diff --git a/公式/公式.tex b/公式/公式.tex index 45d7cb5..f6e1f1c 100644 --- a/公式/公式.tex +++ b/公式/公式.tex @@ -4,10 +4,12 @@ \usepackage{amsfonts} \usepackage{amssymb} \usepackage{fontspec}%使用xetex +\usepackage[top=1in, bottom=1in, left=1.0in, right=1.0in]{geometry} \setmainfont[BoldFont=黑体]{宋体} % 使用系统默认字体 \XeTeXlinebreaklocale "zh" % 针对中文进行断行 \XeTeXlinebreakskip = 0pt plus 1pt minus 0.1pt % 给予TeX断行一定自由度 \linespread{1.5} % 1.5倍行距 + \begin{document} 线路功率(不考虑接地导纳) \begin{equation} @@ -201,7 +203,214 @@ Q_{ij}&=-\frac{V_1^2}{k^2}B_{ij}-\frac{V_1}{k} V_2[sin(\theta_1 - \theta_2)G_{ij \end{aligned} \end{equation} -ps.已检验过线路的公式。 +为了推潮流公式,先从简单的开始推起。 + +\begin{equation} +\Delta P =diag ( \left[ +\begin{array}{c} +V_1\\ +V_2 +\end{array} +\right] +) +\left[ +\begin{array}{cc} +a & b \\ +c & d +\end{array} +\right] +\left[ +\begin{array}{c} +V_1\\ +V_2 +\end{array} +\right] +\end{equation} + +\begin{equation} +\Delta P = +\left[ +\begin{array}{c} +aV_1^2+bV_1V_2 \\ +cV_1V_2+dV_2^2 +\end{array} +\right] +\end{equation} +所以 +\begin{equation} +\begin{array}{cc} +\dfrac{\Delta P}{\partial V}&= +\left[ +\begin{array}{cc} +2aV_1+bV_2 & bV_1\\ +cV_2 & cV_1+2dV_2 +\end{array} +\right] \\ +&=diag( +\left[ +\begin{array}{c} +V_1\\ +V_2 +\end{array} +\right] +) +\left[ +\begin{array}{cc} +a & b\\ +c & d +\end{array} +\right] ++diag( +\left[ +\begin{array}{cc} +a & b\\ +c & d +\end{array} +\right] +\left[ +\begin{array}{c} +V_1\\ +V_2 +\end{array} +\right] +) +\end{array} +\end{equation} + +再看 +\begin{equation} +\Delta P =diag ( \left[ +\begin{array}{c} +V_1\\ +V_2 +\end{array} +\right] +) +\left[ +\begin{array}{cc} +cos(t_1-t_1) & cos(t_1-t_2) \\ +cos(t_2-t_1) & cos(t_2-t_2) +\end{array} +\right] +\left[ +\begin{array}{c} +V_1\\ +V_2 +\end{array} +\right] +\end{equation} + + +\begin{equation} +\Delta P= +diag( +\left[ +\begin{array}{c} +V_1 \\ +V_2 +\end{array} +\right] +) +\left[ +\begin{array}{c} +V_1cos(t_1-t_1)+V_2cos(t_1-t_2) \\ +V_1cos(t_2-t_1)+V_2cos(t_2-t_2) \\ +\end{array} +\right] +\end{equation} + +\begin{equation} +\frac{\Delta P}{\partial t}= +diag( +\left[ +\begin{array}{c} +V_1 \\ +V_2 +\end{array} +\right] +) +\left[ +\begin{array}{cc} +-V_2sin(t_1-t_2) & V_2sin(t_1-t_2) \\ +V_1sin(t_2-t_1) & -V_1sin(t_2-t_1) \\ +\end{array} +\right] +\end{equation} +\begin{equation} +\frac{\Delta P}{\partial t}= +\begin{array}{c} +diag( +\left[ +\begin{array}{c} +V_1 \\ +V_2 +\end{array} +\right] +) +\\ +\left[ +\begin{array}{cc} +V_1sin(t_1-t_1)-V_2sin(t_1-t_2)-V_1sin(t_1-t_1) & V_2sin(t_1-t_2) \\ +V_1sin(t_2-t_1) & V_2sin(t_2-t_2)-V_2sin(t_2-t_2)-V_1sin(t_2-t_1) +\end{array} +\right] +\end{array} +\end{equation} +\begin{equation} +\frac{\Delta P}{\partial t}= +diag( +\left[ +\begin{array}{c} +V_1 \\ +V_2 +\end{array} +\right] +) +\left\{ +\left[ +\begin{array}{cc} +sin(t_1-t_1) & sin(t_1-t_2) \\ +sin(t_2-t_1) & sin(t_2-t_2) +\end{array} +\right] +diag( +\left[ +\begin{array}{c} +V_1 \\ +V_2 +\end{array} +\right] +) +- +diag( +\left[ +\begin{array}{cc} +sin(t_1-t_1) & sin(t_1-t_2) \\ +sin(t_2-t_1) & sin(t_2-t_2) +\end{array} +\right] +\left[ +\begin{array}{c} +V_1\\ +V_2 +\end{array} +\right] +) +\right\} +\end{equation} + + + +潮流方程有功的公式为 +\begin{equation} +\Delta P=diag(V)[Y.*cos(\theta e^T -e \theta^T-\alpha)]V+P_{D}-P_{G}=0 +\end{equation} + +\begin{equation} +\frac{\partial P}{\partial V}= +\end{equation} + +ps.已检验过线路以及变压器支路的公式。 \par 以上公式已经可以完成状态估计,若要实现更好的收敛性,需要利用二阶导数。 \par