stateestimation-self-deriva.../公式/公式.tex

124 lines
3.7 KiB
TeX

\documentclass[10pt,a4paper,final]{report}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{fontspec}%使用xetex
\setmainfont[BoldFont=黑体]{宋体} % 使用系统默认字体
\XeTeXlinebreaklocale "zh" % 针对中文进行断行
\XeTeXlinebreakskip = 0pt plus 1pt minus 0.1pt % 给予TeX断行一定自由度
\linespread{1.5} % 1.5倍行距
\begin{document}
线路功率(不考虑接地导纳)
\begin{equation}
\begin{aligned}
\dot{I}_{12}&=(V_1e^{j \theta_1} - V_2e^{j \theta_2})
(G_{ij}+jB_{ij})
\end{aligned}
\end{equation}
共轭后
\begin{equation}
\begin{aligned}
\dot{I}^*_{12}&=(V_1e^{-j \theta_1} - V_2e^{-j \theta_2})
(G_{ij}-jB_{ij})
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\dot{S}_{12}&=V_1e^{j \theta_1}
\dot{I}^*_{12} \\
&=V_1e^{j \theta_1}
(V_1e^{-j \theta_1} - V_2e^{-j \theta_2})
(G_{ij}-jB_{ij}) \\
&=(V_1e^{j \theta_1}V_1e^{-j \theta_1}
-V_1e^{j \theta_1}V_2e^{-j \theta_2}
)
(G_{ij}-jB_{ij}) \\
&=[V_1^2-V_1V_2e^{j (\theta_1 - \theta_2) }
]
(G_{ij}-jB_{ij}) \\
&=\{V_1^2-V_1V_2[cos(\theta_1 - \theta_2)+jsin (\theta_1 - \theta_2) ]\}
(G_{ij}-jB_{ij}) \\
&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij} \\
&+[V_1^2-V_1V_2cos(\theta_1 - \theta_2)](-jB_{ij}) \\
&-jV_1V_2sin (\theta_1 - \theta_2)G_{ij} \\
&-jV_1V_2sin (\theta_1 - \theta_2)(-jB_{ij}) \\
&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\
&-j[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-jV_1V_2sin (\theta_1 - \theta_2)G_{ij}
\end{aligned}
\end{equation}
有功传输功率
\begin{equation}
\begin{aligned}
P_{ij}&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\
&=V_1^2G_{ij}-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
无功传输功率
\begin{equation}
\begin{aligned}
Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \theta_2)G_{ij} \\
&=-V_1^2B_{ij}-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
线路有功功率Jacobi
\begin{equation}
\begin{aligned}
\frac{\partial P_{ij}}{\partial V_1}=
2V_1G_{ij}-V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial P_{12}}{\partial V_2}=
-V_1[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial P_{12}}{\partial \theta_1}&=
-V_1V_2[-sin(\theta_1 - \theta_2)G_{ij}+cos (\theta_1 - \theta_2)B_{ij}] \\
&=V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial P_{12}}{\partial \theta_2}&=
-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial Q_{12}}{\partial V_1}&=
-2V_1B_{12}-V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial Q_{12}}{\partial V_2}&=
-V_1[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial Q_{12}}{\partial \theta_1}&=
-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial Q_{12}}{\partial \theta_2}&=
-V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
&=V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\end{document}