113
公式/公式.tex
113
公式/公式.tex
@@ -203,6 +203,119 @@ Q_{ij}&=-\frac{V_1^2}{k^2}B_{ij}-\frac{V_1}{k} V_2[sin(\theta_1 - \theta_2)G_{ij
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
|
||||
推导电流量测的公式
|
||||
之前已经有
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{I}_{12}&=(V_1e^{j \theta_1} - V_2e^{j \theta_2})
|
||||
(G_{ij}+jB_{ij})
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
将其写成完全极坐标形式
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{I}_{12}=(V_1e^{j \theta_1} - V_2e^{j \theta_2})
|
||||
Y_{12}e^{j \alpha}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{I}_{12}=V_1e^{j \theta_1}Y_{12}e^{j \alpha} - V_2e^{j \theta_2}Y_{12}e^{j \alpha}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{I}_{12}=V_1Y_{12}e^{j \theta_1 + \alpha} - V_2eY_{12}^{j \theta_2+\alpha}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\dot{I}_{12}=V_1Y_{12}[cos(\theta_1 + \alpha) +1jsin(\theta_1 + \alpha)]
|
||||
-V_2Y_{12}[cos(\theta_2 + \alpha) +1jsin(\theta_2 + \alpha)]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
电流实部为
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
I_{r12}=V_1Y_{12}cos(\theta_1 + \alpha)
|
||||
-V_2Y_{12}cos(\theta_2 + \alpha)
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
电流虚部为
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
I_{i12}=V_1Y_{12}sin(\theta_1 + \alpha)
|
||||
-V_2Y_{12}sin(\theta_2 + \alpha)
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
对电流实部求导
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial I_{r12}}{\partial V_1}=
|
||||
Y_{12}cos(\theta_1 +\alpha)
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial I_{r12}}{\partial V_2}=
|
||||
-Y_{12}cos(\theta_2 +\alpha)
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial I_{r12}}{\partial \theta_1}=
|
||||
-V_1Y_{12}sin(\theta_1 +\alpha)
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial I_{r12}}{\partial \theta_2}=
|
||||
V_2Y_{12}sin(\theta_2 +\alpha)
|
||||
\end{equation}
|
||||
|
||||
对电流虚部求导
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial I_{i12}}{\partial V_1}=
|
||||
Y_{12}sin(\theta_1 +\alpha)
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial I_{i12}}{\partial V_2}=
|
||||
-Y_{12}sin(\theta_2 +\alpha)
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial I_{i12}}{\partial \theta_1}=
|
||||
V_1Y_{12}cos(\theta_1 +\alpha)
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial I_{i12}}{\partial \theta_2}=
|
||||
-V_2Y_{12}cos(\theta_2 +\alpha)
|
||||
\end{equation}
|
||||
|
||||
状态估计中用得更多的是电流幅值的平方,即
|
||||
|
||||
\begin{equation}
|
||||
I^2_{12}=I_{r12}^2+I_{i12}^2
|
||||
\end{equation}
|
||||
对其求导
|
||||
|
||||
\begin{equation}
|
||||
\frac{\partial I^2_{12}}{\partial V_1}=
|
||||
2\frac{\partial I_{r12}}{\partial V_1}
|
||||
+
|
||||
2\frac{\partial I_{i12}}{\partial V_1}
|
||||
\end{equation}
|
||||
|
||||
|
||||
为了推潮流公式,先从简单的开始推起。
|
||||
|
||||
\begin{equation}
|
||||
|
||||
Reference in New Issue
Block a user