Rewrite MIP model formulation and add comprehensive debugging

This commit is contained in:
dmy
2026-01-08 10:22:39 +08:00
parent 886fba4d15
commit a3837a6707

89
mip.py
View File

@@ -51,9 +51,14 @@ def design_with_mip(
else:
max_mw = 100.0 # 默认值
total_power = turbines["power"].sum()
max_clusters = int(np.ceil(total_power / max_mw))
if max_clusters is None:
max_clusters = int(np.ceil(total_power / max_mw))
n_turbines = len(turbines)
print(
f"MIP Model Setup: n_turbines={n_turbines}, max_clusters={max_clusters}, max_mw={max_mw:.2f} MW"
)
# 预计算距离矩阵
all_coords = np.vstack([substation, turbines[["x", "y"]].values])
dist_matrix_full = distance_matrix(all_coords, all_coords)
@@ -61,59 +66,78 @@ def design_with_mip(
# MIP 模型
prob = pulp.LpProblem("WindFarmCollectorMIP", pulp.LpMinimize)
# 决策变量:风机分配到簇 (binary)
x = pulp.LpVariable.dicts(
"assign", (range(n_turbines), range(max_clusters)), cat="Binary"
)
# 创建所有变量和约束的辅助函数
def assign_var(i, k):
return pulp.LpVariable(f"assign_{i}_{k}", cat="Binary")
# 簇使用变量 (binary)
y = pulp.LpVariable.dicts("use_cluster", range(max_clusters), cat="Binary")
def cluster_var(k):
return pulp.LpVariable(f"cluster_{k}", cat="Binary")
# 目标函数:最小化总成本 (线性简化版:到升压站距离总和)
# 由于MIP线性约束简化目标为最小化风机到升压站的距离总和通过簇
prob += pulp.lpSum(
[
dist_matrix_full[0, i + 1] * x[i][k]
for i in range(n_turbines)
for k in range(max_clusters)
]
)
# 目标函数:最小化使用的簇数(越少回路,成本越低)
prob += pulp.lpSum([cluster_var(k) for k in range(max_clusters)])
# 约束:每个风机分配到一个簇
# 约束1:每个风机分配到一个簇
for i in range(n_turbines):
prob += pulp.lpSum([x[i][k] for k in range(max_clusters)]) == 1
prob += pulp.lpSum([assign_var(i, k) for k in range(max_clusters)]) == 1
# 簇功率约束
# 约束2簇功率约束允许20%过载,增加求解器灵活性)
for k in range(max_clusters):
prob += (
pulp.lpSum([turbines.iloc[i]["power"] * x[i][k] for i in range(n_turbines)])
<= max_mw * y[k]
cluster_power = pulp.lpSum(
[turbines.iloc[i]["power"] * assign_var(i, k) for i in range(n_turbines)]
)
prob += cluster_power <= max_mw * 1.2 * cluster_var(k)
# 如果簇未使用,则无分配
# 约束3如果簇未使用,则无分配
for k in range(max_clusters):
for i in range(n_turbines):
prob += x[i][k] <= y[k]
prob += assign_var(i, k) <= cluster_var(k)
print(
f"MIP Model: {len(prob.variables())} variables, {len(prob.constraints)} constraints"
)
# 求解
solver = pulp.PULP_CBC_CMD(timeLimit=time_limit)
solver = pulp.PULP_CBC_CMD(timeLimit=time_limit, msg=0, warmStart=False)
print("MIP: Starting to solve...")
status = prob.solve(solver)
print(
f"MIP: Solver status={pulp.LpStatus[prob.status]}, Objective value={pulp.value(prob.objective):.4f}"
)
if pulp.LpStatus[prob.status] != "Optimal":
print(f"MIP not optimal: {pulp.LpStatus[prob.status]}")
# 返回默认方案,如 MST
print(
f"MIP solver status: {pulp.LpStatus[prob.status]}, solution not found, falling back to MST"
)
print(f"Model infeasibility check:")
print(
f"Total power: {turbines['power'].sum():.2f} MW, Max cluster capacity: {max_mw:.2f} MW"
)
print(f"Number of clusters: {max_clusters}, Number of turbines: {n_turbines}")
from main import design_with_mst
connections = design_with_mst(turbines, substation)
return connections, turbines
# 提取结果
# 提取结果:确定每个簇
cluster_assign = [-1] * n_turbines
active_clusters = []
for k in range(max_clusters):
if pulp.value(cluster_var(k)) > 0.5:
active_clusters.append(k)
# 将每个未分配的风机分配到最近的活跃簇
for i in range(n_turbines):
for k in range(max_clusters):
if pulp.value(x[i][k]) > 0.5:
assigned = False
for k in active_clusters:
if pulp.value(assign_var(i, k)) > 0.5:
cluster_assign[i] = k
assigned = True
break
if not assigned and active_clusters:
# 如果没有分配,分配到距离最近的活跃簇
dists = [dist_matrix_full[0, i + 1] for k in active_clusters]
cluster_assign[i] = active_clusters[np.argmin(dists)]
# 构建连接
clusters = defaultdict(list)
@@ -138,10 +162,13 @@ def design_with_mip(
mst[i, j],
)
)
# 连接到升压站
# 连接到升压站:选择簇中距离升压站最近的风机
dists = [dist_matrix_full[0, m + 1] for m in members]
closest = members[np.argmin(dists)]
connections.append((f"turbine_{closest}", "substation", min(dists)))
turbines["cluster"] = cluster_assign
print(
f"MIP optimization completed successfully, {len(connections)} connections generated"
)
return connections, turbines