加入有功潮流的雅克比矩阵

Signed-off-by: dmy@lab <dmy@lab.lab>
This commit is contained in:
dmy@lab 2015-03-28 20:14:36 +08:00
parent 5cb2c57018
commit 3a6c1cd6b2
1 changed files with 210 additions and 1 deletions

View File

@ -4,10 +4,12 @@
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{fontspec}%使用xetex
\usepackage[top=1in, bottom=1in, left=1.0in, right=1.0in]{geometry}
\setmainfont[BoldFont=黑体]{宋体} % 使用系统默认字体
\XeTeXlinebreaklocale "zh" % 针对中文进行断行
\XeTeXlinebreakskip = 0pt plus 1pt minus 0.1pt % 给予TeX断行一定自由度
\linespread{1.5} % 1.5倍行距
\begin{document}
线路功率(不考虑接地导纳)
\begin{equation}
@ -201,7 +203,214 @@ Q_{ij}&=-\frac{V_1^2}{k^2}B_{ij}-\frac{V_1}{k} V_2[sin(\theta_1 - \theta_2)G_{ij
\end{aligned}
\end{equation}
ps.已检验过线路的公式。
为了推潮流公式,先从简单的开始推起。
\begin{equation}
\Delta P =diag ( \left[
\begin{array}{c}
V_1\\
V_2
\end{array}
\right]
)
\left[
\begin{array}{cc}
a & b \\
c & d
\end{array}
\right]
\left[
\begin{array}{c}
V_1\\
V_2
\end{array}
\right]
\end{equation}
\begin{equation}
\Delta P =
\left[
\begin{array}{c}
aV_1^2+bV_1V_2 \\
cV_1V_2+dV_2^2
\end{array}
\right]
\end{equation}
所以
\begin{equation}
\begin{array}{cc}
\dfrac{\Delta P}{\partial V}&=
\left[
\begin{array}{cc}
2aV_1+bV_2 & bV_1\\
cV_2 & cV_1+2dV_2
\end{array}
\right] \\
&=diag(
\left[
\begin{array}{c}
V_1\\
V_2
\end{array}
\right]
)
\left[
\begin{array}{cc}
a & b\\
c & d
\end{array}
\right]
+diag(
\left[
\begin{array}{cc}
a & b\\
c & d
\end{array}
\right]
\left[
\begin{array}{c}
V_1\\
V_2
\end{array}
\right]
)
\end{array}
\end{equation}
再看
\begin{equation}
\Delta P =diag ( \left[
\begin{array}{c}
V_1\\
V_2
\end{array}
\right]
)
\left[
\begin{array}{cc}
cos(t_1-t_1) & cos(t_1-t_2) \\
cos(t_2-t_1) & cos(t_2-t_2)
\end{array}
\right]
\left[
\begin{array}{c}
V_1\\
V_2
\end{array}
\right]
\end{equation}
\begin{equation}
\Delta P=
diag(
\left[
\begin{array}{c}
V_1 \\
V_2
\end{array}
\right]
)
\left[
\begin{array}{c}
V_1cos(t_1-t_1)+V_2cos(t_1-t_2) \\
V_1cos(t_2-t_1)+V_2cos(t_2-t_2) \\
\end{array}
\right]
\end{equation}
\begin{equation}
\frac{\Delta P}{\partial t}=
diag(
\left[
\begin{array}{c}
V_1 \\
V_2
\end{array}
\right]
)
\left[
\begin{array}{cc}
-V_2sin(t_1-t_2) & V_2sin(t_1-t_2) \\
V_1sin(t_2-t_1) & -V_1sin(t_2-t_1) \\
\end{array}
\right]
\end{equation}
\begin{equation}
\frac{\Delta P}{\partial t}=
\begin{array}{c}
diag(
\left[
\begin{array}{c}
V_1 \\
V_2
\end{array}
\right]
)
\\
\left[
\begin{array}{cc}
V_1sin(t_1-t_1)-V_2sin(t_1-t_2)-V_1sin(t_1-t_1) & V_2sin(t_1-t_2) \\
V_1sin(t_2-t_1) & V_2sin(t_2-t_2)-V_2sin(t_2-t_2)-V_1sin(t_2-t_1)
\end{array}
\right]
\end{array}
\end{equation}
\begin{equation}
\frac{\Delta P}{\partial t}=
diag(
\left[
\begin{array}{c}
V_1 \\
V_2
\end{array}
\right]
)
\left\{
\left[
\begin{array}{cc}
sin(t_1-t_1) & sin(t_1-t_2) \\
sin(t_2-t_1) & sin(t_2-t_2)
\end{array}
\right]
diag(
\left[
\begin{array}{c}
V_1 \\
V_2
\end{array}
\right]
)
-
diag(
\left[
\begin{array}{cc}
sin(t_1-t_1) & sin(t_1-t_2) \\
sin(t_2-t_1) & sin(t_2-t_2)
\end{array}
\right]
\left[
\begin{array}{c}
V_1\\
V_2
\end{array}
\right]
)
\right\}
\end{equation}
潮流方程有功的公式为
\begin{equation}
\Delta P=diag(V)[Y.*cos(\theta e^T -e \theta^T-\alpha)]V+P_{D}-P_{G}=0
\end{equation}
\begin{equation}
\frac{\partial P}{\partial V}=
\end{equation}
ps.已检验过线路以及变压器支路的公式。
\par
以上公式已经可以完成状态估计,若要实现更好的收敛性,需要利用二阶导数。
\par