增加了基于周围几个点差值求高程的功能。
This commit is contained in:
parent
d41c0615b2
commit
e56399cccb
106
dem.py
106
dem.py
|
|
@ -1,3 +1,6 @@
|
|||
import math
|
||||
|
||||
import ezdxf
|
||||
from osgeo import gdal
|
||||
import numpy as np
|
||||
|
||||
|
|
@ -50,8 +53,8 @@ class Dem:
|
|||
# print("\nThe 6 GeoTransform parameters of DEM are:\n", gt)
|
||||
|
||||
N_site = site_latlng.shape[0]
|
||||
Xgeo = site_latlng[:, 1] # longitude
|
||||
Ygeo = site_latlng[:, 0] # latitude
|
||||
Xgeo = site_latlng[:, 0]
|
||||
Ygeo = site_latlng[:, 1]
|
||||
site_ele = np.zeros(N_site)
|
||||
for i in range(N_site):
|
||||
# Note:
|
||||
|
|
@ -72,7 +75,100 @@ class Dem:
|
|||
#
|
||||
# [2] = 0 for north up DEM
|
||||
# [4] = 0 for north up DEM
|
||||
Xpixel = int(round((Xgeo[i] - gt[0]) / gt[1]))
|
||||
Yline = int(round((Ygeo[i] - gt[3]) / gt[5]))
|
||||
site_ele[i] = gdal_data.ReadAsArray(Xpixel, Yline, 1, 1).astype(np.float)
|
||||
Xpixel = (Xgeo[i] - gt[0]) / gt[1]
|
||||
Yline = (Ygeo[i] - gt[3]) / gt[5]
|
||||
# 寻找左上,左下,右上,右下4个点
|
||||
lu_xy = np.array([math.floor(Xpixel), math.floor(Yline)]) # 左上
|
||||
ld_xy = np.array([math.floor(Xpixel), math.ceil(Yline)]) # 左下
|
||||
ru_xy = np.array([math.ceil(Xpixel), math.floor(Yline)]) # 右上
|
||||
rd_xy = np.array([math.ceil(Xpixel), math.ceil(Yline)]) # 右下
|
||||
lu_elevation = gdal_data.ReadAsArray(
|
||||
int(lu_xy[0]), int(lu_xy[1]), 1, 1
|
||||
).astype(float)
|
||||
ld_elevation = gdal_data.ReadAsArray(
|
||||
int(ld_xy[0]), int(ld_xy[1]), 1, 1
|
||||
).astype(float)
|
||||
ru_elevation = gdal_data.ReadAsArray(
|
||||
int(ru_xy[0]), int(ru_xy[1]), 1, 1
|
||||
).astype(float)
|
||||
rd_elevation = gdal_data.ReadAsArray(
|
||||
int(rd_xy[0]), int(rd_xy[1]), 1, 1
|
||||
).astype(float)
|
||||
# delta_x = (Xpixel - ld_xy[0]) / 1 # 距离是1
|
||||
# delta_y = (ld_xy[1]-Yline) / 1
|
||||
# site_ele[i] = (
|
||||
# ld_elevation
|
||||
# + (lu_elevation - ld_elevation) * delta_y
|
||||
# + (rd_elevation - ld_elevation) * delta_x
|
||||
# + (ld_elevation - lu_elevation + ru_elevation - rd_elevation)
|
||||
# * delta_x
|
||||
# * delta_y
|
||||
# )
|
||||
|
||||
# 通过空间平面方程乃拟合Z值
|
||||
equa_a = np.array(
|
||||
[
|
||||
[lu_xy[0], lu_xy[0] * lu_xy[1], lu_xy[1], 1],
|
||||
[ld_xy[0], ld_xy[0] * ld_xy[1], ld_xy[1], 1],
|
||||
[ru_xy[0], ru_xy[0] * ru_xy[1], ru_xy[1], 1],
|
||||
[rd_xy[0], rd_xy[0] * rd_xy[1], rd_xy[1], 1],
|
||||
]
|
||||
)
|
||||
equa_b = np.array(
|
||||
[lu_elevation[0], ld_elevation[0], ru_elevation[0], rd_elevation[0]]
|
||||
)
|
||||
equa_c = np.linalg.solve(equa_a, equa_b)
|
||||
point_z = (
|
||||
Xpixel * equa_c[0]
|
||||
+ equa_c[1] * Xpixel * Yline
|
||||
+ equa_c[2] * Yline
|
||||
+ equa_c[3]
|
||||
)
|
||||
site_ele[i] = point_z
|
||||
print(f"row:{Yline} col:{Xpixel} elev:{site_ele[i]}")
|
||||
return site_ele
|
||||
|
||||
|
||||
def to_line_coordination(point_x_s, point_y_s, point_x_e, point_y_e):
|
||||
path_length = ((point_x_s - point_x_e) ** 2 + (point_y_s - point_y_e) ** 2) ** 0.5
|
||||
n = round(path_length / 1)
|
||||
point_x = np.linspace(point_x_s, point_x_e, n, endpoint=True)
|
||||
point_y = np.linspace(point_y_s, point_y_e, n, endpoint=True)
|
||||
r = np.array([point_x, point_y]).transpose()
|
||||
return r
|
||||
|
||||
|
||||
def distance(a, b):
|
||||
r = np.sum((a - b) ** 2) ** 0.5
|
||||
return r
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dem = Dem(r"e:\西北院\天都山750kV线路\天都山-妙岭卫片\ASC\tianmiaoN03-dem.tif")
|
||||
dem.get_dem_info(if_print=True)
|
||||
line_coordination = to_line_coordination(
|
||||
573284.886, 4104898.933, 574543.845, 4105825.047
|
||||
)
|
||||
elevation = dem.get_elevation(line_coordination)
|
||||
|
||||
# fdsfd = np.array([
|
||||
# [573284.886, 4104898.933],
|
||||
# [573286.584, 4104900.182],
|
||||
# [573288.281, 4104901.431],
|
||||
# [573289.979 , 4104902.68],
|
||||
# [573291.677 , 4104903.929],
|
||||
# [573293.374 , 4104905.178],
|
||||
#
|
||||
# ])
|
||||
# elevation = dem.get_elevation(elevation)
|
||||
doc = ezdxf.new(dxfversion="R2010")
|
||||
msp = doc.modelspace()
|
||||
x_axis = [0]
|
||||
cord_0 = line_coordination[0, :]
|
||||
for cord in line_coordination[1:]:
|
||||
x_axis.append(distance(cord, cord_0))
|
||||
msp.add_polyline2d(
|
||||
[(x_axis[i] / 5, elevation[i] * 2) for i in range(len(elevation))]
|
||||
)
|
||||
doc.saveas("d.dxf")
|
||||
print("Finished.")
|
||||
|
|
|
|||
Loading…
Reference in New Issue