347 lines
11 KiB
Python
347 lines
11 KiB
Python
import numpy as np
|
||
import pandas as pd
|
||
from scipy.spatial import distance_matrix
|
||
from scipy.sparse.csgraph import minimum_spanning_tree
|
||
from collections import defaultdict
|
||
import random
|
||
|
||
try:
|
||
import pulp
|
||
|
||
pulp_available = True
|
||
except ImportError:
|
||
pulp = None
|
||
pulp_available = False
|
||
|
||
try:
|
||
import pyomo.environ as pyo_env
|
||
|
||
pyomo_available = True
|
||
except (ImportError, AttributeError):
|
||
pyomo_available = False
|
||
print("Pyomo not available, falling back to PuLP")
|
||
|
||
|
||
def design_with_pyomo(
|
||
turbines,
|
||
substation,
|
||
cable_specs=None,
|
||
voltage=66000,
|
||
power_factor=0.95,
|
||
system_params=None,
|
||
max_clusters=None,
|
||
time_limit=300,
|
||
evaluate_func=None,
|
||
total_invest_func=None,
|
||
get_max_capacity_func=None,
|
||
):
|
||
"""
|
||
使用Pyomo求解器优化集电线路布局
|
||
:param turbines: 风机DataFrame
|
||
:param substation: 升压站坐标
|
||
:param cable_specs: 电缆规格
|
||
:param system_params: 系统参数(用于NPV计算)
|
||
:param max_clusters: 最大簇数,默认基于功率计算
|
||
:param time_limit: 求解时间限制(秒)
|
||
:param evaluate_func: 评估函数
|
||
:param total_invest_func: 总投资计算函数
|
||
:param get_max_capacity_func: 获取最大容量函数
|
||
:return: 连接列表和带有簇信息的turbines
|
||
"""
|
||
if get_max_capacity_func:
|
||
max_mw = get_max_capacity_func(cable_specs, voltage, power_factor)
|
||
else:
|
||
max_mw = 100.0
|
||
total_power = turbines["power"].sum()
|
||
if max_clusters is None:
|
||
max_clusters = int(np.ceil(total_power / max_mw))
|
||
n_turbines = len(turbines)
|
||
|
||
all_coords = np.vstack([substation, turbines[["x", "y"]].values])
|
||
dist_matrix_full = distance_matrix(all_coords, all_coords)
|
||
|
||
# Simple fallback for now - use PuLP instead
|
||
print("Pyomo not fully implemented, falling back to PuLP")
|
||
return design_with_mip(
|
||
turbines,
|
||
substation,
|
||
cable_specs,
|
||
voltage,
|
||
power_factor,
|
||
system_params,
|
||
max_clusters,
|
||
time_limit,
|
||
evaluate_func,
|
||
total_invest_func,
|
||
get_max_capacity_func,
|
||
)
|
||
y = pyo_env.Var(
|
||
max_clusters_list,
|
||
within=pyo_env.BinarySet,
|
||
initialize=False,
|
||
name="use_cluster",
|
||
)
|
||
|
||
prob.constraints += pyo_env.SummizationRule(
|
||
pyo_env.Summ(x[i, k] for i in n_turbines_list for k in max_clusters_list) == 1,
|
||
name="assign_one_turbine",
|
||
)
|
||
|
||
cluster_powers = [
|
||
pyo_env.Summ([turbines.iloc[i]["power"] * x[i, k] for i in n_turbines_list])
|
||
for k in max_clusters_list
|
||
]
|
||
|
||
prob += pyo_env.SummizationRule(
|
||
pyo_env.Summ(y[k] * max_mw for k in max_clusters_list), name="cluster_capacity"
|
||
)
|
||
|
||
for k in max_clusters_list:
|
||
prob += pyo_env.SummizationRule(
|
||
pyo_env.Summ(x[i, k] * turbines.iloc[i]["power"] for i in n_turbines_list),
|
||
name=f"turbine_assign_{k}",
|
||
)
|
||
|
||
for k in max_clusters_list:
|
||
prob += y[k] <= pyo_env.summation(x[i, k] for i in n_turbines_list)
|
||
|
||
prob += pyo_env.Minimize(pyo_env.Summ([y[k] for k in max_clusters_list]))
|
||
|
||
print(
|
||
f"Pyomo Model: {len(prob.variables)} variables, {len(prob.constraints)} constraints"
|
||
)
|
||
|
||
solver = pyo_env.SolverFactory("cbc")
|
||
print("Pyomo: Starting to solve...")
|
||
result = solver.solve(prob, time_limit=time_limit)
|
||
print(
|
||
f"Pyomo: Solver status={result.solver.status}, Termination condition={result.solver.termination_condition}"
|
||
)
|
||
|
||
if result.solver.status == pyo_env.SolverStatus.ok:
|
||
cluster_assign = [-1] * n_turbines
|
||
active_clusters = []
|
||
|
||
for k in range(max_clusters):
|
||
if pyo_env.value(y[k]) > 0.5:
|
||
active_clusters.append(k)
|
||
|
||
for i in n_turbines_list:
|
||
assigned = False
|
||
for k in active_clusters:
|
||
if pyo_env.value(x[i, k]) > 0.5:
|
||
cluster_assign[i] = k
|
||
assigned = True
|
||
break
|
||
if not assigned and active_clusters:
|
||
dists = [dist_matrix_full[0, i + 1] for k in active_clusters]
|
||
cluster_assign[i] = active_clusters[np.argmin(dists)]
|
||
|
||
clusters = defaultdict(list)
|
||
for i, c in enumerate(cluster_assign):
|
||
clusters[c].append(i)
|
||
|
||
connections = []
|
||
for c, members in clusters.items():
|
||
if len(members) == 0:
|
||
continue
|
||
coords = turbines.iloc[members][["x", "y"]].values
|
||
if len(members) > 1:
|
||
dm = distance_matrix(coords, coords)
|
||
mst = minimum_spanning_tree(dm).toarray()
|
||
for i in range(len(members)):
|
||
for j in range(len(members)):
|
||
if mst[i, j] > 0:
|
||
connections.append(
|
||
(
|
||
f"turbine_{members[i]}",
|
||
f"turbine_{members[j]}",
|
||
mst[i, j],
|
||
)
|
||
)
|
||
dists = [dist_matrix_full[0, m + 1] for m in members]
|
||
closest = members[np.argmin(dists)]
|
||
connections.append((f"turbine_{closest}", "substation", min(dists)))
|
||
|
||
turbines["cluster"] = cluster_assign
|
||
print(
|
||
f"Pyomo optimization completed successfully, {len(connections)} connections generated"
|
||
)
|
||
return connections, turbines
|
||
|
||
|
||
def design_with_mip(
|
||
turbines,
|
||
substation,
|
||
cable_specs=None,
|
||
voltage=66000,
|
||
power_factor=0.95,
|
||
system_params=None,
|
||
max_clusters=None,
|
||
time_limit=300,
|
||
evaluate_func=None,
|
||
total_invest_func=None,
|
||
get_max_capacity_func=None,
|
||
):
|
||
"""
|
||
使用混合整数规划(MIP)优化集电线路布局
|
||
:param turbines: 风机DataFrame
|
||
:param substation: 升压站坐标
|
||
:param cable_specs: 电缆规格
|
||
:param system_params: 系统参数(用于NPV计算)
|
||
:param max_clusters: 最大簇数,默认基于功率计算
|
||
:param time_limit: 求解时间限制(秒)
|
||
:param evaluate_func: 评估函数
|
||
:param total_invest_func: 总投资计算函数
|
||
:param get_max_capacity_func: 获取最大容量函数
|
||
:return: 连接列表和带有簇信息的turbines
|
||
"""
|
||
if not pulp_available:
|
||
print(
|
||
"WARNING: PuLP library not available. MIP optimization skipped, falling back to MST."
|
||
)
|
||
from main import design_with_mst
|
||
|
||
connections = design_with_mst(turbines, substation)
|
||
return connections, turbines
|
||
|
||
if get_max_capacity_func:
|
||
max_mw = get_max_capacity_func(cable_specs, voltage, power_factor)
|
||
else:
|
||
max_mw = 100.0
|
||
if max_clusters is None:
|
||
max_clusters = int(np.ceil(turbines["power"].sum() / max_mw))
|
||
n_turbines = len(turbines)
|
||
|
||
print(
|
||
f"MIP Model Setup: n_turbines={n_turbines}, max_clusters={max_clusters}, max_mw={max_mw:.2f} MW"
|
||
)
|
||
|
||
all_coords = np.vstack([substation, turbines[["x", "y"]].values])
|
||
dist_matrix_full = distance_matrix(all_coords, all_coords)
|
||
|
||
prob = pulp.LpProblem("WindFarmCollectorMIP", pulp.LpMinimize)
|
||
|
||
def assign_var(i, k):
|
||
return pulp.LpVariable(f"assign_{i}_{k}", cat="Binary")
|
||
|
||
def cluster_var(k):
|
||
return pulp.LpVariable(f"cluster_{k}", cat="Binary")
|
||
|
||
# 目标函数:最小化总投资(近似为风机到升压站的总距离)
|
||
prob += pulp.lpSum(
|
||
[
|
||
dist_matrix_full[0, i + 1] * assign_var(i, k)
|
||
for i in range(n_turbines)
|
||
for k in range(max_clusters)
|
||
]
|
||
)
|
||
|
||
for i in range(n_turbines):
|
||
prob += pulp.lpSum([assign_var(i, k) for k in range(max_clusters)]) == 1
|
||
|
||
for k in range(max_clusters):
|
||
cluster_power = pulp.lpSum(
|
||
[turbines.iloc[i]["power"] * assign_var(i, k) for i in range(n_turbines)]
|
||
)
|
||
prob += cluster_power <= max_mw * 1.2 * cluster_var(k)
|
||
|
||
for k in range(max_clusters):
|
||
for i in range(n_turbines):
|
||
prob += assign_var(i, k) <= cluster_var(k)
|
||
|
||
print(
|
||
f"MIP Model: {len(prob.variables())} variables, {len(prob.constraints)} constraints"
|
||
)
|
||
|
||
print("MIP: Starting to solve...")
|
||
solver = pulp.PULP_CBC_CMD(timeLimit=time_limit, msg=0, warmStart=False, path=None)
|
||
try:
|
||
status = prob.solve(solver)
|
||
print(
|
||
f"MIP: Solver status={pulp.LpStatus[prob.status]}, Objective value={pulp.value(prob.objective):.4f}"
|
||
)
|
||
except Exception as e:
|
||
print(f"MIP: Solver execution failed: {e}, falling back to MST")
|
||
from main import design_with_mst
|
||
|
||
connections = design_with_mst(turbines, substation)
|
||
return connections, turbines
|
||
|
||
if pulp.LpStatus[prob.status] != "Optimal":
|
||
print(
|
||
f"MIP solver status: {pulp.LpStatus[prob.status]}, solution not found, falling back to MST"
|
||
)
|
||
print("Model feasibility check:")
|
||
print(f"Total power: {turbines['power'].sum():.2f} MW")
|
||
print(f"Max cluster capacity: {max_mw:.2f} MW")
|
||
print(f"Number of clusters: {max_clusters}, Number of turbines: {n_turbines}")
|
||
|
||
for k in range(max_clusters):
|
||
cluster_power = pulp.value(
|
||
pulp.lpSum(
|
||
[
|
||
turbines.iloc[i]["power"] * assign_var(i, k)
|
||
for i in range(n_turbines)
|
||
]
|
||
)
|
||
)
|
||
cluster_used = pulp.value(cluster_var(k))
|
||
print(
|
||
f"Cluster {k}: Power={cluster_power:.2f} MW (max {max_mw * 1.2:.2f}), Used={cluster_used}"
|
||
)
|
||
|
||
from main import design_with_mst
|
||
|
||
connections = design_with_mst(turbines, substation)
|
||
return connections, turbines
|
||
|
||
cluster_assign = [-1] * n_turbines
|
||
active_clusters = []
|
||
for k in range(max_clusters):
|
||
if pulp.value(cluster_var(k)) > 0.5:
|
||
active_clusters.append(k)
|
||
|
||
for i in range(n_turbines):
|
||
assigned = False
|
||
for k in active_clusters:
|
||
if pulp.value(assign_var(i, k)) > 0.5:
|
||
cluster_assign[i] = k
|
||
assigned = True
|
||
break
|
||
if not assigned:
|
||
dists = [dist_matrix_full[0, i + 1] for k in active_clusters]
|
||
cluster_assign[i] = active_clusters[np.argmin(dists)]
|
||
|
||
clusters = defaultdict(list)
|
||
for i, c in enumerate(cluster_assign):
|
||
clusters[c].append(i)
|
||
|
||
connections = []
|
||
for c, members in clusters.items():
|
||
if len(members) == 0:
|
||
continue
|
||
coords = turbines.iloc[members][["x", "y"]].values
|
||
if len(members) > 1:
|
||
dm = distance_matrix(coords, coords)
|
||
mst = minimum_spanning_tree(dm).toarray()
|
||
for i in range(len(members)):
|
||
for j in range(len(members)):
|
||
if mst[i, j] > 0:
|
||
connections.append(
|
||
(
|
||
f"turbine_{members[i]}",
|
||
f"turbine_{members[j]}",
|
||
mst[i, j],
|
||
)
|
||
)
|
||
dists = [dist_matrix_full[0, m + 1] for m in members]
|
||
closest = members[np.argmin(dists)]
|
||
connections.append((f"turbine_{closest}", "substation", min(dists)))
|
||
|
||
turbines["cluster"] = cluster_assign
|
||
print(
|
||
f"MIP optimization completed successfully, {len(connections)} connections generated"
|
||
)
|
||
return connections, turbines
|