gdal/dem.py

425 lines
17 KiB
Python
Raw Normal View History

import math
import os
import shutil
import tomli
import ezdxf
2021-01-17 20:05:01 +08:00
from osgeo import gdal
import numpy as np
import pandas as pd
from pw import DFile, ControlFile
import dem_utils
from nwed import Nwed
2024-01-30 01:59:48 +08:00
import cad
2021-01-17 20:05:01 +08:00
class Dem:
def __init__(self, toml_path):
with open(toml_path, "rb") as tf:
toml_dict = tomli.load(tf)
self._toml_dict = toml_dict
dem_file_path = toml_dict["parameter"]["dem_file_path"]
self._tree_height = toml_dict["parameter"]["tree_height"]
self._dataset = gdal.Open(dem_file_path)
self._dem_resolution = self._dataset.GetGeoTransform()[1]
2021-01-17 20:05:01 +08:00
def get_dem_info(self, if_print=False):
"""Get the information of DEM data.
Parameters:
dem_data <osgeo.gdal.Dataset> -- The data of DEM.
if_print <bool> -- If print the information of DEM. Default is False (not print).
Return:
... <...> -- The information and parameters of DEM.
"""
dem_data = self._dataset
dem_row = dem_data.RasterYSize # height
dem_col = dem_data.RasterXSize # width
dem_band = dem_data.RasterCount
dem_gt = dem_data.GetGeoTransform()
dem_proj = dem_data.GetProjection()
if if_print:
print("\nThe information of DEM:")
print("The number of row (height) is: %d" % dem_row)
print("The number of column (width) is: %d" % dem_col)
print("The number of band is: %d" % dem_band)
print("The 6 GeoTransform parameters are:\n", dem_gt)
print("The GCS/PCS information is:\n", dem_proj)
return dem_row, dem_col, dem_band, dem_gt, dem_proj
def write(self):
2023-06-12 22:27:48 +08:00
# TODO:不应该设置缩放因数
2024-01-30 01:59:48 +08:00
dxfs=[]
2024-01-03 09:23:35 +08:00
zoom_factor = 1
excel_pfs = self._read_path_file()
segments = []
2022-11-30 20:53:49 +08:00
plate_doc = ezdxf.new(dxfversion="R2010")
plate_msp = plate_doc.modelspace()
toml_dict = self._toml_dict
out_dxf_file_dir = toml_dict["parameter"]["out_dxf_file_dir"]
2024-01-03 09:23:35 +08:00
# 写整个断面
dm_whole_doc = ezdxf.new(dxfversion="R2004")
dm_whole_accumulative_distance = 0 # 累加里程
dm_whole_msp = dm_whole_doc.modelspace()
for foo in range(len(excel_pfs) - 1):
2023-06-12 22:27:48 +08:00
start_point_name: str = excel_pfs.iloc[foo, 3]
end_point_name: str = excel_pfs.iloc[foo + 1, 3]
point_x_s = float(excel_pfs.iloc[foo, 1])
point_y_s = float(excel_pfs.iloc[foo, 2])
point_x_e = float(excel_pfs.iloc[foo + 1, 1])
point_y_e = float(excel_pfs.iloc[foo + 1, 2])
line_coordination = self.to_line_coordination(
point_x_s, point_y_s, point_x_e, point_y_e
)
left_elevation = self.get_elevation(line_coordination[:, 0:2])
center_elevation = self.get_elevation(line_coordination[:, 2:4])
right_elevation = self.get_elevation(line_coordination[:, 4:6])
dm_doc = ezdxf.new(dxfversion="R2004")
# 设置线形
# for name, desc, pattern in linetypes():
# if name not in dm_doc.linetypes:
# dm_doc.linetypes.add(
# name=name,
# pattern=pattern,
# description=desc,
# )
dm_msp = dm_doc.modelspace()
x_axis = [0]
cord_0 = line_coordination[0, 2:4] # 取中线的x轴作为横坐标
for cord in line_coordination[1:, 2:4]:
x_axis.append(dem_utils.distance(cord, cord_0))
2024-01-03 09:23:35 +08:00
# 左边线
left_line = [
(x_axis[i] / 5 / zoom_factor, left_elevation[i] * 2 / zoom_factor)
for i in range(len(left_elevation))
]
dm_whole_msp.add_polyline2d(
np.array(left_line)
+ np.hstack(
(
dm_whole_accumulative_distance * np.ones((len(x_axis), 1)) / 5,
np.zeros((len(x_axis), 1)),
)
),
dxfattribs={"color": 1},
) # 红色
2024-01-03 09:23:35 +08:00
dm_msp.add_polyline2d(left_line, dxfattribs={"color": 1}) # 红色
mid_line = [
(x_axis[i] / 5 / zoom_factor, center_elevation[i] * 2 / zoom_factor)
for i in range(len(center_elevation))
] # 中线
dm_whole_msp.add_polyline2d(
np.array(mid_line)
+ np.hstack(
(
dm_whole_accumulative_distance * np.ones((len(x_axis), 1)) / 5,
np.zeros((len(x_axis), 1)),
)
)
)
dm_msp.add_polyline2d(mid_line)
# 右边线
right_line = [
(x_axis[i] / 5 / zoom_factor, right_elevation[i] * 2 / zoom_factor)
for i in range(len(right_elevation))
]
dm_whole_msp.add_polyline2d(
np.array(right_line)
+ np.hstack(
(
dm_whole_accumulative_distance * np.ones((len(x_axis), 1)) / 5,
np.zeros((len(x_axis), 1)),
)
),
dxfattribs={"color": 5}, # 蓝色
)
dm_msp.add_polyline2d(
2024-01-03 09:23:35 +08:00
right_line,
dxfattribs={"color": 5},
) # 蓝色
# 树的线
2022-11-30 23:03:08 +08:00
# 考虑用最高边线的情况
2024-01-03 09:23:35 +08:00
tree_line = [
(
x_axis[i] / 5 / zoom_factor,
(
np.max(
(
center_elevation[i],
left_elevation[i],
right_elevation[i],
)
)
+ self._tree_height
)
* 2
/ zoom_factor,
)
for i in range(len(center_elevation))
]
if self._tree_height > 0:
2024-01-03 09:23:35 +08:00
dm_whole_msp.add_polyline2d(
np.array(tree_line)
+ np.hstack(
(
dm_whole_accumulative_distance
* np.ones((len(x_axis), 1))
/ 5,
np.zeros((len(x_axis), 1)),
)
),
dxfattribs={"color": 5},
)
2024-01-03 09:23:35 +08:00
dm_msp.add_polyline2d(tree_line, dxfattribs={"color": 5})
dm_whole_accumulative_distance += x_axis[-1]
os.makedirs(out_dxf_file_dir, exist_ok=True)
ezdxf.options.set(
"odafc-addon",
"win_exec_path",
"d:/ProgramFiles/ODAFileConverter/ODAFileConverter.exe",
)
from ezdxf.addons.odafc import export_dwg
2024-01-30 01:59:48 +08:00
# export_dwg(
# dm_doc,
# f"{out_dxf_file_dir}/D{100+int(start_point_name[1:])}.dwg",
# replace=True,
# ) # 写断面文件
dm_doc.saveas(f"{out_dxf_file_dir}/D{100+int(start_point_name[1:])}.dxf",)
dxfs.append(f"{out_dxf_file_dir}/D{100+int(start_point_name[1:])}.dxf")
# 写Z文件
2024-01-03 09:23:35 +08:00
z_file_path = f"{out_dxf_file_dir}/ZD{100+int(start_point_name[1:])}"
with open(z_file_path, "w") as z_file:
z_file.write("0 ")
z_file.write(f"{center_elevation[0]*2} ")
z_file.write("0 ")
z_file.write("0 ")
z_file.write(f"{center_elevation[0]*2-50}")
2024-01-03 09:23:35 +08:00
if foo == 0:
# copy file a to dist b
shutil.copy(z_file_path, f"{out_dxf_file_dir}/ZDA")
2022-11-30 21:09:12 +08:00
# 写平面文件
2022-11-30 20:53:49 +08:00
plate_msp.add_polyline2d(
line_coordination[:, 0:2],
dxfattribs={"color": 1},
) # 红色
plate_msp.add_polyline2d(
line_coordination[:, 2:4],
)
plate_msp.add_polyline2d(
line_coordination[:, 4:6],
dxfattribs={"color": 5},
) # 蓝色
mileage = [0]
start_point = line_coordination[0, 2:4]
for bar in line_coordination[1:, 2:4]:
mileage.append(round(dem_utils.distance(start_point, bar)))
mileage = np.array(mileage)
start_num = 4000 + int(start_point_name[1:])
segments.append(start_num)
end_num = 4000 + int(end_point_name[1:])
if foo == len(excel_pfs) - 2:
segments.append(end_num)
d_file = DFile(
start_num,
end_num,
mileage,
center_elevation,
left_elevation,
right_elevation,
2022-11-30 20:53:49 +08:00
self._tree_height,
)
d_file.save(out_dxf_file_dir)
self._copy_db_file()
tower_start_num = toml_dict["parameter"]["tower_number_start"]
control_file_template_path = toml_dict["parameter"][
"control_file_template_path"
]
c_file = ControlFile(
segments, tower_start_num, control_file_template_path, out_dxf_file_dir
)
c_file.save()
##################
##################
# 写nwed
section_name = f"{100+int(start_point_name[1:])}"
licheng = f"{mileage[-1]}"
remarks_start = f"{int(start_point_name[1:])}"
pole_name_start = f"{start_num}"
remarks_end = f"{int(end_point_name[1:])}"
pole_name_end = f"{end_num}"
toml_dict = self._toml_dict
side_width = toml_dict["parameter"]["side_width"] # 边线宽度
verticalExtent2 = f"{side_width}"
mid_vec_list = list(map(lambda x: [f"{x[0]*5}", f"{x[1]/2}"], mid_line))
right_vec_list = list(map(lambda x: [f"{x[0]*5}", f"{x[1]/2}"], right_line))
left_vec_list = list(map(lambda x: [f"{x[0]*5}", f"{x[1]/2}"], left_line))
nwed = Nwed(
section_name,
licheng,
remarks_start,
pole_name_start,
remarks_end,
pole_name_end,
verticalExtent2,
mid_vec_list,
right_vec_list,
left_vec_list,
)
nwed.write(
f"{out_dxf_file_dir}/{100+int(start_point_name[1:])}.nwed",
)
2024-01-03 09:23:35 +08:00
# 写整个断面文件
2024-01-30 01:59:48 +08:00
# export_dwg(
# dm_whole_doc,
# f"{out_dxf_file_dir}/DA.dwg",
# replace=True,
# )
dm_whole_doc.saveas(f"{out_dxf_file_dir}/DA.dxf")
# cad.convert_dxf_to_dwg([f"{out_dxf_file_dir}/DA.dxf"])
dxfs.append(f"{out_dxf_file_dir}/DA.dxf")
2024-01-03 09:23:35 +08:00
# 写平面文件
2022-11-30 20:53:49 +08:00
plate_doc.saveas(f"{out_dxf_file_dir}/plate.dxf")
2024-01-30 01:59:48 +08:00
dxfs.append(f"{out_dxf_file_dir}/plate.dxf")
cad.convert_dxf_to_dwg(dxf_files=dxfs)
def get_elevation(self, site_x_y):
2021-01-17 20:05:01 +08:00
"""Get the elevation of given locations from DEM in GCS.
Parameters:
dem_gcs <osgeo.gdal.Dataset> -- The input DEM (in GCS).
site_latlng <numpy.ndarray> -- The latitude and longitude of given locations.
Return:
site_ele <numpy.ndarray> -- The elevation and other information of given locations.
"""
gdal_data = self._dataset
# gdal_band = gdal_data.GetRasterBand(1)
# nodataval = gdal_band.GetNoDataValue()
# if np.any(gdal_array == nodataval):
# gdal_array[gdal_array == nodataval] = np.nan
gt = gdal_data.GetGeoTransform()
# print("\nThe 6 GeoTransform parameters of DEM are:\n", gt)
N_site = site_x_y.shape[0]
Xgeo = site_x_y[:, 0]
Ygeo = site_x_y[:, 1]
2021-01-17 20:05:01 +08:00
site_ele = np.zeros(N_site)
for i in range(N_site):
# Note:
# Xgeo = gt[0] + Xpixel * gt[1] + Yline * gt[2]
# Ygeo = gt[3] + Xpixel * gt[4] + Yline * gt[5]
#
# Xpixel - Pixel/column of DEM
# Yline - Line/row of DEM
#
# Xgeo - Longitude
# Ygeo - Latitude
#
# [0] = Longitude of left-top pixel
# [3] = Latitude of left-top pixel
#
# [1] = + Pixel width
# [5] = - Pixel height
#
# [2] = 0 for north up DEM
# [4] = 0 for north up DEM
Xpixel = (Xgeo[i] - gt[0]) / gt[1]
Yline = (Ygeo[i] - gt[3]) / gt[5]
# 寻找左上左下右上右下4个点
2022-11-30 20:53:49 +08:00
lu_xy = np.array([math.floor(Xpixel), math.ceil(Yline)]) # 左上
ld_xy = np.array([math.floor(Xpixel), math.floor(Yline)]) # 左下
ru_xy = np.array([math.ceil(Xpixel), math.ceil(Yline)]) # 右上
rd_xy = np.array([math.ceil(Xpixel), math.floor(Yline)]) # 右下
lu_elevation = gdal_data.ReadAsArray(
int(lu_xy[0]), int(lu_xy[1]), 1, 1
).astype(float)
ld_elevation = gdal_data.ReadAsArray(
int(ld_xy[0]), int(ld_xy[1]), 1, 1
).astype(float)
ru_elevation = gdal_data.ReadAsArray(
int(ru_xy[0]), int(ru_xy[1]), 1, 1
).astype(float)
rd_elevation = gdal_data.ReadAsArray(
int(rd_xy[0]), int(rd_xy[1]), 1, 1
).astype(float)
2022-11-30 23:03:08 +08:00
# 依据https://blog.csdn.net/jameschen9051/article/details/109469228中的公司
point_z = (
2022-11-30 20:53:49 +08:00
lu_elevation[0]
* (
(1 - math.fabs(Xpixel - lu_xy[0]))
* (1 - math.fabs(Yline - lu_xy[1]))
)
+ ld_elevation[0]
* (
(1 - math.fabs(Xpixel - ld_xy[0]))
* (1 - math.fabs(Yline - ld_xy[1]))
)
+ ru_elevation[0]
* (
(1 - math.fabs(Xpixel - ru_xy[0]))
* (1 - math.fabs(Yline - ru_xy[1]))
)
+ rd_elevation[0]
* (
(1 - math.fabs(Xpixel - rd_xy[0]))
* (1 - math.fabs(Yline - rd_xy[1]))
)
)
site_ele[i] = point_z
2022-11-30 20:53:49 +08:00
pass
2021-01-17 20:05:01 +08:00
return site_ele
def to_line_coordination(self, point_x_s, point_y_s, point_x_e, point_y_e):
path_length = (
(point_x_s - point_x_e) ** 2 + (point_y_s - point_y_e) ** 2
) ** 0.5
dem_resolution = self._dem_resolution # dem的精度
2024-01-03 09:23:35 +08:00
# TODO:设定为5m 1个点。
# n = round(path_length / dem_resolution)
n = round(path_length / 5)
center_point_x = np.linspace(point_x_s, point_x_e, n, endpoint=True)
center_point_y = np.linspace(point_y_s, point_y_e, n, endpoint=True)
# 计算左右边线
# 计算角度
toml_dict = self._toml_dict
side_width = toml_dict["parameter"]["side_width"] # 边线宽度
_line_angel = math.atan((point_y_e - point_y_s) / (point_x_e - point_x_s))
if point_x_e < point_x_s:
2023-02-20 21:09:26 +08:00
line_angel = _line_angel + math.pi
else:
line_angel = _line_angel
left_offset_x = side_width * math.cos(line_angel + math.pi / 2)
left_offset_y = side_width * math.sin(line_angel + math.pi / 2)
left_offset_point_x = center_point_x + left_offset_x
left_offset_point_y = center_point_y + left_offset_y
right_offset_point_x = center_point_x - left_offset_x # 向左偏移和向右偏移正好是相反的
right_offset_point_y = center_point_y - left_offset_y
r = np.array(
[
np.array(left_offset_point_x),
np.array(left_offset_point_y),
center_point_x,
center_point_y,
np.array(right_offset_point_x),
np.array(right_offset_point_y),
]
).T
return r
def _read_path_file(self):
toml_dict = self._toml_dict
path_file = toml_dict["parameter"]["path_file"]
excel_pds = pd.read_excel(path_file, header=None)
return excel_pds
def _copy_db_file(self):
toml_dict = self._toml_dict
db_file_dir = toml_dict["parameter"]["db_file_dir"]
out_dxf_file_dir = toml_dict["parameter"]["out_dxf_file_dir"]
shutil.copy(f"{db_file_dir}/Tower.db", f"{out_dxf_file_dir}/Tower.db")
shutil.copy(f"{db_file_dir}/ATMOS.db", f"{out_dxf_file_dir}/ATMOS.db")
shutil.copy(f"{db_file_dir}/Fit.db", f"{out_dxf_file_dir}/Fit.db")
shutil.copy(f"{db_file_dir}/RULE.db", f"{out_dxf_file_dir}/RULE.db")
shutil.copy(f"{db_file_dir}/WIRE.db", f"{out_dxf_file_dir}/WIRE.db")