1.加了电流幅值量测公式

2.在状态估计中加了电流量测

Signed-off-by: dmy@lab <dmy@lab.lab>
This commit is contained in:
dmy@lab 2015-04-08 10:23:11 +08:00
parent d8597b5a64
commit 7c43ae02f5
2 changed files with 115 additions and 1 deletions

3
run.m
View File

@ -1,5 +1,6 @@
clear
clc
close all
% yalmip('clear')
addpath('.\Powerflow')
[~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('E:\ËãÀý\feeder33\feeder33ieee.txt', '0');
@ -9,7 +10,7 @@ sigma=0.03;%
loop=1;
VoltAAE=0;
VAngleAAE=0;
LineIndex=[1:16];
LineIndex=[1];
while 1
%% µçѹ
%µçѹ·ùÖµ

View File

@ -203,6 +203,119 @@ Q_{ij}&=-\frac{V_1^2}{k^2}B_{ij}-\frac{V_1}{k} V_2[sin(\theta_1 - \theta_2)G_{ij
\end{aligned}
\end{equation}
推导电流量测的公式
之前已经有
\begin{equation}
\begin{aligned}
\dot{I}_{12}&=(V_1e^{j \theta_1} - V_2e^{j \theta_2})
(G_{ij}+jB_{ij})
\end{aligned}
\end{equation}
将其写成完全极坐标形式
\begin{equation}
\begin{aligned}
\dot{I}_{12}=(V_1e^{j \theta_1} - V_2e^{j \theta_2})
Y_{12}e^{j \alpha}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\dot{I}_{12}=V_1e^{j \theta_1}Y_{12}e^{j \alpha} - V_2e^{j \theta_2}Y_{12}e^{j \alpha}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\dot{I}_{12}=V_1Y_{12}e^{j \theta_1 + \alpha} - V_2eY_{12}^{j \theta_2+\alpha}
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\dot{I}_{12}=V_1Y_{12}[cos(\theta_1 + \alpha) +1jsin(\theta_1 + \alpha)]
-V_2Y_{12}[cos(\theta_2 + \alpha) +1jsin(\theta_2 + \alpha)]
\end{aligned}
\end{equation}
电流实部为
\begin{equation}
\begin{aligned}
I_{r12}=V_1Y_{12}cos(\theta_1 + \alpha)
-V_2Y_{12}cos(\theta_2 + \alpha)
\end{aligned}
\end{equation}
电流虚部为
\begin{equation}
\begin{aligned}
I_{i12}=V_1Y_{12}sin(\theta_1 + \alpha)
-V_2Y_{12}sin(\theta_2 + \alpha)
\end{aligned}
\end{equation}
对电流实部求导
\begin{equation}
\frac{\partial I_{r12}}{\partial V_1}=
Y_{12}cos(\theta_1 +\alpha)
\end{equation}
\begin{equation}
\frac{\partial I_{r12}}{\partial V_2}=
-Y_{12}cos(\theta_2 +\alpha)
\end{equation}
\begin{equation}
\frac{\partial I_{r12}}{\partial \theta_1}=
-V_1Y_{12}sin(\theta_1 +\alpha)
\end{equation}
\begin{equation}
\frac{\partial I_{r12}}{\partial \theta_2}=
V_2Y_{12}sin(\theta_2 +\alpha)
\end{equation}
对电流虚部求导
\begin{equation}
\frac{\partial I_{i12}}{\partial V_1}=
Y_{12}sin(\theta_1 +\alpha)
\end{equation}
\begin{equation}
\frac{\partial I_{i12}}{\partial V_2}=
-Y_{12}sin(\theta_2 +\alpha)
\end{equation}
\begin{equation}
\frac{\partial I_{i12}}{\partial \theta_1}=
V_1Y_{12}cos(\theta_1 +\alpha)
\end{equation}
\begin{equation}
\frac{\partial I_{i12}}{\partial \theta_2}=
-V_2Y_{12}cos(\theta_2 +\alpha)
\end{equation}
状态估计中用得更多的是电流幅值的平方,即
\begin{equation}
I^2_{12}=I_{r12}^2+I_{i12}^2
\end{equation}
对其求导
\begin{equation}
\frac{\partial I^2_{12}}{\partial V_1}=
2\frac{\partial I_{r12}}{\partial V_1}
+
2\frac{\partial I_{i12}}{\partial V_1}
\end{equation}
为了推潮流公式,先从简单的开始推起。
\begin{equation}