3
run.m
3
run.m
@@ -1,5 +1,6 @@
|
|||||||
clear
|
clear
|
||||||
clc
|
clc
|
||||||
|
close all
|
||||||
% yalmip('clear')
|
% yalmip('clear')
|
||||||
addpath('.\Powerflow')
|
addpath('.\Powerflow')
|
||||||
[~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('E:\算例\feeder33\feeder33ieee.txt', '0');
|
[~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('E:\算例\feeder33\feeder33ieee.txt', '0');
|
||||||
@@ -9,7 +10,7 @@ sigma=0.03;%
|
|||||||
loop=1;
|
loop=1;
|
||||||
VoltAAE=0;
|
VoltAAE=0;
|
||||||
VAngleAAE=0;
|
VAngleAAE=0;
|
||||||
LineIndex=[1:16];
|
LineIndex=[1];
|
||||||
while 1
|
while 1
|
||||||
%% 电压
|
%% 电压
|
||||||
%电压幅值
|
%电压幅值
|
||||||
|
|||||||
113
公式/公式.tex
113
公式/公式.tex
@@ -203,6 +203,119 @@ Q_{ij}&=-\frac{V_1^2}{k^2}B_{ij}-\frac{V_1}{k} V_2[sin(\theta_1 - \theta_2)G_{ij
|
|||||||
\end{aligned}
|
\end{aligned}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
|
推导电流量测的公式
|
||||||
|
之前已经有
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\dot{I}_{12}&=(V_1e^{j \theta_1} - V_2e^{j \theta_2})
|
||||||
|
(G_{ij}+jB_{ij})
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
将其写成完全极坐标形式
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\dot{I}_{12}=(V_1e^{j \theta_1} - V_2e^{j \theta_2})
|
||||||
|
Y_{12}e^{j \alpha}
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\dot{I}_{12}=V_1e^{j \theta_1}Y_{12}e^{j \alpha} - V_2e^{j \theta_2}Y_{12}e^{j \alpha}
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\dot{I}_{12}=V_1Y_{12}e^{j \theta_1 + \alpha} - V_2eY_{12}^{j \theta_2+\alpha}
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
\dot{I}_{12}=V_1Y_{12}[cos(\theta_1 + \alpha) +1jsin(\theta_1 + \alpha)]
|
||||||
|
-V_2Y_{12}[cos(\theta_2 + \alpha) +1jsin(\theta_2 + \alpha)]
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
电流实部为
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
I_{r12}=V_1Y_{12}cos(\theta_1 + \alpha)
|
||||||
|
-V_2Y_{12}cos(\theta_2 + \alpha)
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
电流虚部为
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
I_{i12}=V_1Y_{12}sin(\theta_1 + \alpha)
|
||||||
|
-V_2Y_{12}sin(\theta_2 + \alpha)
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
对电流实部求导
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{\partial I_{r12}}{\partial V_1}=
|
||||||
|
Y_{12}cos(\theta_1 +\alpha)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{\partial I_{r12}}{\partial V_2}=
|
||||||
|
-Y_{12}cos(\theta_2 +\alpha)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{\partial I_{r12}}{\partial \theta_1}=
|
||||||
|
-V_1Y_{12}sin(\theta_1 +\alpha)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{\partial I_{r12}}{\partial \theta_2}=
|
||||||
|
V_2Y_{12}sin(\theta_2 +\alpha)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
对电流虚部求导
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{\partial I_{i12}}{\partial V_1}=
|
||||||
|
Y_{12}sin(\theta_1 +\alpha)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{\partial I_{i12}}{\partial V_2}=
|
||||||
|
-Y_{12}sin(\theta_2 +\alpha)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{\partial I_{i12}}{\partial \theta_1}=
|
||||||
|
V_1Y_{12}cos(\theta_1 +\alpha)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{\partial I_{i12}}{\partial \theta_2}=
|
||||||
|
-V_2Y_{12}cos(\theta_2 +\alpha)
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
状态估计中用得更多的是电流幅值的平方,即
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
I^2_{12}=I_{r12}^2+I_{i12}^2
|
||||||
|
\end{equation}
|
||||||
|
对其求导
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\frac{\partial I^2_{12}}{\partial V_1}=
|
||||||
|
2\frac{\partial I_{r12}}{\partial V_1}
|
||||||
|
+
|
||||||
|
2\frac{\partial I_{i12}}{\partial V_1}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
为了推潮流公式,先从简单的开始推起。
|
为了推潮流公式,先从简单的开始推起。
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
|||||||
Reference in New Issue
Block a user