主要更改: • 新增电缆规格配置支持 - Excel文件新增Cables工作表,支持自定义电缆参数(截面、载流量、电阻、成本) - 实现容量约束扫描算法(Capacitated Sweep),替代原有K-means方法 - 动态计算所需回路数量,确保每条回路的电缆载流量符合约束 • 代码增强 - main.py: 集成电缆规格参数,新增命令行参数支持(--clusters手动指定簇数) - generate_template.py: 模板文件新增Cables工作表,提供9种标准电缆规格(35mm²-400mm²) • 文档更新 - 新增project_context.md: 详细记录项目背景、算法逻辑、电气建模和当前状态 - 新增GEMINI.md: 开发者偏好配置 优化后的设计更符合实际工程需求,支持电缆容量约束,输出更准确的成本和损耗评估。
854 lines
34 KiB
Python
854 lines
34 KiB
Python
import numpy as np
|
||
import pandas as pd
|
||
import matplotlib.pyplot as plt
|
||
from scipy.spatial import distance_matrix
|
||
from scipy.sparse.csgraph import minimum_spanning_tree
|
||
from sklearn.cluster import KMeans
|
||
from collections import defaultdict
|
||
import networkx as nx
|
||
import math
|
||
import argparse
|
||
|
||
# 设置matplotlib支持中文显示
|
||
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei', 'SimHei', 'Arial']
|
||
plt.rcParams['axes.unicode_minus'] = False
|
||
|
||
# 1. 生成风电场数据(实际应用中替换为真实坐标)
|
||
def generate_wind_farm_data(n_turbines=30, seed=42, layout='random', spacing=800):
|
||
"""
|
||
生成模拟风电场数据
|
||
:param layout: 'random' (随机) 或 'grid' (规则行列)
|
||
:param spacing: 规则布局时的风机间距(m)
|
||
"""
|
||
np.random.seed(seed)
|
||
|
||
if layout == 'grid':
|
||
# 计算行列数 (尽量接近方形)
|
||
n_cols = int(np.ceil(np.sqrt(n_turbines)))
|
||
n_rows = int(np.ceil(n_turbines / n_cols))
|
||
|
||
x_coords = []
|
||
y_coords = []
|
||
|
||
for i in range(n_turbines):
|
||
row = i // n_cols
|
||
col = i % n_cols
|
||
# 添加微小抖动模拟海上定位误差(±1%)
|
||
jitter = spacing * 0.01
|
||
x = col * spacing + np.random.uniform(-jitter, jitter)
|
||
y = row * spacing + np.random.uniform(-jitter, jitter)
|
||
x_coords.append(x)
|
||
y_coords.append(y)
|
||
|
||
x_coords = np.array(x_coords)
|
||
y_coords = np.array(y_coords)
|
||
|
||
# 升压站位置:通常位于风电场边缘或中心,这里设为离岸侧(y负方向)中心
|
||
substation = np.array([[np.mean(x_coords), -spacing]])
|
||
|
||
else:
|
||
# 随机生成风机位置(扩大范围以适应更大容量)
|
||
x_coords = np.random.uniform(0, 2000, n_turbines)
|
||
y_coords = np.random.uniform(0, 2000, n_turbines)
|
||
# 升压站位置
|
||
substation = np.array([[0, 0]])
|
||
|
||
# 随机生成风机额定功率(海上风机通常更大,6-10MW)
|
||
power_ratings = np.random.uniform(6.0, 10.0, n_turbines) if layout == 'grid' else np.random.uniform(2.0, 5.0, n_turbines)
|
||
|
||
# 创建DataFrame
|
||
turbines = pd.DataFrame({
|
||
'id': range(n_turbines),
|
||
'x': x_coords,
|
||
'y': y_coords,
|
||
'power': power_ratings,
|
||
'cumulative_power': np.zeros(n_turbines) # 用于后续计算
|
||
})
|
||
|
||
return turbines, substation
|
||
|
||
# 1.5 从Excel加载数据
|
||
def load_data_from_excel(file_path):
|
||
"""
|
||
从Excel文件读取风机和升压站坐标,以及可选的电缆规格
|
||
Excel格式要求:
|
||
- Sheet 'Coordinates' (或第一个Sheet): Type (Turbine/Substation), ID, X, Y, Power
|
||
- Sheet 'Cables' (可选): CrossSection, Capacity, Resistance, Cost
|
||
"""
|
||
try:
|
||
xl = pd.ExcelFile(file_path)
|
||
|
||
# 读取坐标数据
|
||
if 'Coordinates' in xl.sheet_names:
|
||
df = pd.read_excel(xl, 'Coordinates')
|
||
else:
|
||
df = pd.read_excel(xl, 0)
|
||
|
||
# 标准化列名(忽略大小写)
|
||
df.columns = [c.capitalize() for c in df.columns]
|
||
|
||
required_cols = {'Type', 'X', 'Y', 'Power'}
|
||
if not required_cols.issubset(df.columns):
|
||
raise ValueError(f"Excel文件缺少必要列: {required_cols - set(df.columns)}")
|
||
|
||
# 提取升压站数据
|
||
substation_df = df[df['Type'].astype(str).str.lower() == 'substation']
|
||
if len(substation_df) == 0:
|
||
raise ValueError("未在文件中找到升压站(Substation)数据")
|
||
|
||
substation = substation_df[['X', 'Y']].values
|
||
|
||
# 提取风机数据
|
||
turbines_df = df[df['Type'].astype(str).str.lower() == 'turbine'].copy()
|
||
if len(turbines_df) == 0:
|
||
raise ValueError("未在文件中找到风机(Turbine)数据")
|
||
|
||
# 重置索引并整理格式
|
||
turbines = pd.DataFrame({
|
||
'id': range(len(turbines_df)),
|
||
'original_id': (turbines_df['Id'].values if 'Id' in turbines_df.columns else range(len(turbines_df))),
|
||
'x': turbines_df['X'].values,
|
||
'y': turbines_df['Y'].values,
|
||
'power': turbines_df['Power'].values,
|
||
'cumulative_power': np.zeros(len(turbines_df))
|
||
})
|
||
|
||
# 读取电缆数据 (如果存在)
|
||
cable_specs = None
|
||
if 'Cables' in xl.sheet_names:
|
||
cables_df = pd.read_excel(xl, 'Cables')
|
||
# 标准化列名
|
||
cables_df.columns = [c.replace(' ', '').capitalize() for c in cables_df.columns] # Handle 'Cross Section' vs 'CrossSection'
|
||
|
||
# 尝试匹配列
|
||
# 目标格式: (截面mm², 载流量A, 电阻Ω/km, 基准价格元/m)
|
||
specs = []
|
||
for _, row in cables_df.iterrows():
|
||
# 容错处理列名
|
||
section = row.get('Crosssection', row.get('Section', 0))
|
||
capacity = row.get('Capacity', row.get('Current', 0))
|
||
resistance = row.get('Resistance', 0)
|
||
cost = row.get('Cost', row.get('Price', 0))
|
||
|
||
if section > 0 and capacity > 0:
|
||
specs.append((section, capacity, resistance, cost))
|
||
|
||
if specs:
|
||
specs.sort(key=lambda x: x[1]) # 按载流量排序
|
||
cable_specs = specs
|
||
|
||
print(f"成功加载: {len(turbines)} 台风机, {len(substation)} 座升压站")
|
||
if cable_specs:
|
||
print(f"成功加载: {len(cable_specs)} 种电缆规格")
|
||
|
||
return turbines, substation, cable_specs
|
||
|
||
except Exception as e:
|
||
print(f"读取Excel文件失败: {str(e)}")
|
||
raise
|
||
|
||
# 2. 基于最小生成树(MST)的集电线路设计
|
||
def design_with_mst(turbines, substation):
|
||
"""使用最小生成树算法设计集电线路拓扑"""
|
||
# 合并风机和升压站数据
|
||
all_points = np.vstack([substation, turbines[['x', 'y']].values])
|
||
n_points = len(all_points)
|
||
|
||
# 计算距离矩阵
|
||
dist_matrix = distance_matrix(all_points, all_points)
|
||
|
||
# 计算最小生成树
|
||
mst = minimum_spanning_tree(dist_matrix).toarray()
|
||
|
||
# 提取连接关系
|
||
connections = []
|
||
for i in range(n_points):
|
||
for j in range(n_points):
|
||
if mst[i, j] > 0:
|
||
# 确定节点类型:0是升压站,1+是风机
|
||
source = 'substation' if i == 0 else f'turbine_{i-1}'
|
||
target = 'substation' if j == 0 else f'turbine_{j-1}'
|
||
connections.append((source, target, mst[i, j]))
|
||
|
||
return connections
|
||
|
||
# 3. 基于扇区聚类(改进版K-means)的集电线路设计
|
||
def design_with_kmeans(turbines, substation, n_clusters=3):
|
||
"""
|
||
使用基于角度的K-means聚类设计集电线路拓扑 (避免交叉)
|
||
原理:将风机按相对于升压站的角度划分扇区,确保出线不交叉
|
||
"""
|
||
# 准备风机坐标数据
|
||
turbine_coords = turbines[['x', 'y']].values
|
||
substation_coord = substation[0]
|
||
|
||
# 计算每台风机相对于升压站的角度和单位向量
|
||
# 使用 (cos, sin) 也就是单位向量进行聚类,可以完美处理 -180/+180 的周期性问题
|
||
dx = turbine_coords[:, 0] - substation_coord[0]
|
||
dy = turbine_coords[:, 1] - substation_coord[1]
|
||
|
||
# 归一化为单位向量 (对应角度特征)
|
||
magnitudes = np.sqrt(dx**2 + dy**2)
|
||
# 处理重合点避免除零
|
||
with np.errstate(divide='ignore', invalid='ignore'):
|
||
unit_x = dx / magnitudes
|
||
unit_y = dy / magnitudes
|
||
unit_x[magnitudes == 0] = 0
|
||
unit_y[magnitudes == 0] = 0
|
||
|
||
# 构建特征矩阵:主要基于角度(单位向量),可根据需要加入少量距离权重
|
||
# 如果纯粹按角度,设为单位向量即可
|
||
features = np.column_stack([unit_x, unit_y])
|
||
|
||
# 执行K-means聚类
|
||
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
|
||
turbines['cluster'] = kmeans.fit_predict(features)
|
||
|
||
# 为每个簇找到最佳连接点(离升压站最近的风机)
|
||
cluster_connection_points = {}
|
||
|
||
for cluster_id in range(n_clusters):
|
||
cluster_turbines = turbines[turbines['cluster'] == cluster_id]
|
||
if len(cluster_turbines) == 0:
|
||
continue
|
||
|
||
distances_to_substation = np.sqrt(
|
||
(cluster_turbines['x'] - substation_coord[0])**2 +
|
||
(cluster_turbines['y'] - substation_coord[1])**2
|
||
)
|
||
closest_idx = distances_to_substation.idxmin()
|
||
cluster_connection_points[cluster_id] = closest_idx
|
||
|
||
# 为每个簇内构建MST
|
||
cluster_connections = []
|
||
for cluster_id in range(n_clusters):
|
||
# 获取当前簇的风机
|
||
cluster_turbines = turbines[turbines['cluster'] == cluster_id]
|
||
if len(cluster_turbines) == 0:
|
||
continue
|
||
|
||
cluster_indices = cluster_turbines.index.tolist()
|
||
|
||
# 计算簇内距离矩阵
|
||
coords = cluster_turbines[['x', 'y']].values
|
||
dist_matrix = distance_matrix(coords, coords)
|
||
|
||
# 计算簇内MST
|
||
mst = minimum_spanning_tree(dist_matrix).toarray()
|
||
|
||
# 添加簇内连接
|
||
for i in range(len(cluster_indices)):
|
||
for j in range(len(cluster_indices)):
|
||
if mst[i, j] > 0:
|
||
source = f'turbine_{cluster_indices[i]}'
|
||
target = f'turbine_{cluster_indices[j]}'
|
||
cluster_connections.append((source, target, mst[i, j]))
|
||
|
||
# 添加簇到升压站的连接
|
||
substation_connections = []
|
||
for cluster_id, turbine_idx in cluster_connection_points.items():
|
||
turbine_coord = turbines.loc[turbine_idx, ['x', 'y']].values
|
||
distance = np.sqrt(
|
||
(turbine_coord[0] - substation_coord[0])**2 +
|
||
(turbine_coord[1] - substation_coord[1])**2
|
||
)
|
||
substation_connections.append((f'turbine_{turbine_idx}', 'substation', distance))
|
||
|
||
return cluster_connections + substation_connections, turbines
|
||
|
||
# 3.5 带容量约束的扇区扫描算法 (Capacitated Angular Sweep)
|
||
def design_with_capacitated_sweep(turbines, substation, cable_specs=None):
|
||
"""
|
||
使用带容量约束的扇区扫描算法设计集电线路
|
||
原理:
|
||
1. 计算所有风机相对于升压站的角度。
|
||
2. 找到角度间隔最大的位置作为起始“切割线”,以避免切断密集的风机群。
|
||
3. 沿圆周方向扫描,贪婪地将风机加入当前回路,直到达到电缆容量上限。
|
||
4. 满载后开启新回路。
|
||
"""
|
||
# 1. 获取电缆最大容量
|
||
max_mw = get_max_cable_capacity_mw(cable_specs)
|
||
print(f"DEBUG: 扇区扫描算法启动 - 单回路容量限制: {max_mw:.2f} MW")
|
||
|
||
substation_coord = substation[0]
|
||
|
||
# 2. 计算角度 (使用 arctan2 返回 -pi 到 pi)
|
||
# 避免直接修改原始DataFrame,使用副本
|
||
work_df = turbines.copy()
|
||
dx = work_df['x'] - substation_coord[0]
|
||
dy = work_df['y'] - substation_coord[1]
|
||
work_df['angle'] = np.arctan2(dy, dx)
|
||
|
||
# 3. 寻找最佳起始角度 (最大角度间隙)
|
||
# 按角度排序
|
||
work_df = work_df.sort_values('angle').reset_index(drop=True) # 重置索引方便切片
|
||
|
||
angles = work_df['angle'].values
|
||
n = len(angles)
|
||
|
||
if n > 1:
|
||
# 计算相邻角度差
|
||
diffs = np.diff(angles)
|
||
# 计算首尾角度差 (跨越 ±pi 处)
|
||
wrap_diff = (2 * np.pi) - (angles[-1] - angles[0])
|
||
diffs = np.append(diffs, wrap_diff)
|
||
|
||
# 找到最大间隙的索引 (该索引对应元素的 *后面* 是间隙)
|
||
max_gap_idx = np.argmax(diffs)
|
||
|
||
# 如果最大间隙不是在队尾,则需要旋转数组,使最大间隙成为新的起点(即队尾)
|
||
# 实际上我们希望扫描的起点是最大间隙的“右侧”
|
||
# 例如: [0, 10, 100, 110]. Gaps: 10, 90, 10, 250. Max gap is wrap (250). Start at 0 is fine.
|
||
# 例如: [0, 10, 200, 210]. Gaps: 10, 190, 10, 150. Max gap is 190 (idx 1).
|
||
# 我们应该从 idx 2 (200) 开始扫描。
|
||
|
||
start_idx = (max_gap_idx + 1) % n
|
||
|
||
# 重新排序风机列表
|
||
if start_idx != 0:
|
||
work_df = pd.concat([work_df.iloc[start_idx:], work_df.iloc[:start_idx]]).reset_index(drop=True)
|
||
|
||
# 4. 贪婪分组 (Capacity Constrained Clustering)
|
||
work_df['cluster'] = -1
|
||
cluster_id = 0
|
||
current_power = 0
|
||
current_indices = []
|
||
|
||
for i, row in work_df.iterrows():
|
||
p = row['power']
|
||
|
||
# 检查是否超载
|
||
# 注意:如果是空簇,必须加入至少一个(即使单个风机超载也得加,但在风电中单机不会超载)
|
||
if len(current_indices) > 0 and (current_power + p > max_mw):
|
||
# 当前簇已满,结束当前簇,开启新簇
|
||
work_df.loc[current_indices, 'cluster'] = cluster_id
|
||
cluster_id += 1
|
||
current_power = 0
|
||
current_indices = []
|
||
|
||
current_indices.append(i)
|
||
current_power += p
|
||
|
||
# 处理最后一个簇
|
||
if current_indices:
|
||
work_df.loc[current_indices, 'cluster'] = cluster_id
|
||
cluster_id += 1 # 计数用
|
||
|
||
print(f"DEBUG: 生成了 {cluster_id} 个回路 (簇)")
|
||
|
||
# 将 cluster 标记映射回原始 turbines DataFrame (通过 original_id 或 索引匹配)
|
||
# 这里我们简单地重建 turbines,因为 work_df 包含了所有信息且顺序变了
|
||
# 为了保持外部一致性,我们把 cluster 列 map 回去
|
||
|
||
# 建立 id -> cluster 的映射
|
||
id_to_cluster = dict(zip(work_df['id'], work_df['cluster']))
|
||
turbines['cluster'] = turbines['id'].map(id_to_cluster)
|
||
|
||
# 5. 对每个簇内部进行MST连接 (复用现有逻辑)
|
||
cluster_connections = []
|
||
substation_connections = []
|
||
n_clusters = cluster_id
|
||
|
||
for cid in range(n_clusters):
|
||
cluster_turbines = turbines[turbines['cluster'] == cid]
|
||
if len(cluster_turbines) == 0:
|
||
continue
|
||
|
||
# --- 簇内 MST ---
|
||
cluster_indices = cluster_turbines.index.tolist()
|
||
coords = cluster_turbines[['x', 'y']].values
|
||
|
||
if len(cluster_indices) > 1:
|
||
dist_matrix = distance_matrix(coords, coords)
|
||
mst = minimum_spanning_tree(dist_matrix).toarray()
|
||
|
||
for i in range(len(cluster_indices)):
|
||
for j in range(len(cluster_indices)):
|
||
if mst[i, j] > 0:
|
||
source = f'turbine_{cluster_indices[i]}'
|
||
target = f'turbine_{cluster_indices[j]}'
|
||
cluster_connections.append((source, target, mst[i, j]))
|
||
|
||
# --- 连接到升压站 ---
|
||
# 找到簇内离升压站最近的风机
|
||
dists = np.sqrt((cluster_turbines['x'] - substation_coord[0])**2 +
|
||
(cluster_turbines['y'] - substation_coord[1])**2)
|
||
closest_id = dists.idxmin() # 返回的是原始DataFrame的index
|
||
|
||
# 添加升压站连接
|
||
min_dist = dists.min()
|
||
substation_connections.append((f'turbine_{closest_id}', 'substation', min_dist))
|
||
|
||
return cluster_connections + substation_connections, turbines
|
||
|
||
# 常量定义
|
||
VOLTAGE_LEVEL = 66000 # 66kV
|
||
POWER_FACTOR = 0.95
|
||
|
||
def get_max_cable_capacity_mw(cable_specs=None):
|
||
"""
|
||
计算给定电缆规格中能够承载的最大功率 (单位: MW)。
|
||
|
||
基于提供的电缆规格列表,选取最大载流量,结合系统电压和功率因数计算理论最大传输功率。
|
||
|
||
参数:
|
||
cable_specs (list, optional): 电缆规格列表。每个元素应包含 (截面积, 额定电流, 单价, 损耗系数)。
|
||
|
||
返回:
|
||
float: 最大功率承载能力 (MW)。
|
||
|
||
异常:
|
||
Exception: 当未提供 cable_specs 时抛出,提示截面不满足。
|
||
"""
|
||
if cable_specs:
|
||
# 从所有电缆规格中找到最大的额定电流容量
|
||
max_current_capacity = max(spec[1] for spec in cable_specs)
|
||
else:
|
||
# 如果没有传入电缆规格,通常意味着已尝试过所有规格但仍不满足需求
|
||
raise Exception("没有提供电缆参数")
|
||
|
||
# 计算最大功率:P = √3 * U * I * cosφ
|
||
# 这里假设降额系数为 1 (不降额)
|
||
max_current = max_current_capacity * 1
|
||
max_power_w = np.sqrt(3) * VOLTAGE_LEVEL * max_current * POWER_FACTOR
|
||
|
||
# 将单位从 W 转换为 MW
|
||
return max_power_w / 1e6
|
||
|
||
# 5. 计算集电线路方案成本
|
||
def evaluate_design(turbines, connections, substation, cable_specs=None, is_offshore=False, method_name="Unknown Method"):
|
||
"""评估设计方案的总成本和损耗"""
|
||
total_cost = 0
|
||
total_loss = 0
|
||
|
||
# 创建连接图
|
||
graph = nx.Graph()
|
||
graph.add_node('substation')
|
||
|
||
for i, row in turbines.iterrows():
|
||
graph.add_node(f'turbine_{i}')
|
||
|
||
# 添加边
|
||
for source, target, length in connections:
|
||
graph.add_edge(source, target, weight=length)
|
||
|
||
# 计算每台风机的累积功率(从叶到根)
|
||
power_flow = defaultdict(float)
|
||
|
||
# 按照后序遍历(从叶到根)
|
||
nodes = list(nx.dfs_postorder_nodes(graph, 'substation'))
|
||
|
||
for node in nodes:
|
||
if node == 'substation':
|
||
continue
|
||
|
||
# 1. 如果节点是风机,先加上自身的功率
|
||
if node.startswith('turbine_'):
|
||
turbine_id = int(node.split('_')[1])
|
||
power_flow[node] += turbines.loc[turbine_id, 'power']
|
||
|
||
# 2. 找到上游节点(父节点)并将累积功率传递上去
|
||
try:
|
||
# 找到通往升压站的最短路径上的下一个节点
|
||
path = nx.shortest_path(graph, source=node, target='substation')
|
||
if len(path) > 1:
|
||
parent = path[1] # path[0]是node自己,path[1]是父节点
|
||
power_flow[parent] += power_flow[node]
|
||
except nx.NetworkXNoPath:
|
||
pass
|
||
|
||
# DEBUG: 打印最大功率流 (不含升压站本身)
|
||
node_powers = [v for k, v in power_flow.items() if k != 'substation']
|
||
max_power = max(node_powers) if node_powers else 0
|
||
print(f"DEBUG [{method_name}]: 最大线路功率 = {max_power:.2f} MW")
|
||
|
||
# 计算成本和损耗
|
||
detailed_connections = []
|
||
|
||
for source, target, length in connections:
|
||
# 确定该段线路承载的总功率
|
||
if source.startswith('turbine_') and target.startswith('turbine_'):
|
||
# 风机间连接,取下游节点功率
|
||
if nx.shortest_path_length(graph, 'substation', source) < nx.shortest_path_length(graph, 'substation', target):
|
||
power = power_flow[target]
|
||
else:
|
||
power = power_flow[source]
|
||
elif source == 'substation':
|
||
# 从升压站出发的连接
|
||
power = power_flow[target]
|
||
elif target == 'substation':
|
||
# 连接到升压站
|
||
power = power_flow[source]
|
||
else:
|
||
power = 0
|
||
|
||
# 电缆选型
|
||
# 成本乘数:海缆材料+敷设成本通常是陆缆的4-6倍
|
||
cost_multiplier = 5.0 if is_offshore else 1.0
|
||
|
||
# 默认电缆规格库 (如果未提供)
|
||
if cable_specs is None:
|
||
cable_specs_to_use = [
|
||
(35, 150, 0.524, 80),
|
||
(70, 215, 0.268, 120),
|
||
(95, 260, 0.193, 150),
|
||
(120, 295, 0.153, 180),
|
||
(150, 330, 0.124, 220),
|
||
(185, 370, 0.0991, 270),
|
||
(240, 425, 0.0754, 350),
|
||
(300, 500, 0.0601, 450),
|
||
(400, 580, 0.0470, 600)
|
||
]
|
||
else:
|
||
cable_specs_to_use = cable_specs
|
||
|
||
# 估算电流
|
||
current = (power * 1e6) / (np.sqrt(3) * VOLTAGE_LEVEL * POWER_FACTOR)
|
||
|
||
# 选择满足载流量的最小电缆
|
||
selected_spec = None
|
||
for spec in cable_specs_to_use:
|
||
if current <= spec[1] * 1: # 100%负载率
|
||
selected_spec = spec
|
||
break
|
||
|
||
if selected_spec is None:
|
||
selected_spec = cable_specs_to_use[-1]
|
||
print(f"WARNING [{method_name}]: Current {current:.2f} A (Power: {power:.2f} MW) exceeds max cable capacity {selected_spec[1]} A!")
|
||
|
||
resistance = selected_spec[2] * length / 1000 # 电阻(Ω)
|
||
cost = selected_spec[3] * length * cost_multiplier # 电缆成本(含敷设)
|
||
|
||
cable = {
|
||
'cross_section': selected_spec[0],
|
||
'current_capacity': selected_spec[1],
|
||
'resistance': resistance,
|
||
'cost': cost,
|
||
'current': current
|
||
}
|
||
|
||
# 记录详细信息
|
||
detailed_connections.append({
|
||
'source': source,
|
||
'target': target,
|
||
'length': length,
|
||
'power': power,
|
||
'cable': cable
|
||
})
|
||
|
||
# 累计成本
|
||
total_cost += cable['cost']
|
||
|
||
# 计算I²R损耗 (简化版)
|
||
loss = (cable['current'] ** 2) * cable['resistance'] * 3 # 三相
|
||
total_loss += loss
|
||
|
||
return {
|
||
'total_cost': total_cost,
|
||
'total_loss': total_loss,
|
||
'num_connections': len(connections),
|
||
'details': detailed_connections
|
||
}
|
||
|
||
# 6.5 导出CAD图纸 (DXF格式)
|
||
def export_to_dxf(turbines, substation, connections_details, filename):
|
||
"""
|
||
将设计方案导出为DXF格式 (CAD通用格式)
|
||
:param connections_details: evaluate_design返回的'details'列表
|
||
"""
|
||
import ezdxf
|
||
from ezdxf.enums import TextEntityAlignment
|
||
|
||
doc = ezdxf.new(dxfversion='R2010')
|
||
msp = doc.modelspace()
|
||
|
||
# 1. 建立图层
|
||
doc.layers.add('Substation', color=1) # Red
|
||
doc.layers.add('Turbines', color=5) # Blue
|
||
doc.layers.add('Cable_35mm', color=3) # Green
|
||
doc.layers.add('Cable_70mm', color=130)
|
||
doc.layers.add('Cable_95mm', color=150)
|
||
doc.layers.add('Cable_120mm', color=4) # Cyan
|
||
doc.layers.add('Cable_150mm', color=6) # Magenta
|
||
doc.layers.add('Cable_185mm', color=30) # Orange
|
||
doc.layers.add('Cable_240mm', color=1) # Red
|
||
doc.layers.add('Cable_300mm', color=250)
|
||
doc.layers.add('Cable_400mm', color=7) # White/Black
|
||
|
||
# 2. 绘制升压站
|
||
sx, sy = substation[0, 0], substation[0, 1]
|
||
# 绘制一个矩形代表升压站
|
||
size = 50
|
||
msp.add_lwpolyline([(sx-size, sy-size), (sx+size, sy-size),
|
||
(sx+size, sy+size), (sx-size, sy+size), (sx-size, sy-size)],
|
||
close=True, dxfattribs={'layer': 'Substation'})
|
||
msp.add_text("Substation", dxfattribs={'layer': 'Substation', 'height': 20}).set_placement((sx, sy+size+10), align=TextEntityAlignment.CENTER)
|
||
|
||
# 3. 绘制风机
|
||
for i, row in turbines.iterrows():
|
||
tx, ty = row['x'], row['y']
|
||
# 绘制圆形代表风机
|
||
msp.add_circle((tx, ty), radius=15, dxfattribs={'layer': 'Turbines'})
|
||
# 添加文字标签
|
||
label_id = str(int(row['original_id']) if 'original_id' in row else int(row['id']))
|
||
msp.add_text(label_id, dxfattribs={'layer': 'Turbines', 'height': 15}).set_placement((tx, ty-30), align=TextEntityAlignment.CENTER)
|
||
|
||
# 4. 绘制连接电缆
|
||
for conn in connections_details:
|
||
source, target = conn['source'], conn['target']
|
||
section = conn['cable']['cross_section']
|
||
|
||
# 获取坐标
|
||
if source == 'substation':
|
||
p1 = (substation[0, 0], substation[0, 1])
|
||
else:
|
||
tid = int(source.split('_')[1])
|
||
p1 = (turbines.loc[tid, 'x'], turbines.loc[tid, 'y'])
|
||
|
||
if target == 'substation':
|
||
p2 = (substation[0, 0], substation[0, 1])
|
||
else:
|
||
tid = int(target.split('_')[1])
|
||
p2 = (turbines.loc[tid, 'x'], turbines.loc[tid, 'y'])
|
||
|
||
# 确定图层
|
||
layer_name = f'Cable_{section}mm'
|
||
if layer_name not in doc.layers:
|
||
doc.layers.add(layer_name)
|
||
|
||
# 绘制直线
|
||
msp.add_line(p1, p2, dxfattribs={'layer': layer_name})
|
||
|
||
# 添加电缆型号文字(可选,在线的中点)
|
||
# mid_x = (p1[0] + p2[0]) / 2
|
||
# mid_y = (p1[1] + p2[1]) / 2
|
||
# msp.add_text(f"{section}mm", dxfattribs={'layer': layer_name, 'height': 10}).set_pos((mid_x, mid_y), align='CENTER')
|
||
|
||
try:
|
||
doc.saveas(filename)
|
||
print(f"成功导出DXF文件: {filename}")
|
||
except Exception as e:
|
||
print(f"导出DXF失败: {e}")
|
||
|
||
# 6. 可视化函数
|
||
def visualize_design(turbines, substation, connections, title, ax=None, show_costs=True):
|
||
"""可视化集电线路设计方案"""
|
||
if ax is None:
|
||
fig, ax = plt.subplots(figsize=(10, 8))
|
||
|
||
# 绘制风机
|
||
ax.scatter(turbines['x'], turbines['y'], c='white', edgecolors='#333333', s=80, linewidth=1.0, zorder=3, label='Turbines')
|
||
|
||
# 标记风机ID
|
||
for i, row in turbines.iterrows():
|
||
# 显示原始ID(如果存在)
|
||
label_id = int(row['original_id']) if 'original_id' in row else int(row['id'])
|
||
# 仅在风机数量较少时显示ID,避免密集恐惧
|
||
if len(turbines) < 50:
|
||
ax.annotate(str(label_id), (row['x'], row['y']), ha='center', va='center', fontsize=6, zorder=4)
|
||
|
||
# 绘制升压站
|
||
ax.scatter(substation[0, 0], substation[0, 1], c='red', s=250, marker='s', zorder=5, label='Substation')
|
||
|
||
# 颜色映射:使用鲜艳且区分度高的颜色
|
||
color_map = {
|
||
35: '#00FF00', # 亮绿 (Lime) - 最小
|
||
70: '#008000', # 深绿 (Green)
|
||
95: '#00FFFF', # 青色 (Cyan)
|
||
120: '#0000FF', # 纯蓝 (Blue)
|
||
150: '#800080', # 紫色 (Purple)
|
||
185: '#FF00FF', # 洋红 (Magenta)
|
||
240: '#FFA500', # 橙色 (Orange)
|
||
300: '#FF4500', # 红橙 (OrangeRed)
|
||
400: '#FF0000' # 纯红 (Red) - 最大
|
||
}
|
||
|
||
# 统计电缆使用情况
|
||
cable_counts = defaultdict(int)
|
||
|
||
# 绘制连接
|
||
# 判断传入的是简单连接列表还是详细连接列表
|
||
is_detailed = len(connections) > 0 and isinstance(connections[0], dict)
|
||
|
||
# 收集图例句柄
|
||
legend_handles = {}
|
||
|
||
for conn in connections:
|
||
if is_detailed:
|
||
source, target, length = conn['source'], conn['target'], conn['length']
|
||
section = conn['cable']['cross_section']
|
||
|
||
# 统计
|
||
cable_counts[section] += 1
|
||
|
||
# 获取颜色和线宽
|
||
color = color_map.get(section, 'black')
|
||
# 线宽范围 1.0 ~ 3.5
|
||
linewidth = 1.0 + (section / 400.0) * 2.5
|
||
label_text = f'{section}mm² Cable'
|
||
else:
|
||
source, target, length = conn
|
||
section = 0
|
||
color = 'black'
|
||
linewidth = 1.0
|
||
label_text = 'Connection'
|
||
|
||
# 获取坐标
|
||
if source == 'substation':
|
||
x1, y1 = substation[0, 0], substation[0, 1]
|
||
else:
|
||
turbine_id = int(source.split('_')[1])
|
||
x1, y1 = turbines.loc[turbine_id, 'x'], turbines.loc[turbine_id, 'y']
|
||
|
||
if target == 'substation':
|
||
x2, y2 = substation[0, 0], substation[0, 1]
|
||
else:
|
||
turbine_id = int(target.split('_')[1])
|
||
x2, y2 = turbines.loc[turbine_id, 'x'], turbines.loc[turbine_id, 'y']
|
||
|
||
# 绘制线路
|
||
line, = ax.plot([x1, x2], [y1, y2], color=color, linewidth=linewidth, alpha=0.9, zorder=2)
|
||
|
||
# 保存图例(去重)
|
||
if is_detailed and section not in legend_handles:
|
||
legend_handles[section] = line
|
||
|
||
# 打印统计信息
|
||
if is_detailed:
|
||
print(f"[{title.splitlines()[0]}] 电缆统计:")
|
||
for section in sorted(cable_counts.keys()):
|
||
print(f" {section}mm²: {cable_counts[section]} 条")
|
||
|
||
# 设置图形属性
|
||
ax.set_title(title, fontsize=10)
|
||
ax.set_xlabel('X (m)')
|
||
ax.set_ylabel('Y (m)')
|
||
|
||
# 构建图例
|
||
sorted_sections = sorted(legend_handles.keys())
|
||
handles = [legend_handles[s] for s in sorted_sections]
|
||
labels = [f'{s}mm²' for s in sorted_sections]
|
||
|
||
# 添加风机和升压站图例
|
||
handles.insert(0, ax.collections[0]) # Turbines
|
||
labels.insert(0, 'Turbines')
|
||
handles.insert(1, ax.collections[1]) # Substation
|
||
labels.insert(1, 'Substation')
|
||
|
||
ax.legend(handles, labels, loc='upper right', fontsize=8, framealpha=0.9)
|
||
ax.grid(True, linestyle='--', alpha=0.3)
|
||
ax.set_aspect('equal')
|
||
|
||
return ax
|
||
|
||
# 7. 主函数:比较两种设计方法
|
||
def compare_design_methods(excel_path=None, n_clusters_override=None):
|
||
"""
|
||
比较MST和K-means两种设计方法 (海上风电场场景)
|
||
:param excel_path: Excel文件路径,如果提供则从文件读取数据
|
||
:param n_clusters_override: 可选,手动指定簇的数量
|
||
"""
|
||
cable_specs = None
|
||
if excel_path:
|
||
print(f"正在从 {excel_path} 读取坐标数据...")
|
||
try:
|
||
turbines, substation, cable_specs = load_data_from_excel(excel_path)
|
||
scenario_title = "Offshore Wind Farm (Imported Data)"
|
||
except Exception:
|
||
print("回退到自动生成数据模式...")
|
||
return compare_design_methods(excel_path=None, n_clusters_override=n_clusters_override)
|
||
else:
|
||
print("正在生成海上风电场数据 (规则阵列布局)...")
|
||
# 使用规则布局,间距800m
|
||
turbines, substation = generate_wind_farm_data(n_turbines=30, layout='grid', spacing=800)
|
||
scenario_title = "Offshore Wind Farm (Grid Layout)"
|
||
|
||
is_offshore = True
|
||
|
||
# 方法1:最小生成树
|
||
# 注意:MST方法在不考虑容量约束时,可能会导致根部线路严重过载
|
||
mst_connections = design_with_mst(turbines, substation)
|
||
mst_evaluation = evaluate_design(turbines, mst_connections, substation, cable_specs=cable_specs, is_offshore=is_offshore, method_name="MST Method")
|
||
|
||
# 方法2:K-means聚类 (容量受限聚类)
|
||
# 计算总功率和所需的最小回路数
|
||
total_power = turbines['power'].sum()
|
||
max_cable_mw = get_max_cable_capacity_mw(cable_specs=cable_specs)
|
||
|
||
# 允许指定簇的数量,如果设置为 None 则自动计算
|
||
if n_clusters_override is not None:
|
||
n_clusters = n_clusters_override
|
||
min_clusters_needed = int(np.ceil(total_power / max_cable_mw))
|
||
print(f"使用手动指定的回路数(簇数): {n_clusters} (理论最小需求 {min_clusters_needed})")
|
||
else:
|
||
min_clusters_needed = int(np.ceil(total_power / max_cable_mw))
|
||
# 增加一定的安全裕度 (1.2倍) 并确保至少有一定数量的簇
|
||
n_clusters = max(int(min_clusters_needed * 1.2), 4)
|
||
if len(turbines) < n_clusters: # 避免簇数多于风机数
|
||
n_clusters = len(turbines)
|
||
|
||
print(f"系统设计参数: 总功率 {total_power:.1f} MW, 单回路最大容量 {max_cable_mw:.1f} MW")
|
||
|
||
# 替换为带容量约束的扫描算法
|
||
kmeans_connections, clustered_turbines = design_with_capacitated_sweep(turbines.copy(), substation, cable_specs=cable_specs)
|
||
kmeans_evaluation = evaluate_design(turbines, kmeans_connections, substation, cable_specs=cable_specs, is_offshore=is_offshore, method_name="Capacitated Sweep")
|
||
|
||
# 创建结果比较
|
||
results = {
|
||
'MST Method': mst_evaluation,
|
||
'Capacitated Sweep': kmeans_evaluation
|
||
}
|
||
|
||
# 可视化
|
||
fig, axes = plt.subplots(1, 2, figsize=(20, 10))
|
||
|
||
# 可视化MST方法
|
||
visualize_design(turbines, substation, mst_evaluation['details'],
|
||
f"MST Design - {scenario_title}\nTotal Cost: ¥{mst_evaluation['total_cost']/10000:.2f}万\nTotal Loss: {mst_evaluation['total_loss']:.2f} kW",
|
||
ax=axes[0])
|
||
|
||
# 可视化K-means方法 (现在是 Capacitated Sweep)
|
||
# 获取实际生成的簇数
|
||
n_actual_clusters = clustered_turbines['cluster'].nunique()
|
||
visualize_design(clustered_turbines, substation, kmeans_evaluation['details'],
|
||
f"Capacitated Sweep ({n_actual_clusters} circuits) - {scenario_title}\nTotal Cost: ¥{kmeans_evaluation['total_cost']/10000:.2f}万\nTotal Loss: {kmeans_evaluation['total_loss']:.2f} kW",
|
||
ax=axes[1])
|
||
|
||
plt.tight_layout()
|
||
output_filename = 'wind_farm_design_imported.png' if excel_path else 'offshore_wind_farm_design.png'
|
||
plt.savefig(output_filename, dpi=300)
|
||
|
||
# 导出DXF
|
||
dxf_filename = 'wind_farm_design.dxf'
|
||
# 默认导出更优的方案(通常K-means扇区聚类在海上更合理,或者成本更低者)
|
||
# 这里我们导出Sector Clustering的结果
|
||
export_to_dxf(clustered_turbines, substation, kmeans_evaluation['details'], dxf_filename)
|
||
|
||
plt.show()
|
||
|
||
# 打印详细结果
|
||
print(f"\n===== 海上风电场设计方案比较 ({'导入数据' if excel_path else '自动生成'}) =====")
|
||
for method, eval_data in results.items():
|
||
print(f"\n{method}:")
|
||
print(f" 总成本: ¥{eval_data['total_cost']:,.2f} ({eval_data['total_cost']/10000:.2f}万元)")
|
||
print(f" 预估总损耗: {eval_data['total_loss']:.2f} kW")
|
||
print(f" 连接数量: {eval_data['num_connections']}")
|
||
|
||
return results
|
||
|
||
# 8. 执行比较
|
||
if __name__ == "__main__":
|
||
# 解析命令行参数
|
||
parser = argparse.ArgumentParser(description='Wind Farm Collector System Design')
|
||
parser.add_argument('--clusters', type=int, help='Specify the number of clusters (circuits) manually', default=None)
|
||
args = parser.parse_args()
|
||
|
||
# 2. 读取 Excel 坐标数据 (如果存在)
|
||
excel_path = 'coordinates2.xlsx'
|
||
# 尝试从命令行参数获取文件路径 (可选扩展)
|
||
# if len(sys.argv) > 1: excel_path = sys.argv[1]
|
||
|
||
# 3. 运行比较
|
||
# 如果本地没有excel文件,将自动回退到生成数据模式
|
||
compare_design_methods(excel_path, n_clusters_override=args.clusters)
|