Files
windfarm/mip.py

174 lines
5.8 KiB
Python
Raw Normal View History

import numpy as np
import pandas as pd
from scipy.spatial import distance_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
from collections import defaultdict
import random
try:
import pulp
except ImportError:
pulp = None
def design_with_mip(
turbines,
substation,
cable_specs=None,
voltage=66000,
power_factor=0.95,
system_params=None,
max_clusters=None,
time_limit=300,
evaluate_func=None,
total_invest_func=None,
get_max_capacity_func=None,
):
"""
使用混合整数规划(MIP)优化集电线路布局
:param turbines: 风机DataFrame
:param substation: 升压站坐标
:param cable_specs: 电缆规格
:param system_params: 系统参数用于NPV计算
:param max_clusters: 最大簇数默认基于功率计算
:param time_limit: 求解时间限制
:param evaluate_func: 评估函数
:param total_invest_func: 总投资计算函数
:param get_max_capacity_func: 获取最大容量函数
:return: 连接列表和带有簇信息的turbines
"""
if pulp is None:
print(
"WARNING: PuLP library not available. MIP optimization skipped, falling back to MST."
)
from main import design_with_mst
connections = design_with_mst(turbines, substation)
return connections, turbines
if get_max_capacity_func:
max_mw = get_max_capacity_func(cable_specs, voltage, power_factor)
else:
max_mw = 100.0
if max_clusters is None:
max_clusters = int(np.ceil(turbines["power"].sum() / max_mw))
n_turbines = len(turbines)
print(
f"MIP Model Setup: n_turbines={n_turbines}, max_clusters={max_clusters}, max_mw={max_mw:.2f} MW"
)
all_coords = np.vstack([substation, turbines[["x", "y"]].values])
dist_matrix_full = distance_matrix(all_coords, all_coords)
prob = pulp.LpProblem("WindFarmCollectorMIP", pulp.LpMinimize)
def assign_var(i, k):
return pulp.LpVariable(f"assign_{i}_{k}", cat="Binary")
def cluster_var(k):
return pulp.LpVariable(f"cluster_{k}", cat="Binary")
prob += pulp.lpSum([cluster_var(k) for k in range(max_clusters)])
for i in range(n_turbines):
prob += pulp.lpSum([assign_var(i, k) for k in range(max_clusters)]) == 1
for k in range(max_clusters):
cluster_power = pulp.lpSum(
[turbines.iloc[i]["power"] * assign_var(i, k) for i in range(n_turbines)]
)
prob += cluster_power <= max_mw * 1.2 * cluster_var(k)
for k in range(max_clusters):
for i in range(n_turbines):
prob += assign_var(i, k) <= cluster_var(k)
print(
f"MIP Model: {len(prob.variables())} variables, {len(prob.constraints)} constraints"
)
print("MIP: Starting to solve...")
solver = pulp.PULP_CBC_CMD(timeLimit=time_limit, msg=0, warmStart=False, path=None)
status = prob.solve(solver)
print(
f"MIP: Solver status={pulp.LpStatus[prob.status]}, Objective value={pulp.value(prob.objective):.4f}"
)
if pulp.LpStatus[prob.status] != "Optimal":
print(
f"MIP solver status: {pulp.LpStatus[prob.status]}, solution not found, falling back to MST"
)
print("Model feasibility check:")
print(f"Total power: {turbines['power'].sum():.2f} MW")
print(f"Max cluster capacity: {max_mw:.2f} MW")
print(f"Number of clusters: {max_clusters}, Number of turbines: {n_turbines}")
for k in range(max_clusters):
cluster_power = pulp.value(
pulp.lpSum(
[
turbines.iloc[i]["power"] * assign_var(i, k)
for i in range(n_turbines)
]
)
)
cluster_used = pulp.value(cluster_var(k))
print(
f"Cluster {k}: Power={cluster_power:.2f} MW (max {max_mw * 1.2:.2f}), Used={cluster_used}"
)
from main import design_with_mst
connections = design_with_mst(turbines, substation)
return connections, turbines
cluster_assign = [-1] * n_turbines
active_clusters = []
for k in range(max_clusters):
if pulp.value(cluster_var(k)) > 0.5:
active_clusters.append(k)
for i in range(n_turbines):
assigned = False
for k in active_clusters:
if pulp.value(assign_var(i, k)) > 0.5:
cluster_assign[i] = k
assigned = True
break
if not assigned:
dists = [dist_matrix_full[0, i + 1] for k in active_clusters]
cluster_assign[i] = active_clusters[np.argmin(dists)]
clusters = defaultdict(list)
for i, c in enumerate(cluster_assign):
clusters[c].append(i)
connections = []
for c, members in clusters.items():
if len(members) == 0:
continue
coords = turbines.iloc[members][["x", "y"]].values
if len(members) > 1:
dm = distance_matrix(coords, coords)
mst = minimum_spanning_tree(dm).toarray()
for i in range(len(members)):
for j in range(len(members)):
if mst[i, j] > 0:
connections.append(
(
f"turbine_{members[i]}",
f"turbine_{members[j]}",
mst[i, j],
)
)
dists = [dist_matrix_full[0, m + 1] for m in members]
closest = members[np.argmin(dists)]
connections.append((f"turbine_{closest}", "substation", min(dists)))
turbines["cluster"] = cluster_assign
print(
f"MIP optimization completed successfully, {len(connections)} connections generated"
)
return connections, turbines