考虑了高塔情况。
This commit is contained in:
parent
94c4878b1b
commit
5cbf463ab0
107
main.py
107
main.py
|
|
@ -3,6 +3,35 @@ import ezdxf
|
|||
import numpy as np
|
||||
|
||||
|
||||
class Draw:
|
||||
def __init__(self):
|
||||
self._doc = ezdxf.new(dxfversion="R2010")
|
||||
self._doc.layers.add("EGM", color=2)
|
||||
|
||||
def draw(self, i_curt, u_ph, h_gav, h_cav, dgc):
|
||||
doc = self._doc
|
||||
msp = doc.modelspace()
|
||||
rs = rs_fun(i_curt)
|
||||
rc = rc_fun(i_curt, u_ph)
|
||||
rg = rg_fun(i_curt, h_cav)
|
||||
msp.add_circle((0, h_gav), rs)
|
||||
msp.add_line((0, 0), (0, h_gav)) # 地线
|
||||
msp.add_circle((dgc, h_cav), rc)
|
||||
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
|
||||
msp.add_line((0, h_gav), (dgc, h_cav))
|
||||
msp.add_line((0, rg), (200, rg))
|
||||
# 计算圆交点
|
||||
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||
msp.add_line((0, h_gav), circle_intersection) # 地线
|
||||
msp.add_line((dgc, h_cav), circle_intersection) # 导线
|
||||
circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
|
||||
msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
|
||||
|
||||
def save(self):
|
||||
doc = self._doc
|
||||
doc.saveas("egm.dxf")
|
||||
|
||||
|
||||
# 圆交点
|
||||
def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
|
||||
# x = Symbol('x', real=True)
|
||||
|
|
@ -45,26 +74,6 @@ def solve_circle_line_intersection(rc, rg, hcav, dgc):
|
|||
return [r, rg]
|
||||
|
||||
|
||||
def draw(rs, rc, rg, h_gav, h_cav, dgc):
|
||||
doc = ezdxf.new(dxfversion="R2010")
|
||||
doc.layers.add("EGM", color=2)
|
||||
msp = doc.modelspace()
|
||||
msp.add_circle((0, h_gav), rs)
|
||||
msp.add_line((0, 0), (0, h_gav)) # 地线
|
||||
msp.add_circle((dgc, h_cav), rc)
|
||||
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
|
||||
msp.add_line((0, h_gav), (dgc, h_cav))
|
||||
msp.add_line((0, rg), (200, rg))
|
||||
# 计算圆交点
|
||||
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||
msp.add_line((0, h_gav), circle_intersection) # 地线
|
||||
msp.add_line((dgc, h_cav), circle_intersection) # 导线
|
||||
circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
|
||||
msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
|
||||
doc.saveas("egm.dxf")
|
||||
solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||
|
||||
|
||||
def min_i(string_len, u_ph):
|
||||
u_50 = 530 * string_len + 35
|
||||
z_0 = 300 # 雷电波阻抗
|
||||
|
|
@ -74,7 +83,7 @@ def min_i(string_len, u_ph):
|
|||
|
||||
|
||||
def thunder_density(i): # l雷电流幅值密度函数
|
||||
r = -10 ** (-i / 44) * math.log(10) * (-1 / 44)
|
||||
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44)
|
||||
return r
|
||||
|
||||
|
||||
|
|
@ -113,10 +122,14 @@ def intersection_angel(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度
|
|||
np_circle_line_intersection = np.array(circle_line_intersection)
|
||||
theta1_line = np_circle_line_intersection - np.array([dgc, h_cav])
|
||||
theta1 = math.atan(theta1_line[1] / theta1_line[0])
|
||||
if theta1 < 0:
|
||||
# print(f"θ_1角度为负数{theta1:.4f},人为设置为0")
|
||||
theta1 = 0
|
||||
return np.array([theta1, theta2])
|
||||
|
||||
|
||||
def bd_area(i_curt, u_ph, theta1, theta2): # 暴露弧的投影面积
|
||||
def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
|
||||
theta1, theta2 = intersection_angel(dgc, h_gav, h_cav, i_curt, u_ph)
|
||||
rc = rc_fun(i_curt, u_ph)
|
||||
# 暂时不考虑雷电入射角的影响
|
||||
r = (math.cos(theta1) - math.cos(theta2)) * rc
|
||||
|
|
@ -129,12 +142,12 @@ def bd_area(i_curt, u_ph, theta1, theta2): # 暴露弧的投影面积
|
|||
|
||||
def egm():
|
||||
u_ph = 750 / 1.732 # 运行相电压
|
||||
h_cav = 60 # 导线对地平均高
|
||||
h_gav = h_cav + 9.5 + 7.2
|
||||
dgc = 2
|
||||
h_cav = 160 # 导线对地平均高
|
||||
h_gav = h_cav + 9.5 + 2.2
|
||||
dgc = 2 # 导地线水平距离
|
||||
# 迭代法计算最大电流
|
||||
i_max = 0
|
||||
_min_i = 30 # 尝试的最小电流
|
||||
_min_i = 20 # 尝试的最小电流
|
||||
_max_i = 80 # 尝试的最大电流
|
||||
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.01)): # 雷电流
|
||||
print(f"尝试计算电流为{i_bar:.2f}")
|
||||
|
|
@ -158,27 +171,33 @@ def egm():
|
|||
)
|
||||
** 0.5
|
||||
) # 计算两圆交点和地面直线交点的最小距离
|
||||
if min_distance_intersection < 0.01:
|
||||
i_max = i_bar
|
||||
draw(rs, rc, rg, h_gav, h_cav, dgc)
|
||||
i_max = i_bar
|
||||
if min_distance_intersection < 0.1:
|
||||
break
|
||||
print(f"最大电流为{i_max:.2f}")
|
||||
i_min = min_i(6.78, 750 / 1.732)
|
||||
cad = Draw()
|
||||
cad.draw(i_min, u_ph, h_gav, h_cav, dgc)
|
||||
cad.draw(i_max, u_ph, h_gav, h_cav, dgc)
|
||||
cad.save()
|
||||
if abs(i_max - _max_i) < 1e-5:
|
||||
print("无法找到最大电流,可能是杆塔较高。")
|
||||
i_max = 300
|
||||
print(f"最大电流设置为自然界最大电流{i_max}kA")
|
||||
print(f"最大电流为{i_max:.2f}")
|
||||
print(f"最小电流为{i_min:.2f}")
|
||||
if i_min > i_max:
|
||||
print("最大电流小于最小电流,没有暴露弧,程序结束。")
|
||||
return
|
||||
# 开始积分
|
||||
curt_fineness = 0.1 # 电流积分细度
|
||||
curt_segment_n = int((i_max - i_min) / curt_fineness)
|
||||
d_curt = (i_max - i_min) / curt_segment_n
|
||||
curt_fineness = 0.001 # 电流积分细度
|
||||
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
||||
calculus = 0
|
||||
for curt in np.linspace(i_min, i_max, curt_segment_n):
|
||||
cal_thyta_first = intersection_angel(dgc, h_gav, h_cav, curt, u_ph)
|
||||
cal_bd_first = bd_area(curt, u_ph, cal_thyta_first[0], cal_thyta_first[1])
|
||||
cal_thyta_second = intersection_angel(dgc, h_gav, h_cav, curt + d_curt, u_ph)
|
||||
cal_bd_second = bd_area(
|
||||
curt + d_curt, u_ph, cal_thyta_second[0], cal_thyta_second[1]
|
||||
)
|
||||
cal_thunder_density_first = thunder_density(curt)
|
||||
cal_thunder_density_second = thunder_density(curt + d_curt)
|
||||
i_curt_samples, d_curt = np.linspace(i_min, i_max, curt_segment_n + 1, retstep=True)
|
||||
for i_curt in i_curt_samples:
|
||||
cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
||||
cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
|
||||
cal_thunder_density_first = thunder_density(i_curt)
|
||||
cal_thunder_density_second = thunder_density(i_curt + d_curt)
|
||||
calculus += (
|
||||
(
|
||||
cal_bd_first * cal_thunder_density_first
|
||||
|
|
@ -187,8 +206,8 @@ def egm():
|
|||
/ 2
|
||||
* d_curt
|
||||
)
|
||||
n_sf=2*2.7/10*calculus
|
||||
print(f'跳闸率是{n_sf}')
|
||||
n_sf = 2 * 2.7 / 10 * calculus # 调整率
|
||||
print(f"跳闸率是{n_sf:.6}")
|
||||
|
||||
# draw(rs, rc, rg, h_gav, h_cav, dgc)
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue