234 lines
9.7 KiB
Python
234 lines
9.7 KiB
Python
import numpy as np
|
||
|
||
from core import *
|
||
import timeit
|
||
|
||
|
||
def egm():
|
||
h_g_avr_sag = 11.67 * 2 / 3
|
||
h_c_avr_sag = 14.43 * 2 / 3
|
||
h_whole = 40 # 杆塔全高
|
||
voltage_n = 3 # 工作电压分成多少份来计算
|
||
td = 20 # 雷暴日
|
||
insulator_c_len = 6.8 # 串子绝缘长度
|
||
string_c_len = 9.2
|
||
string_g_len = 0.5
|
||
gc_x = [17.9, 17, 15, 17]
|
||
|
||
# 以后考虑地形角度,地面线
|
||
def ground_surface(x):
|
||
return 0
|
||
|
||
gc_y = [
|
||
h_whole - string_g_len - h_g_avr_sag, # 地线对地平均高
|
||
h_whole - string_c_len - h_c_avr_sag - 2.7, # 导线对地平均高
|
||
h_whole - string_c_len - h_c_avr_sag - 20, # 导线对地平均高
|
||
h_whole - string_c_len - h_c_avr_sag - 35.7, # 导线对地平均高
|
||
]
|
||
if len(gc_y) > 2: # 双回路
|
||
phase_n = 3 # 边相导线数量
|
||
else:
|
||
phase_n = 1
|
||
#########################################################
|
||
rg_type = None
|
||
# 以上是需要设置的参数
|
||
avr_n_sf = 0 # 考虑电压的影响计算的跳闸率
|
||
rg_x = None
|
||
rg_y = None
|
||
cad = Draw()
|
||
# 跳闸率 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13
|
||
ng = func_ng(td)
|
||
n_sf_phases = np.zeros((phase_n, voltage_n)) # 计算每一相的跳闸率
|
||
if np.any(np.array(gc_y) < 0):
|
||
print("导线可能掉地面了,程序退出。")
|
||
return 0
|
||
for phase_conductor_foo in range(phase_n):
|
||
exposed_curve_shielded = False
|
||
rs_x = gc_x[phase_conductor_foo]
|
||
rs_y = gc_y[phase_conductor_foo]
|
||
rc_x = gc_x[phase_conductor_foo + 1]
|
||
rc_y = gc_y[phase_conductor_foo + 1]
|
||
if phase_n == 1:
|
||
rg_type = "g"
|
||
if phase_n > 1: # 多回路
|
||
if phase_conductor_foo < 2:
|
||
rg_type = "c"
|
||
rg_x = gc_x[phase_conductor_foo + 2]
|
||
rg_y = gc_y[phase_conductor_foo + 2]
|
||
else:
|
||
rg_type = "g"
|
||
# TODO 保护角公式可能有问题,后面改
|
||
shield_angle = (
|
||
math.atan((rc_x - rs_x) / ((rs_y - rc_y) + string_c_len)) * 180 / math.pi
|
||
) # 保护角
|
||
print(f"保护角{shield_angle:.3f}°")
|
||
print(f"最低相防护标识{rg_type}")
|
||
for u_bar in range(voltage_n):
|
||
u_ph = (
|
||
math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732
|
||
) # 运行相电压
|
||
print(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV")
|
||
# 迭代法计算最大电流
|
||
i_max = 0
|
||
i_min = min_i(insulator_c_len, u_ph / 1.732)
|
||
_min_i = i_min # 尝试的最小电流
|
||
_max_i = 200 # 尝试的最大电流
|
||
# cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
|
||
for i_bar in np.linspace(
|
||
_min_i, _max_i, int((_max_i - _min_i) / 0.1)
|
||
): # 雷电流
|
||
# print(f"尝试计算电流为{i_bar:.2f}")
|
||
rs = rs_fun(i_bar)
|
||
rc = rc_fun(i_bar, u_ph)
|
||
rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
|
||
#######
|
||
# cccCount += 1
|
||
# if cccCount % 30 == 0:
|
||
# import core
|
||
#
|
||
# core.gMSP.add_circle((0, h_gav), rs)
|
||
# core.gMSP.add_circle(
|
||
# (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4}
|
||
# )
|
||
# core.gMSP.add_circle((dgc, h_cav), rc)
|
||
#######
|
||
rg_rc_circle_intersection = solve_circle_intersection(
|
||
rs, rc, rs_x, rs_y, rc_x, rc_y
|
||
)
|
||
i_max = i_bar
|
||
if not rg_rc_circle_intersection: # if circle_intersection is []
|
||
print("保护弧和暴露弧无交点,检查设置参数。")
|
||
continue
|
||
circle_rc_line_or_rg_intersection = None
|
||
if rg_type == "g":
|
||
circle_rc_line_or_rg_intersection = solve_circle_line_intersection(
|
||
rc, rg, rc_x, rc_y
|
||
)
|
||
elif rg_type == "c":
|
||
circle_rc_line_or_rg_intersection = solve_circle_intersection(
|
||
rg, rc, rg_x, rg_y, rc_x, rc_y
|
||
)
|
||
if not circle_rc_line_or_rg_intersection:
|
||
# 暴露弧和捕捉弧无交点
|
||
if rg_type == "g":
|
||
if rg > rc_y:
|
||
i_min = i_bar
|
||
print(f"捕捉弧在暴露弧之上,设置最小电流为{i_min:.2f}")
|
||
else:
|
||
print("暴露弧和捕捉弧无交点,检查设置参数。")
|
||
continue
|
||
else:
|
||
print("暴露弧和捕捉弧无交点,检查设置参数。")
|
||
continue
|
||
min_distance_intersection = (
|
||
np.sum(
|
||
(
|
||
np.array(rg_rc_circle_intersection)
|
||
- np.array(circle_rc_line_or_rg_intersection)
|
||
)
|
||
** 2
|
||
)
|
||
** 0.5
|
||
) # 计算两圆交点和地面直线交点的最小距离
|
||
if min_distance_intersection < 0.1:
|
||
break
|
||
# 判断是否以完全被保护
|
||
if rg_rc_circle_intersection[1] < circle_rc_line_or_rg_intersection[1]:
|
||
circle_rs_line_or_rg_intersection = None
|
||
if rg_type == "g":
|
||
circle_rs_line_or_rg_intersection = (
|
||
solve_circle_line_intersection(rs, rg, rs_x, rs_y)
|
||
)
|
||
if rg_type == "c":
|
||
circle_rs_line_or_rg_intersection = solve_circle_intersection(
|
||
rs, rg, rs_x, rs_y, rg_x, rg_y
|
||
)
|
||
# 判断与保护弧的交点是否在暴露弧外面
|
||
distance = (
|
||
np.sum(
|
||
(
|
||
np.array(circle_rs_line_or_rg_intersection)
|
||
- np.array([rc_x, rc_y])
|
||
)
|
||
** 2
|
||
)
|
||
** 0.5
|
||
)
|
||
if distance > rc:
|
||
print("暴露弧已经完全被屏蔽")
|
||
exposed_curve_shielded = True
|
||
break
|
||
# if phase_conductor_foo == 2:
|
||
cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
|
||
cad.draw(i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 6)
|
||
cad.saveas(f"egm{phase_conductor_foo+1}.dxf")
|
||
# 判断是否导线已经被完全保护
|
||
if abs(i_max - _max_i) < 1e-5:
|
||
print("无法找到最大电流,可能是杆塔较高。")
|
||
print(f"最大电流设置为自然界最大电流{i_max}kA")
|
||
print(f"最大电流为{i_max:.2f}")
|
||
print(f"最小电流为{i_min:.2f}")
|
||
if exposed_curve_shielded:
|
||
print("暴露弧已经完全被屏蔽,不会跳闸。")
|
||
continue
|
||
curt_fineness = 0.1 # 电流积分细度
|
||
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
|
||
print("最大电流小于最小电流,没有暴露弧。")
|
||
continue
|
||
# 开始积分
|
||
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
||
i_curt_samples, d_curt = np.linspace(
|
||
i_min, i_max, curt_segment_n + 1, retstep=True
|
||
)
|
||
bd_area_vec = np.vectorize(bd_area)
|
||
cal_bd_np = (
|
||
bd_area_vec(
|
||
i_curt_samples,
|
||
u_ph,
|
||
rc_x,
|
||
rc_y,
|
||
rs_x,
|
||
rs_y,
|
||
rg_x,
|
||
rg_y,
|
||
ground_surface,
|
||
rg_type,
|
||
)
|
||
* thunder_density(i_curt_samples)
|
||
)
|
||
calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt
|
||
# for i_curt in i_curt_samples[:-1]:
|
||
# cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
||
# cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
|
||
# cal_thunder_density_first = thunder_density(i_curt)
|
||
# cal_thunder_density_second = thunder_density(i_curt + d_curt)
|
||
# calculus += (
|
||
# (
|
||
# cal_bd_first * cal_thunder_density_first
|
||
# + cal_bd_second * cal_thunder_density_second
|
||
# )
|
||
# / 2
|
||
# * d_curt
|
||
# )
|
||
# if abs(calculus-0.05812740052770032)<1e-5:
|
||
# abc=123
|
||
# pass
|
||
n_sf = (2 * ng / 10 * calculus) * arc_possibility(750, insulator_c_len)
|
||
avr_n_sf += n_sf / voltage_n
|
||
n_sf_phases[phase_conductor_foo][u_bar] = n_sf
|
||
print(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
|
||
print(f"跳闸率是{avr_n_sf:.6f}")
|
||
print(f"不同相跳闸率是{np.mean(n_sf_phases,axis=1)}")
|
||
|
||
|
||
def speed():
|
||
a = 0
|
||
for bar in range(100000000):
|
||
a += bar
|
||
|
||
|
||
if __name__ == "__main__":
|
||
run_time = timeit.timeit("egm()", globals=globals(), number=1)
|
||
print(f"运行时间:{run_time:.2f}s")
|
||
print("Finished.")
|