1.更新了公式
2.修复了dQij_dVi的公式 Signed-off-by: facat <facat@facat.cn>
This commit is contained in:
parent
5e07471ce3
commit
a4d726da90
47
run.m
47
run.m
|
|
@ -33,6 +33,8 @@ lineX=newwordParameter.line.lineX;
|
|||
lineB2=newwordParameter.line.lineB2;
|
||||
lineG=real(1./(lineR+1j*lineX));
|
||||
lineB=imag(1./(lineR+1j*lineX));
|
||||
% 处理线路电阻或电抗为0的情况,即消除NaN
|
||||
zerosRXInd=union(find(abs(lineR)<1e-5),find(abs(lineX)<1e-5));
|
||||
cmpBranchI=BranchI( cmpV,lineI,lineJ,lineR,lineX );%复数支路电流
|
||||
rBranchI=abs(cmpBranchI);% 支路电流幅值
|
||||
mBranchI=rBranchI.*(normrnd(0,sigma,length(rBranchI),1)+1);%支路电流量测量
|
||||
|
|
@ -47,6 +49,9 @@ mBranchP=rBranchP.*(normrnd(0,sigma,length(rBranchP),1)+1);%֧·
|
|||
rBranchQ=BranchQ( cmpV,cmpBranchI,lineI,lineB2 );
|
||||
% rBranchQ=rBranchQ(abs(rBranchQ)>1e-5);
|
||||
mBranchQ=rBranchQ.*(normrnd(0,sigma,length(rBranchQ),1)+1);%支路功率量测量
|
||||
% 处理线路电阻或电抗为0的情况,即消除NaN
|
||||
mBranchP=mBranchP(setdiff( 1:length(mBranchP),zerosRXInd));
|
||||
mBranchQ=mBranchQ(setdiff( 1:length(mBranchQ),zerosRXInd));
|
||||
%% 注入功率
|
||||
rPD=PD;
|
||||
PDi=find(PD~=0);
|
||||
|
|
@ -106,7 +111,7 @@ Iteration=0;
|
|||
while maxD>1e-3;
|
||||
dV_dV=sparse(1:length(mVolt),1:length(mVolt),1,length(mVolt),length(mVolt));%电压量测量的微分
|
||||
dV_dTyta=sparse(length(mVolt),length(mVolt));
|
||||
dLPij_dVi=sparse(1:length(lineI),lineJ, ...
|
||||
dLPij_dVi=sparse(1:length(lineI),lineI, ...
|
||||
-SEVolt(lineJ).*( ...
|
||||
lineG.*cos(SEVAngel(lineI)-SEVAngel(lineJ)) +lineB.*sin(SEVAngel(lineI)-SEVAngel(lineJ))...
|
||||
)...
|
||||
|
|
@ -117,7 +122,7 @@ dLPij_dVj=sparse(1:length(lineI),lineJ, ...
|
|||
lineG.*cos(SEVAngel(lineI)-SEVAngel(lineJ)) +lineB.*sin(SEVAngel(lineI)-SEVAngel(lineJ))...
|
||||
) ...
|
||||
,length(lineI),length(mVolt));%线路的
|
||||
dLPij_dThetai=sparse(1:length(lineI),lineJ, ...
|
||||
dLPij_dThetai=sparse(1:length(lineI),lineI, ...
|
||||
SEVolt(lineI).*SEVolt(lineJ).*( ...
|
||||
lineG.*sin(SEVAngel(lineI)-SEVAngel(lineJ)) -lineB.*cos(SEVAngel(lineI)-SEVAngel(lineJ))...
|
||||
)...
|
||||
|
|
@ -128,9 +133,9 @@ dLPij_dThetaj=sparse(1:length(lineI),lineJ, ...
|
|||
)...
|
||||
,length(lineI),length(mVolt));%线路的
|
||||
|
||||
dLQij_dVi=sparse(1:length(lineI),lineJ, ...
|
||||
dLQij_dVi=sparse(1:length(lineI),lineI, ...
|
||||
-SEVolt(lineJ).*( ...
|
||||
lineG.*cos(SEVAngel(lineI)-SEVAngel(lineJ)) -lineB.*sin(SEVAngel(lineI)-SEVAngel(lineJ))...
|
||||
lineG.*sin(SEVAngel(lineI)-SEVAngel(lineJ)) -lineB.*cos(SEVAngel(lineI)-SEVAngel(lineJ))...
|
||||
)...
|
||||
-2*(lineB+lineB2).*SEVolt(lineI) ...
|
||||
,length(lineI),length(mVolt));%线路的
|
||||
|
|
@ -139,7 +144,7 @@ dLQij_dVj=sparse(1:length(lineI),lineJ, ...
|
|||
lineG.*sin(SEVAngel(lineI)-SEVAngel(lineJ)) -lineB.*cos(SEVAngel(lineI)-SEVAngel(lineJ))...
|
||||
) ...
|
||||
,length(lineI),length(mVolt));%线路的
|
||||
dLQij_dThetai=sparse(1:length(lineI),lineJ, ...
|
||||
dLQij_dThetai=sparse(1:length(lineI),lineI, ...
|
||||
-SEVolt(lineI).*SEVolt(lineJ).*( ...
|
||||
lineG.*cos(SEVAngel(lineI)-SEVAngel(lineJ)) +lineB.*sin(SEVAngel(lineI)-SEVAngel(lineJ))...
|
||||
) ...
|
||||
|
|
@ -150,7 +155,6 @@ dLQij_dThetaj=sparse(1:length(lineI),lineJ, ...
|
|||
) ...
|
||||
,length(lineI),length(mVolt));%线路的
|
||||
% 处理线路电阻或电抗为0的情况,即消除NaN
|
||||
zerosRXInd=union(find(abs(lineR)<1e-5),find(abs(lineX)<1e-5));
|
||||
dLPij_dVi=dLPij_dVi(setdiff( 1:size(dLPij_dVi,1),zerosRXInd),:);
|
||||
dLPij_dVj=dLPij_dVj(setdiff( 1:size(dLPij_dVj,1),zerosRXInd),:);
|
||||
dLPij_dThetai=dLPij_dThetai(setdiff( 1:size(dLPij_dThetai,1),zerosRXInd),:);
|
||||
|
|
@ -160,16 +164,26 @@ dLQij_dVj=dLQij_dVj(setdiff( 1:size(dLQij_dVj,1),zerosRXInd),:);
|
|||
dLQij_dThetai=dLQij_dThetai(setdiff( 1:size(dLQij_dThetai,1),zerosRXInd),:);
|
||||
dLQij_dThetaj=dLQij_dThetaj(setdiff( 1:size(dLQij_dThetaj,1),zerosRXInd),:);
|
||||
% 对量测值做同样处理
|
||||
mBranchP=mBranchP(setdiff( 1:length(mBranchP),zerosRXInd));
|
||||
mBranchQ=mBranchQ(setdiff( 1:length(mBranchQ),zerosRXInd));
|
||||
|
||||
%% 进入迭代
|
||||
H=[dV_dV ,dV_dTyta;
|
||||
dLPij_dVi+dLPij_dVj, dLPij_dThetai+dLPij_dThetaj;
|
||||
dLQij_dVi+dLQij_dVj, dLQij_dThetai+dLQij_dThetaj];%jacobi
|
||||
% H=[dV_dV];
|
||||
h=[SEVolt;mBranchP;mBranchQ];
|
||||
z=[mVolt;mBranchP;mBranchQ];
|
||||
W=sparse(1:length(mVolt),1:length(mVolt),1/sigma.^2,length(mVolt),length(mVolt));
|
||||
% H=[dV_dV ,dV_dTyta;
|
||||
% dLPij_dVi+dLPij_dVj, dLPij_dThetai+dLPij_dThetaj;
|
||||
% dLQij_dVi+dLQij_dVj, dLQij_dThetai+dLQij_dThetaj];%jacobi
|
||||
|
||||
H=[dV_dV;
|
||||
dLPij_dVi+dLPij_dVj ;
|
||||
dLQij_dVi+dLQij_dVj ];%jacobi
|
||||
|
||||
SEBranchI=BranchI( SEVolt.*exp(1j*SEVAngel),lineI,lineJ,lineR,lineX );%复数支路电流
|
||||
SEBranchP=BranchP( SEVolt.*exp(1j*SEVAngel),SEBranchI,lineI,lineB2 );
|
||||
SEBranchQ=BranchQ( SEVolt.*exp(1j*SEVAngel),SEBranchI,lineI,lineB2 );
|
||||
SEBranchP=SEBranchP(setdiff( 1:length(SEBranchP),zerosRXInd));
|
||||
SEBranchQ=SEBranchQ(setdiff( 1:length(SEBranchQ),zerosRXInd));
|
||||
% h=[SEVolt;SEBranchP;SEBranchQ];
|
||||
% z=[mVolt;mBranchP;mBranchQ];
|
||||
h=[SEVolt;SEBranchP;SEBranchQ];
|
||||
z=[mVolt;mBranchP;mBranchP];
|
||||
W=sparse(1:length(h),1:length(h),1/sigma.^2,length(h),length(h));
|
||||
G=H'*W*H;
|
||||
g=-H'*W*(z-h);
|
||||
% 平衡节点相角恒定;
|
||||
|
|
@ -182,11 +196,10 @@ maxD=max(abs(dX))
|
|||
% 更新变量
|
||||
SEVolt=SEVolt+dX(1:length(mVolt));
|
||||
Iteration=Iteration+1;
|
||||
SEVAngel=SEVAngel+dX(length(mVolt)+1:end);
|
||||
% SEVAngel=SEVAngel+dX(length(mVolt)+1:end);
|
||||
end
|
||||
%% 输出结果
|
||||
fprintf('迭代%d次\n',Iteration);
|
||||
h=SEVolt;
|
||||
fval=full((z-h)'*W*(z-h));
|
||||
fprintf('目标函数为:%f\n',fval);
|
||||
fprintf('相对误差\n');
|
||||
|
|
|
|||
65
公式/公式.tex
65
公式/公式.tex
|
|
@ -25,7 +25,7 @@
|
|||
\end{equation}
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{S}^*_{12}&=V_1e^{j \theta_1}
|
||||
\dot{S}_{12}&=V_1e^{j \theta_1}
|
||||
\dot{I}^*_{12} \\
|
||||
&=V_1e^{j \theta_1}
|
||||
(V_1e^{-j \theta_1} - V_2e^{-j \theta_2})
|
||||
|
|
@ -50,15 +50,74 @@
|
|||
有功传输功率
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{P}_{ij}&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\
|
||||
P_{ij}&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\
|
||||
&=V_1^2G_{ij}-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
无功传输功率
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{Q}_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \theta_2)G_{ij} \\
|
||||
Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \theta_2)G_{ij} \\
|
||||
&=-V_1^2B_{ij}-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
线路有功功率Jacobi
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{ij}}{\partial V_1}=
|
||||
2V_1G_{ij}-V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{12}}{\partial V_2}=
|
||||
-V_1[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{12}}{\partial \theta_1}&=
|
||||
-V_1V_2[-sin(\theta_1 - \theta_2)G_{ij}+cos (\theta_1 - \theta_2)B_{ij}] \\
|
||||
&=V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{12}}{\partial \theta_2}&=
|
||||
-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial Q_{12}}{\partial V_1}&=
|
||||
-2V_1B_{12}-V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial Q_{12}}{\partial V_2}&=
|
||||
-V_1[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial Q_{12}}{\partial \theta_1}&=
|
||||
-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial Q_{12}}{\partial \theta_2}&=
|
||||
-V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
|
||||
&=V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\end{document}
|
||||
|
|
|
|||
Loading…
Reference in New Issue