考虑了高塔情况。

This commit is contained in:
facat 2021-09-11 12:25:01 +08:00
parent 94c4878b1b
commit 5cbf463ab0
1 changed files with 63 additions and 44 deletions

107
main.py
View File

@ -3,6 +3,35 @@ import ezdxf
import numpy as np
class Draw:
def __init__(self):
self._doc = ezdxf.new(dxfversion="R2010")
self._doc.layers.add("EGM", color=2)
def draw(self, i_curt, u_ph, h_gav, h_cav, dgc):
doc = self._doc
msp = doc.modelspace()
rs = rs_fun(i_curt)
rc = rc_fun(i_curt, u_ph)
rg = rg_fun(i_curt, h_cav)
msp.add_circle((0, h_gav), rs)
msp.add_line((0, 0), (0, h_gav)) # 地线
msp.add_circle((dgc, h_cav), rc)
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
msp.add_line((0, h_gav), (dgc, h_cav))
msp.add_line((0, rg), (200, rg))
# 计算圆交点
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
msp.add_line((0, h_gav), circle_intersection) # 地线
msp.add_line((dgc, h_cav), circle_intersection) # 导线
circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
def save(self):
doc = self._doc
doc.saveas("egm.dxf")
# 圆交点
def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
# x = Symbol('x', real=True)
@ -45,26 +74,6 @@ def solve_circle_line_intersection(rc, rg, hcav, dgc):
return [r, rg]
def draw(rs, rc, rg, h_gav, h_cav, dgc):
doc = ezdxf.new(dxfversion="R2010")
doc.layers.add("EGM", color=2)
msp = doc.modelspace()
msp.add_circle((0, h_gav), rs)
msp.add_line((0, 0), (0, h_gav)) # 地线
msp.add_circle((dgc, h_cav), rc)
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
msp.add_line((0, h_gav), (dgc, h_cav))
msp.add_line((0, rg), (200, rg))
# 计算圆交点
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
msp.add_line((0, h_gav), circle_intersection) # 地线
msp.add_line((dgc, h_cav), circle_intersection) # 导线
circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
doc.saveas("egm.dxf")
solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
def min_i(string_len, u_ph):
u_50 = 530 * string_len + 35
z_0 = 300 # 雷电波阻抗
@ -74,7 +83,7 @@ def min_i(string_len, u_ph):
def thunder_density(i): # l雷电流幅值密度函数
r = -10 ** (-i / 44) * math.log(10) * (-1 / 44)
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44)
return r
@ -113,10 +122,14 @@ def intersection_angel(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度
np_circle_line_intersection = np.array(circle_line_intersection)
theta1_line = np_circle_line_intersection - np.array([dgc, h_cav])
theta1 = math.atan(theta1_line[1] / theta1_line[0])
if theta1 < 0:
# print(f"θ_1角度为负数{theta1:.4f},人为设置为0")
theta1 = 0
return np.array([theta1, theta2])
def bd_area(i_curt, u_ph, theta1, theta2): # 暴露弧的投影面积
def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
theta1, theta2 = intersection_angel(dgc, h_gav, h_cav, i_curt, u_ph)
rc = rc_fun(i_curt, u_ph)
# 暂时不考虑雷电入射角的影响
r = (math.cos(theta1) - math.cos(theta2)) * rc
@ -129,12 +142,12 @@ def bd_area(i_curt, u_ph, theta1, theta2): # 暴露弧的投影面积
def egm():
u_ph = 750 / 1.732 # 运行相电压
h_cav = 60 # 导线对地平均高
h_gav = h_cav + 9.5 + 7.2
dgc = 2
h_cav = 160 # 导线对地平均高
h_gav = h_cav + 9.5 + 2.2
dgc = 2 # 导地线水平距离
# 迭代法计算最大电流
i_max = 0
_min_i = 30 # 尝试的最小电流
_min_i = 20 # 尝试的最小电流
_max_i = 80 # 尝试的最大电流
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.01)): # 雷电流
print(f"尝试计算电流为{i_bar:.2f}")
@ -158,27 +171,33 @@ def egm():
)
** 0.5
) # 计算两圆交点和地面直线交点的最小距离
if min_distance_intersection < 0.01:
i_max = i_bar
draw(rs, rc, rg, h_gav, h_cav, dgc)
i_max = i_bar
if min_distance_intersection < 0.1:
break
print(f"最大电流为{i_max:.2f}")
i_min = min_i(6.78, 750 / 1.732)
cad = Draw()
cad.draw(i_min, u_ph, h_gav, h_cav, dgc)
cad.draw(i_max, u_ph, h_gav, h_cav, dgc)
cad.save()
if abs(i_max - _max_i) < 1e-5:
print("无法找到最大电流,可能是杆塔较高。")
i_max = 300
print(f"最大电流设置为自然界最大电流{i_max}kA")
print(f"最大电流为{i_max:.2f}")
print(f"最小电流为{i_min:.2f}")
if i_min > i_max:
print("最大电流小于最小电流,没有暴露弧,程序结束。")
return
# 开始积分
curt_fineness = 0.1 # 电流积分细度
curt_segment_n = int((i_max - i_min) / curt_fineness)
d_curt = (i_max - i_min) / curt_segment_n
curt_fineness = 0.001 # 电流积分细度
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
calculus = 0
for curt in np.linspace(i_min, i_max, curt_segment_n):
cal_thyta_first = intersection_angel(dgc, h_gav, h_cav, curt, u_ph)
cal_bd_first = bd_area(curt, u_ph, cal_thyta_first[0], cal_thyta_first[1])
cal_thyta_second = intersection_angel(dgc, h_gav, h_cav, curt + d_curt, u_ph)
cal_bd_second = bd_area(
curt + d_curt, u_ph, cal_thyta_second[0], cal_thyta_second[1]
)
cal_thunder_density_first = thunder_density(curt)
cal_thunder_density_second = thunder_density(curt + d_curt)
i_curt_samples, d_curt = np.linspace(i_min, i_max, curt_segment_n + 1, retstep=True)
for i_curt in i_curt_samples:
cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
cal_thunder_density_first = thunder_density(i_curt)
cal_thunder_density_second = thunder_density(i_curt + d_curt)
calculus += (
(
cal_bd_first * cal_thunder_density_first
@ -187,8 +206,8 @@ def egm():
/ 2
* d_curt
)
n_sf=2*2.7/10*calculus
print(f'跳闸率是{n_sf}')
n_sf = 2 * 2.7 / 10 * calculus # 调整率
print(f"跳闸率是{n_sf:.6}")
# draw(rs, rc, rg, h_gav, h_cav, dgc)