重构了DEM模块,dem只有核心功能,无业务功能。

This commit is contained in:
n3040 2022-01-17 15:22:29 +08:00
parent abd0ca8aa7
commit bece894a0c
3 changed files with 131 additions and 88 deletions

205
dem.py
View File

@ -1,13 +1,23 @@
import math
import os
import tomli
import ezdxf
from ezdxf.tools.standards import linetypes
from osgeo import gdal
import numpy as np
import pandas as pd
import dem_utils
class Dem:
def __init__(self, filepath):
self._dataset = gdal.Open(filepath)
def __init__(self, toml_path):
with open(toml_path, "rb") as tf:
toml_dict = tomli.load(tf)
self._toml_dict = toml_dict
dem_file_path = toml_dict["parameter"]["dem_file_path"]
self._dataset = gdal.Open(dem_file_path)
def get_dem_info(self, if_print=False):
"""Get the information of DEM data.
@ -34,7 +44,64 @@ class Dem:
return dem_row, dem_col, dem_band, dem_gt, dem_proj
def get_elevation(self, site_latlng):
def write_dxf(self):
excel_pfs = self._read_path_file()
for foo in range(len(excel_pfs) - 1):
start_point_name: str = excel_pfs.iloc[foo, 0]
end_point_name: str = excel_pfs.iloc[foo + 1, 0]
point_x_s = float(excel_pfs.iloc[foo, 1])
point_y_s = float(excel_pfs.iloc[foo, 2])
point_x_e = float(excel_pfs.iloc[foo + 1, 1])
point_y_e = float(excel_pfs.iloc[foo + 1, 2])
line_coordination = self.to_line_coordination(
point_x_s, point_y_s, point_x_e, point_y_e
)
left_elevation = self.get_elevation(line_coordination[:, 0:2])
center_elevation = self.get_elevation(line_coordination[:, 2:4])
right_elevation = self.get_elevation(line_coordination[:, 4:6])
doc = ezdxf.new(dxfversion="R2010")
# 设置线形
# for name, desc, pattern in linetypes():
# if name not in doc.linetypes:
# doc.linetypes.add(
# name=name,
# pattern=pattern,
# description=desc,
# )
msp = doc.modelspace()
x_axis = [0]
cord_0 = line_coordination[0, 2:4] # 取中线的
for cord in line_coordination[1:, 2:4]:
x_axis.append(dem_utils.distance(cord, cord_0))
msp.add_polyline2d(
[
(x_axis[i] / 5, left_elevation[i] * 2)
for i in range(len(left_elevation))
],
dxfattribs={"color": 1},
) # 红色
msp.add_polyline2d(
[
(x_axis[i] / 5, center_elevation[i] * 2)
for i in range(len(center_elevation))
]
)
msp.add_polyline2d(
[
(x_axis[i] / 5, right_elevation[i] * 2)
for i in range(len(right_elevation))
],
dxfattribs={"color": 5},
) # 蓝色
toml_dict = self._toml_dict
out_dxf_file_dir = toml_dict["parameter"]["out_dxf_file_dir"]
os.makedirs(out_dxf_file_dir, exist_ok=True)
dem_prefix = toml_dict["parameter"]["dem_prefix"]
doc.saveas(
f"{out_dxf_file_dir}/{dem_prefix}{start_point_name}_{end_point_name}.dxf"
)
def get_elevation(self, site_x_y):
"""Get the elevation of given locations from DEM in GCS.
Parameters:
dem_gcs <osgeo.gdal.Dataset> -- The input DEM (in GCS).
@ -52,9 +119,9 @@ class Dem:
gt = gdal_data.GetGeoTransform()
# print("\nThe 6 GeoTransform parameters of DEM are:\n", gt)
N_site = site_latlng.shape[0]
Xgeo = site_latlng[:, 0]
Ygeo = site_latlng[:, 1]
N_site = site_x_y.shape[0]
Xgeo = site_x_y[:, 0]
Ygeo = site_x_y[:, 1]
site_ele = np.zeros(N_site)
for i in range(N_site):
# Note:
@ -105,7 +172,7 @@ class Dem:
# * delta_y
# )
# 通过空间平面方程拟合Z值 参考《数字高程模型教程》 汤国安,李发源,刘学军编著 p89
# 通过空间平面方程拟合Z值 参考《数字高程模型教程》 汤国安,李发源,刘学军编著 p89
equation_a = np.array(
[
[lu_xy[0], lu_xy[0] * lu_xy[1], lu_xy[1], 1],
@ -117,91 +184,53 @@ class Dem:
equation_b = np.array(
[lu_elevation[0], ld_elevation[0], ru_elevation[0], rd_elevation[0]]
)
equation = np.linalg.solve(equation_a, equation_b)
equation_c = np.linalg.solve(equation_a, equation_b)
point_z = (
Xpixel * equation[0]
+ equation[1] * Xpixel * Yline
+ equation[2] * Yline
+ equation[3]
Xpixel * equation_c[0]
+ equation_c[1] * Xpixel * Yline
+ equation_c[2] * Yline
+ equation_c[3]
)
site_ele[i] = point_z
print(f"row:{Yline} col:{Xpixel} elev:{site_ele[i]}")
return site_ele
def to_line_coordination(self, point_x_s, point_y_s, point_x_e, point_y_e):
path_length = (
(point_x_s - point_x_e) ** 2 + (point_y_s - point_y_e) ** 2
) ** 0.5
n = round(path_length / 1)
center_point_x = np.linspace(point_x_s, point_x_e, n, endpoint=True)
center_point_y = np.linspace(point_y_s, point_y_e, n, endpoint=True)
# 计算左右边线
# 计算角度
toml_dict = self._toml_dict
side_width = toml_dict["parameter"]["side_width"] # 边线宽度
_line_angel = math.atan((point_y_e - point_y_s) / (point_x_e - point_x_s))
if point_x_e < point_x_s:
line_angel = _line_angel + math.pi / 2
else:
line_angel = _line_angel
left_offset_x = side_width * math.cos(line_angel + math.pi / 2)
left_offset_y = side_width * math.sin(line_angel + math.pi / 2)
left_offset_point_x = center_point_x + left_offset_x
left_offset_point_y = center_point_y + left_offset_y
right_offset_point_x = center_point_x - left_offset_x # 向左偏移和向右偏移正好是相反的
right_offset_point_y = center_point_y - left_offset_y
r = np.array(
[
np.array(left_offset_point_x),
np.array(left_offset_point_y),
center_point_x,
center_point_y,
np.array(right_offset_point_x),
np.array(right_offset_point_y),
]
).T
return r
def to_line_coordination(point_x_s, point_y_s, point_x_e, point_y_e):
path_length = ((point_x_s - point_x_e) ** 2 + (point_y_s - point_y_e) ** 2) ** 0.5
n = round(path_length / 1)
center_point_x = np.linspace(point_x_s, point_x_e, n, endpoint=True)
center_point_y = np.linspace(point_y_s, point_y_e, n, endpoint=True)
# 计算左右边线
# 计算角度
side_width = 20 # 边线宽度
_line_angel = math.atan((point_y_e - point_y_s) / (point_x_e - point_x_s))
if point_x_e < point_x_s:
line_angel = _line_angel + math.pi / 2
else:
line_angel = _line_angel
left_offset_x = side_width * math.cos(line_angel + math.pi / 2)
left_offset_y = side_width * math.sin(line_angel + math.pi / 2)
left_offset_point_x = center_point_x + left_offset_x
left_offset_point_y = center_point_y + left_offset_y
right_offset_point_x = center_point_x - left_offset_x # 向左偏移和向右偏移正好是相反的
right_offset_point_y = center_point_y - left_offset_y
# r = np.concatenate(
# (
# np.array(left_offset_point_x),
# np.array(left_offset_point_y),
# center_point_x,
# center_point_y,
# np.array(right_offset_point_x),
# np.array(right_offset_point_y),
# ),
# axis=0,
# )
r = np.array(
[
np.array(left_offset_point_x),
np.array(left_offset_point_y),
center_point_x,
center_point_y,
np.array(right_offset_point_x),
np.array(right_offset_point_y),
]
).T
return r
def distance(a, b):
r = np.sum((a - b) ** 2) ** 0.5
return r
if __name__ == "__main__":
dem = Dem(r"d:\工程\金上线\DEM\四川-金上105-CGCS2000.tif")
dem.get_dem_info(if_print=True)
line_coordination = to_line_coordination(
450077.359310936, 3304781.49970352, 451068.154964846, 3304604.32630216
)
left_elevation = dem.get_elevation(line_coordination[:, 0:2])
center_elevation = dem.get_elevation(line_coordination[:, 2:4])
right_elevation = dem.get_elevation(line_coordination[:, 4:6])
doc = ezdxf.new(dxfversion="R2010")
msp = doc.modelspace()
x_axis = [0]
cord_0 = line_coordination[0, :]
for cord in line_coordination[1:]:
x_axis.append(distance(cord, cord_0))
msp.add_polyline2d(
[(x_axis[i] / 5, left_elevation[i] * 2) for i in range(len(left_elevation))],
dxfattribs={"color": 1},
) # 红色
msp.add_polyline2d(
[(x_axis[i] / 5, center_elevation[i] * 2) for i in range(len(center_elevation))]
)
msp.add_polyline2d(
[(x_axis[i] / 5, right_elevation[i] * 2) for i in range(len(right_elevation))],
dxfattribs={"color": 5},
) # 蓝色
doc.saveas("d.dxf")
print("Finished.")
def _read_path_file(self):
toml_dict = self._toml_dict
path_file = toml_dict["parameter"]["path_file"]
excel_pds = pd.read_excel(path_file)
return excel_pds

6
dem_utils.py Normal file
View File

@ -0,0 +1,6 @@
import numpy as np
def distance(a, b):
r = np.sum((a - b) ** 2) ** 0.5
return r

8
main_dem.py Normal file
View File

@ -0,0 +1,8 @@
from dem_utils import distance
from dem import Dem
import ezdxf
if __name__ == "__main__":
dem = Dem('db.toml')
dem.get_dem_info(if_print=True)
dem.write_dxf()
print("Finished.")