parent
62389acec5
commit
cff1dde6f4
114
run.m
114
run.m
|
|
@ -72,7 +72,7 @@ onlyQG=setdiff(QGi,PDQDi);
|
|||
%% 计算方差
|
||||
measureSigma=abs(([rVolt;rBranchP;rBranchQ;rTransP;rTransQ].*sigma));
|
||||
measureSigma(measureSigma<1e-6)=mean(measureSigma(measureSigma>1e-6));
|
||||
W=diag(1./measureSigma.^2) ;
|
||||
W=sparse(diag(1./measureSigma.^2)) ;
|
||||
% W=sparse(1:length(W),1:length(W),400,length(W),length(W));
|
||||
%% 冗余度计算
|
||||
stateVarCount=2*length(Volt);
|
||||
|
|
@ -97,7 +97,7 @@ fprintf('
|
|||
% load('mTransP');
|
||||
% load('mTransQ');
|
||||
%% 自己写的微分代码
|
||||
% 以下都是Jacobi矩阵
|
||||
% 初始化一些值
|
||||
SEVolt=sparse(ones(length(mVolt),1));
|
||||
SEVolt(Balance)=rVolt(Balance);
|
||||
SEVAngle=sparse(zeros(length(mVolt),1));
|
||||
|
|
@ -105,9 +105,13 @@ maxD=1000;
|
|||
Iteration=0;
|
||||
optimalCondition=100;
|
||||
eps=1e-4;
|
||||
mu=0;
|
||||
v=2;
|
||||
ojbFunDecrease=1000;% 目标函数下降
|
||||
% 以下都是Jacobi矩阵
|
||||
% while max(abs(g))>1e-5;
|
||||
% while maxD>1e-5
|
||||
while max(abs(maxD))>eps
|
||||
while max(abs(optimalCondition))>eps
|
||||
% 电压
|
||||
dV_dV=sparse(1:length(mVolt),1:length(mVolt),1,length(mVolt),length(mVolt));%电压量测量的微分
|
||||
dV_dTyta=sparse(length(mVolt),length(mVolt));
|
||||
|
|
@ -200,33 +204,33 @@ while max(abs(maxD))>eps
|
|||
,length(transI),length(mVolt));%变压器
|
||||
%% 考虑等式约束
|
||||
% 等式约束的Jacobi
|
||||
% r=newwordParameter.r;
|
||||
% c=newwordParameter.c;
|
||||
% Yangle=newwordParameter.Yangle;
|
||||
% VAngleIJ=sparse(r,c,SEVAngle(r)-SEVAngle(c) -Yangle,length(mVolt),length(mVolt)) ;
|
||||
% YdotSin=Y.* ( spfun(@sin,VAngleIJ) );
|
||||
% YdotCos=Y.* ( spfun (@cos, VAngleIJ ) );
|
||||
% diag_Volt_YdotCos=diag(SEVolt)*YdotCos;
|
||||
% diag_Volt_YdotSin=diag(SEVolt)*YdotSin;
|
||||
% YdotCosVolt=YdotCos*Volt;
|
||||
% YdotSinVolt=YdotSin*Volt;
|
||||
% diag_Volt_YdotCosVolt=diag_Volt_YdotCos*Volt;
|
||||
% diag_Volt_YdotSinVolt=diag_Volt_YdotSin*Volt;
|
||||
% diag_YdotSinVolt_=diag(YdotSinVolt);
|
||||
% diag_YdotCosVolt_=diag(YdotCosVolt);
|
||||
% dPdTyta=diag_Volt_YdotSin*diag(SEVolt)-diag_YdotSinVolt_*diag(SEVolt); % 简化第三次
|
||||
% dQdTyta=-diag_Volt_YdotCos*diag(SEVolt)+diag_YdotCosVolt_*diag(SEVolt);%dQ/dThyta
|
||||
% dPdV=diag_YdotCosVolt_+diag_Volt_YdotCos;%dP/dV
|
||||
% dQdV=diag_YdotSinVolt_+diag_Volt_YdotSin;%dQ/dV
|
||||
% % C 是等式约束 c 的Jacobi
|
||||
% C=[dPdV dPdTyta;
|
||||
% dQdV dQdTyta];
|
||||
% C=C(zerosInjectionIndex,:);
|
||||
% % 形成等式约束 c
|
||||
% nodeP=diag_Volt_YdotCosVolt;
|
||||
% nodeQ=diag_Volt_YdotSinVolt;
|
||||
% nodePQ=[nodeP;nodeQ];
|
||||
% c=nodePQ(zerosInjectionIndex);
|
||||
% r=newwordParameter.r;
|
||||
% c=newwordParameter.c;
|
||||
% Yangle=newwordParameter.Yangle;
|
||||
% VAngleIJ=sparse(r,c,SEVAngle(r)-SEVAngle(c) -Yangle,length(mVolt),length(mVolt)) ;
|
||||
% YdotSin=Y.* ( spfun(@sin,VAngleIJ) );
|
||||
% YdotCos=Y.* ( spfun (@cos, VAngleIJ ) );
|
||||
% diag_Volt_YdotCos=diag(SEVolt)*YdotCos;
|
||||
% diag_Volt_YdotSin=diag(SEVolt)*YdotSin;
|
||||
% YdotCosVolt=YdotCos*Volt;
|
||||
% YdotSinVolt=YdotSin*Volt;
|
||||
% diag_Volt_YdotCosVolt=diag_Volt_YdotCos*Volt;
|
||||
% diag_Volt_YdotSinVolt=diag_Volt_YdotSin*Volt;
|
||||
% diag_YdotSinVolt_=diag(YdotSinVolt);
|
||||
% diag_YdotCosVolt_=diag(YdotCosVolt);
|
||||
% dPdTyta=diag_Volt_YdotSin*diag(SEVolt)-diag_YdotSinVolt_*diag(SEVolt); % 简化第三次
|
||||
% dQdTyta=-diag_Volt_YdotCos*diag(SEVolt)+diag_YdotCosVolt_*diag(SEVolt);%dQ/dThyta
|
||||
% dPdV=diag_YdotCosVolt_+diag_Volt_YdotCos;%dP/dV
|
||||
% dQdV=diag_YdotSinVolt_+diag_Volt_YdotSin;%dQ/dV
|
||||
% % C 是等式约束 c 的Jacobi
|
||||
% C=[dPdV dPdTyta;
|
||||
% dQdV dQdTyta];
|
||||
% C=C(zerosInjectionIndex,:);
|
||||
% % 形成等式约束 c
|
||||
% nodeP=diag_Volt_YdotCosVolt;
|
||||
% nodeQ=diag_Volt_YdotSinVolt;
|
||||
% nodePQ=[nodeP;nodeQ];
|
||||
% c=nodePQ(zerosInjectionIndex);
|
||||
%% 进入迭代
|
||||
H=[dV_dV,dV_dTyta;
|
||||
dLPij_dVi+dLPij_dVj,dLPij_dThetai+dLPij_dThetaj ;
|
||||
|
|
@ -243,14 +247,19 @@ while max(abs(maxD))>eps
|
|||
z=[mVolt;mBranchP;mBranchQ;mTransP;mTransQ];
|
||||
G=H'*W*H;
|
||||
g=-H'*W*(z-h);
|
||||
|
||||
|
||||
% 形成大的求解矩阵
|
||||
% a=[G C';
|
||||
% C zeros(size(C,1),size(C,1))];
|
||||
% b=[-g;-c];
|
||||
% a=[G C';
|
||||
% C zeros(size(C,1),size(C,1))];
|
||||
% b=[-g;-c];
|
||||
% 利用 Levenber-Marquardt
|
||||
% if Iteration==0
|
||||
% mu=max(diag(G));
|
||||
% end
|
||||
a=G;
|
||||
b=-g;
|
||||
|
||||
|
||||
|
||||
% 平衡节点相角恒定
|
||||
a(length(mVolt)+Balance,:)=0;
|
||||
a(:,length(mVolt)+Balance)=0;
|
||||
|
|
@ -263,14 +272,41 @@ while max(abs(maxD))>eps
|
|||
b(Balance)=0;
|
||||
dX=a\b;
|
||||
dXStep=1;
|
||||
% dXStep=Armijo(z,newwordParameter,W,SEVolt,SEVAngle,dX,g );
|
||||
% dXStep=Armijo(z,newwordParameter,W,SEVolt,SEVAngle,dX,g );
|
||||
maxD=max(abs(dX(1:length(mVolt))))
|
||||
fprintf('max abs g:%f\n',full(max(abs(g))));
|
||||
% 更新变量
|
||||
SEVolt=SEVolt+dX(1:length(mVolt))*dXStep;
|
||||
Iteration=Iteration+1;
|
||||
SEVAngle=SEVAngle+dX(length(mVolt)+1:length(mVolt)*2)*dXStep;
|
||||
lamda=-dX(length(mVolt)*2+1:end);
|
||||
% % 计算目标函数下降量
|
||||
% preObjFun=(z-h)'*W*(z-h);
|
||||
% oldSEVolt=SEVolt;
|
||||
% oldSEVAngle=SEVAngle;
|
||||
% 求更新控制指标 p
|
||||
% p=(objfun( SEVolt,SEVAngle,W,z,newwordParameter ) - objfun( SEVolt+dX(1:length(mVolt))*dXStep,SEVAngle+dX(length(mVolt)+1:length(mVolt)*2)*dXStep,W,z,newwordParameter ) )/( .5*dX'*(mu*dX-g) );
|
||||
% if p>0 %接受更新
|
||||
% % 更新变量
|
||||
% SEVolt=SEVolt+dX(1:length(mVolt))*dXStep;
|
||||
% SEVAngle=SEVAngle+dX(length(mVolt)+1:length(mVolt)*2)*dXStep;
|
||||
% lamda=-dX(length(mVolt)*2+1:end);
|
||||
% mu=mu*max([1/3,1-(2*p-1)^3]);
|
||||
% v=2;
|
||||
% else
|
||||
% mu=mu*v;
|
||||
% v=2*v;
|
||||
% end
|
||||
|
||||
Iteration=Iteration+1;
|
||||
|
||||
|
||||
% % 更新后目标函数
|
||||
% h=[SEVolt;SEBranchP;SEBranchQ;SETransP;SETransQ];
|
||||
% ojbFunDecrease=preObjFun-(z-h)'*W*(z-h)
|
||||
% if ojbFunDecrease<1e-3
|
||||
% mu=100000;
|
||||
% else
|
||||
% mu=0;
|
||||
% end
|
||||
optimalCondition=-g;
|
||||
optimalCondition(Balance)=0;
|
||||
optimalCondition(Balance+length(mVolt))=0;
|
||||
|
|
@ -280,7 +316,7 @@ fprintf('
|
|||
fval=full((z-h)'*W*(z-h));
|
||||
fprintf('目标函数为:%f\n',fval);
|
||||
fprintf('相对误差\n');
|
||||
(abs(rVolt-double(SEVolt)))./(rVolt)
|
||||
(abs(rVolt-double(SEVolt)))./(rVolt);
|
||||
MaxDeviation(rVolt,SEVolt,rVAngel,SEVAngle)
|
||||
plotAndComparison( rVolt,rVAngel,SEVolt,SEVAngle )
|
||||
% 检查最优性条件
|
||||
|
|
|
|||
Loading…
Reference in New Issue