egm/main.py

107 lines
4.2 KiB
Python
Raw Normal View History

2021-09-20 20:51:09 +08:00
from core import *
import timeit
2021-09-11 09:29:04 +08:00
def egm():
2021-09-12 22:56:03 +08:00
for u_bar in range(1):
2021-09-20 20:51:09 +08:00
u_ph = math.sqrt(1) * 750 * math.cos(2 * math.pi / 3 * 0) / 1.732 # 运行相电压
h_whole = 140 # 杆塔全高
string_len = 6.8 # 串子绝缘长度
h_gav = h_whole - 0.5 - 11.67 * 2 / 3 # 地线对地平均高
h_cav = h_gav - 9.2 - 2.7 - (14.43 - 11.67) * 2 / 3 # 导线对地平均高
dgc = 0 # 导地线水平距离
2021-09-12 22:56:03 +08:00
# 迭代法计算最大电流
i_max = 0
_min_i = 20 # 尝试的最小电流
2021-09-13 02:06:51 +08:00
_max_i = 200 # 尝试的最大电流
2021-09-12 22:56:03 +08:00
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.1)): # 雷电流
print(f"尝试计算电流为{i_bar:.2f}")
rs = rs_fun(i_bar)
rc = rc_fun(i_bar, u_ph)
rg = rg_fun(i_bar, h_cav)
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
if not circle_intersection: # if circle_intersection is []
2021-09-20 20:51:09 +08:00
# print("保护弧和暴露弧无交点,检查设置参数。程序退出。")
2021-09-12 22:56:03 +08:00
continue
circle_rc_line_intersection = solve_circle_line_intersection(
2021-09-20 20:51:09 +08:00
rc, rg, dgc, h_cav
2021-09-11 09:29:04 +08:00
)
2021-09-20 20:51:09 +08:00
if not circle_rc_line_intersection:
continue
2021-09-12 22:56:03 +08:00
min_distance_intersection = (
np.sum(
(
np.array(circle_intersection)
- np.array(circle_rc_line_intersection)
)
2021-09-12 22:56:03 +08:00
** 2
)
** 0.5
) # 计算两圆交点和地面直线交点的最小距离
i_max = i_bar
if min_distance_intersection < 0.1:
break
if circle_intersection[1] < circle_rc_line_intersection[1]:
circle_rs_line_intersection = solve_circle_line_intersection(
2021-09-20 20:51:09 +08:00
rs, rg, 0, h_gav
)
# 判断与保护弧的交点是否在暴露弧外面
distance = (
np.sum(
(np.array(circle_rs_line_intersection) - np.array([dgc, h_cav]))
** 2
)
** 0.5
)
if distance > rc:
print("暴露弧已经完全被屏蔽")
break
2021-09-20 20:51:09 +08:00
i_min = min_i(string_len, u_ph / 1.732)
2021-09-12 22:56:03 +08:00
cad = Draw()
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6)
cad.save()
# 判断是否导线已经被完全保护
2021-09-12 22:56:03 +08:00
if abs(i_max - _max_i) < 1e-5:
print("无法找到最大电流,可能是杆塔较高。")
print(f"最大电流设置为自然界最大电流{i_max}kA")
print(f"最大电流为{i_max:.2f}")
print(f"最小电流为{i_min:.2f}")
curt_fineness = 0.1 # 电流积分细度
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
print("最大电流小于最小电流,没有暴露弧,程序结束。")
return
# 开始积分
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
calculus = 0
i_curt_samples, d_curt = np.linspace(
i_min, i_max, curt_segment_n + 1, retstep=True
2021-09-11 09:29:04 +08:00
)
2021-09-20 20:51:09 +08:00
for i_curt in i_curt_samples[:-1]:
2021-09-12 22:56:03 +08:00
cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
cal_thunder_density_first = thunder_density(i_curt)
cal_thunder_density_second = thunder_density(i_curt + d_curt)
calculus += (
(
cal_bd_first * cal_thunder_density_first
+ cal_bd_second * cal_thunder_density_second
)
/ 2
* d_curt
)
2021-09-20 20:51:09 +08:00
n_sf = 2 * 2.7 / 10 * calculus # 跳闸率
2021-09-12 22:56:03 +08:00
print(f"跳闸率是{n_sf:.6}")
2021-09-11 09:29:04 +08:00
2021-09-20 20:51:09 +08:00
def speed():
a = 0
for bar in range(100000000):
a += bar
2021-09-11 09:29:04 +08:00
if __name__ == "__main__":
2021-09-20 20:51:09 +08:00
run_time = timeit.timeit("egm()", globals=globals(), number=1)
print(f"运行时间:{run_time:.2f}s")
2021-09-11 09:29:04 +08:00
print("Finished.")