info(f"运行时间:{run_time:.2f}s")
# input('enter any key to exit.')
logger.info("Finished.")

7
metadata.yml Normal file
View File

@@ -0,0 +1,7 @@
Version: 1.2.0.2
#CompanyName: My Imaginary Company
#FileDescription: Simple App
#InternalName: Simple App
#LegalCopyright: © My Imaginary Company. All rights reserved.
#OriginalFilename: SimpleApp.exe
ProductName: Lightening

75
parameter_test.py Normal file
View File

@@ -0,0 +1,75 @@
import datetime
import pymongo
from easyprocess import EasyProcess
import numpy as np
import re
if __name__ == "__main__":
result = {}
utc_now = datetime.datetime.utcnow()
print(f"当前utc时间{utc_now}")
client = pymongo.MongoClient(
"mongodb+srv://dmy:uqXLtjkJRKzWYnSpK8jF@cluster0.x0ged.mongodb.net/db?retryWrites=true&w=majority"
)
db = client["db"]
result_collection = db["result_collection"]
with open("article_parameter.toml", encoding="utf-8") as toml_file:
toml_string = toml_file.read()
for altitude in np.arange(1500, 4000, 500):
for height in np.arange(100, 160, 10):
for ground_arm_length in np.arange(17, 25, 0.01):
replaced_toml_string = toml_string
replaced_toml_string = replaced_toml_string.replace(
"ARM", f"{ground_arm_length:.3f}"
)
replaced_toml_string = replaced_toml_string.replace(
"HEIGHT", str(height)
)
replaced_toml_string = replaced_toml_string.replace(
"MID", str(height - 20)
)
replaced_toml_string = replaced_toml_string.replace(
"ALTITUDE", str(altitude)
)
with open(
"abc_parameter.toml", "w", encoding="utf-8"
) as parameter_toml_file:
parameter_toml_file.write(replaced_toml_string)
print(f"计算{altitude}m海拔{height}m全塔高,{ground_arm_length:.3f}m横担长的跳闸率")
console_output = (
EasyProcess(
[
"python",
"d:/code/EGM/main.py",
"d:/code/EGM/abc_parameter.toml",
]
)
.call()
.stderr
)
tripout_rate = re.findall("不同相跳闸率是\[(.*)\]", console_output)[0]
print(f"跳闸率是{tripout_rate}")
if float(tripout_rate) < 0.14:
print(f"最短地线横担是{ground_arm_length:.3f}m")
if altitude not in result:
result[altitude] = {}
if height not in result[altitude]:
result[altitude][height] = {}
result[altitude][height] = ground_arm_length
record_id = result_collection.insert_one(
{
"cate": "最短地线横担长度",
"utc_time": utc_now,
"altitude": float(altitude),
"height": float(height),
"地线横担长度": float(ground_arm_length),
"跳闸率": tripout_rate,
}
)
print(f"id{record_id}")
break
for altitude in np.arange(1500, 4000, 500):
for height in np.arange(100, 160, 10):
ground_arm_length = result[altitude][height]
print(f"{altitude}m海拔{height}m全塔高,需要最短{ground_arm_length:.3f}m横担")

100
plot.py Normal file
View File

@@ -0,0 +1,100 @@
import matplotlib
from plot_data import *
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
matplotlib.use("Qt5Agg")
# 解决中文乱码
plt.rcParams["font.sans-serif"] = ["simsun"]
plt.rcParams["font.family"] = "sans-serif"
# plt.rcParams["font.weight"] = "bold"
# 解决负号无法显示的问题
plt.rcParams["axes.unicode_minus"] = False
plt.rcParams["savefig.dpi"] = 1200 # 图片像素
# plt.savefig("port.png", dpi=600, bbox_inches="tight")
fontsize = 12
################################################
witdh_of_bar=0.3
color=plt.cm.BuPu(np.linspace(152/255, 251/255,152/255))
percent1 = data_150m塔高_不同地线保护角[:, 1] / data_150m塔高_不同地线保护角[:, 0]
# percent1 = data_66m串长_不同塔高[:, 1] / data_66m串长_不同塔高[:, 0]
# percent2 = data_68m串长_不同塔高[:, 1] / data_68m串长_不同塔高[:, 0]
fig, ax = plt.subplots()
x = np.arange(len(category_names_150m塔高_不同地线保护角)) # the label locations
p1 = ax.bar(category_names_150m塔高_不同地线保护角, percent1, witdh_of_bar, label="绕击/反击跳闸率比值",color=color,hatch='-')
# p1 = ax.bar(x - 0.3 / 2, percent1, 0.3, label="6.6m绝缘距离")
# p2 = ax.bar(x + 0.3 / 2, percent2, 0.3, label="6.8m绝缘距离")
ax.xaxis.set_major_locator(mticker.FixedLocator(x))
ax.set_xticklabels(category_names_150m塔高_不同地线保护角)
ax.set_ylabel("比值", fontsize=fontsize)
ax.set_xlabel("地线保护角(°)", fontsize=fontsize)
# ax.set_xlabel("接地电阻(Ω)", fontsize=fontsize)
plt.xticks(fontsize=fontsize)
plt.yticks(fontsize=fontsize)
ax.bar_label(p1, padding=0, fontsize=fontsize)
# ax.bar_label(p2, padding=0, fontsize=fontsize)
ax.legend(fontsize=fontsize)
fig.tight_layout()
plt.show()
# results = {
# "100m": 100 * data[0, :] / np.sum(data[0, :]),
# "110m": data[1, :] / np.sum(data[1, :]),
# "120m": data[2, :] / np.sum(data[2, :]),
# "130m": data[3, :] / np.sum(data[3, :]),
# "140m": data[4, :] / np.sum(data[4, :]),
# "150m": data[5, :] / np.sum(data[5, :]),
# }
# def survey(results, category_names):
# """
# Parameters
# ----------
# results : dict
# A mapping from question labels to a list of answers per category.
# It is assumed all lists contain the same number of entries and that
# it matches the length of *category_names*.
# category_names : list of str
# The category labels.
# """
# labels = list(results.keys())
# data = np.array(list(results.values()))
# data_cum = data.cumsum(axis=1)
# category_colors = plt.get_cmap("RdYlGn")(np.linspace(0.15, 0.85, data.shape[1]))
#
# fig, ax = plt.subplots(figsize=(9.2, 5))
# ax.invert_yaxis()
# ax.xaxis.set_visible(False)
# ax.set_xlim(0, np.sum(data, axis=1).max())
#
# for i, (colname, color) in enumerate(zip(category_names, category_colors)):
# widths = data[:, i]
# starts = data_cum[:, i] - widths
# rects = ax.barh(
# labels, widths, left=starts, height=0.5, label=colname, color=color
# )
#
# r, g, b, _ = color
# text_color = "white" if r * g * b < 0.5 else "darkgrey"
# ax.bar_label(rects, label_type="center", color=text_color)
# ax.legend(
# ncol=len(category_names),
# bbox_to_anchor=(0, 1),
# loc="lower left",
# fontsize="small",
# )
#
# return fig, ax
# percent=data/np.sum(data,axis=1)[:,None]*100
# percent = data[:, 1] / data[:, 0]
# plt.bar(category_names, percent, 0.3, label="黑")
# # plt.bar(category_names, percent[:,0], 0.2, label="r")
#
# # plt.bar(category_names, [0.014094 / 100, 0.025094 / 100], 0.2, label="h")
# plt.legend()
# # survey(results, category_names)
# plt.show()

72
plot_data.py Normal file
View File

@@ -0,0 +1,72 @@
import numpy as np
category_names_7欧电阻_随塔高变化 = ["100", "110", "120", "130", "140", "150"]
# 第1列反击 第2列绕击
data_7欧电阻_随塔高变化 = np.array(
[
[0.000002, 0.019094],
[0.000003, 0.043287],
[0.000006, 0.073033],
[0.000010, 0.103132],
[0.000019, 0.130923],
[0.000032, 0.155414],
]
)
category_names_15欧电阻_随塔高变化 = ["100", "110", "120", "130", "140", "150"]
data_15欧电阻_随塔高变化 = np.array(
[
[0.000039, 0.019094],
[0.000064, 0.043287],
[0.000098, 0.073033],
[0.000170, 0.103132],
[0.000287, 0.130923],
[0.000440, 0.155414],
]
)
category_names_130m塔高_不同接地电阻 = ["7", "10", "15", "20", "25", "30"]
data_130m塔高_不同接地电阻 = np.array(
[
[0.000010, 0.103132],
[0.000101, 0.103132],
[0.000171, 0.103132],
[0.000333, 0.103132],
[0.000563, 0.103132],
[0.000950, 0.103132],
]
)
category_names_150m塔高_不同地线保护角 = ["-1", "-3", "-6"]
data_150m塔高_不同地线保护角 = np.array(
[
[0.000440, 0.155414],
[0.000433, 0.128227],
[0.000429, 0.099819],
]
)
category_names_66m串长_不同塔高 = ["100", "120", "140"]
data_66m串长_不同塔高 = np.array(
[
[0.000053, 0.023285],
[0.000139, 0.083229],
[0.000470, 0.145586],
]
)
category_names_68m串长_不同塔高 = [100, 120, 140]
data_68m串长_不同塔高 = np.array(
[
[0.000039, 0.019094],
[0.000098, 0.073033],
[0.000287, 0.130923],
]
)

34
server.py Normal file
View File

@@ -0,0 +1,34 @@
from fastapi import FastAPI
import uvicorn
from pydantic import BaseModel
class CalculationParameter(BaseModel):
loop: str # single or double 回路数
insulator_c_len: float # 绝缘长度
string_c_len: float # 导线串长
string_g_len: float # 地线串长
td: int # 雷暴日
h_g_avr_sag: float # 地线平均弧垂
h_c_avr_sag: float # 导线平均弧垂
h_whole: float # 杆塔全高
gc_x: tuple[float] # 导、地线水平坐标
ground_angels: tuple[float] # 地面倾角,向下为正
rated_voltage: float # 额定电压
fastapi_app = FastAPI()
@fastapi_app.post("/calculation")
async def calculation(cp: CalculationParameter):
print(cp)
return {"Hello": "World"}
def server_start():
pass
if __name__ == "__main__":
uvicorn.run("server:fastapi_app", host="127.0.0.1", port=5000, log_level="info")

29
untest.py Normal file
View File

@@ -0,0 +1,29 @@
import unittest
from core import thunder_density
from main import read_parameter
import numpy as np
import sympy
class Testing(unittest.TestCase):
@classmethod
def setUpClass(cls):
# read_parameter('default.toml')
pass
def test_thunder_density(self):
i = sympy.symbols("i")
a = np.random.random()
b = np.random.random()
p = 1-1 / (1 + (i / a) ** b)
d_p = sympy.diff(p, i)
random_i = np.random.randint(10, 100)
v_from_thunder_density = thunder_density(random_i, 0, a, b)
v_from_diff = d_p.evalf(subs={i: random_i})
self.assertTrue(
abs(v_from_thunder_density - v_from_diff) < 1e-5, "与自动微分结果不一致"
) # add assertion here
if __name__ == "__main__":
unittest.main()