2013-08-14 22:25:16 +08:00
|
|
|
\documentclass[10pt,a4paper,final]{report}
|
|
|
|
|
\usepackage[utf8]{inputenc}
|
|
|
|
|
\usepackage{amsmath}
|
|
|
|
|
\usepackage{amsfonts}
|
|
|
|
|
\usepackage{amssymb}
|
|
|
|
|
\usepackage{fontspec}%使用xetex
|
2015-03-28 20:14:36 +08:00
|
|
|
\usepackage[top=1in, bottom=1in, left=1.0in, right=1.0in]{geometry}
|
2013-08-14 22:25:16 +08:00
|
|
|
\setmainfont[BoldFont=黑体]{宋体} % 使用系统默认字体
|
|
|
|
|
\XeTeXlinebreaklocale "zh" % 针对中文进行断行
|
|
|
|
|
\XeTeXlinebreakskip = 0pt plus 1pt minus 0.1pt % 给予TeX断行一定自由度
|
|
|
|
|
\linespread{1.5} % 1.5倍行距
|
2015-03-28 20:14:36 +08:00
|
|
|
|
2013-08-14 22:25:16 +08:00
|
|
|
\begin{document}
|
2013-08-15 20:59:36 +08:00
|
|
|
线路功率(不考虑接地导纳)
|
2013-08-14 22:25:16 +08:00
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
2013-08-15 21:34:40 +08:00
|
|
|
\dot{I}_{12}&=(V_1e^{j \theta_1} - V_2e^{j \theta_2})
|
|
|
|
|
(G_{ij}+jB_{ij})
|
2013-08-14 22:25:16 +08:00
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
2013-08-15 21:34:40 +08:00
|
|
|
共轭后
|
2013-08-15 20:59:36 +08:00
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
2013-08-15 21:34:40 +08:00
|
|
|
\dot{I}^*_{12}&=(V_1e^{-j \theta_1} - V_2e^{-j \theta_2})
|
|
|
|
|
(G_{ij}-jB_{ij})
|
2013-08-15 20:59:36 +08:00
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
2013-08-17 11:44:02 +08:00
|
|
|
\dot{S}_{12}&=V_1e^{j \theta_1}
|
2013-08-15 20:59:36 +08:00
|
|
|
\dot{I}^*_{12} \\
|
2013-08-15 21:34:40 +08:00
|
|
|
&=V_1e^{j \theta_1}
|
|
|
|
|
(V_1e^{-j \theta_1} - V_2e^{-j \theta_2})
|
|
|
|
|
(G_{ij}-jB_{ij}) \\
|
|
|
|
|
&=(V_1e^{j \theta_1}V_1e^{-j \theta_1}
|
|
|
|
|
-V_1e^{j \theta_1}V_2e^{-j \theta_2}
|
2013-08-15 20:59:36 +08:00
|
|
|
)
|
2013-08-15 21:34:40 +08:00
|
|
|
(G_{ij}-jB_{ij}) \\
|
|
|
|
|
&=[V_1^2-V_1V_2e^{j (\theta_1 - \theta_2) }
|
|
|
|
|
]
|
|
|
|
|
(G_{ij}-jB_{ij}) \\
|
|
|
|
|
&=\{V_1^2-V_1V_2[cos(\theta_1 - \theta_2)+jsin (\theta_1 - \theta_2) ]\}
|
|
|
|
|
(G_{ij}-jB_{ij}) \\
|
|
|
|
|
&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij} \\
|
|
|
|
|
&+[V_1^2-V_1V_2cos(\theta_1 - \theta_2)](-jB_{ij}) \\
|
|
|
|
|
&-jV_1V_2sin (\theta_1 - \theta_2)G_{ij} \\
|
|
|
|
|
&-jV_1V_2sin (\theta_1 - \theta_2)(-jB_{ij}) \\
|
|
|
|
|
&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\
|
|
|
|
|
&-j[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-jV_1V_2sin (\theta_1 - \theta_2)G_{ij}
|
2013-08-15 20:59:36 +08:00
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
2013-08-15 21:34:40 +08:00
|
|
|
有功传输功率
|
2013-08-15 20:59:36 +08:00
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
2013-08-17 11:44:02 +08:00
|
|
|
P_{ij}&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\
|
2013-08-15 21:34:40 +08:00
|
|
|
&=V_1^2G_{ij}-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
2013-08-15 20:59:36 +08:00
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
2013-08-15 21:34:40 +08:00
|
|
|
无功传输功率
|
2013-08-15 20:59:36 +08:00
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
2013-08-17 11:44:02 +08:00
|
|
|
Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \theta_2)G_{ij} \\
|
2013-08-15 21:34:40 +08:00
|
|
|
&=-V_1^2B_{ij}-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
2013-08-15 20:59:36 +08:00
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
2013-08-17 11:44:02 +08:00
|
|
|
线路有功功率Jacobi
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{ij}}{\partial V_1}=
|
|
|
|
|
2V_1G_{ij}-V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{12}}{\partial V_2}=
|
|
|
|
|
-V_1[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{12}}{\partial \theta_1}&=
|
|
|
|
|
-V_1V_2[-sin(\theta_1 - \theta_2)G_{ij}+cos (\theta_1 - \theta_2)B_{ij}] \\
|
|
|
|
|
&=V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{12}}{\partial \theta_2}&=
|
|
|
|
|
-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
2013-08-17 16:35:46 +08:00
|
|
|
线路无功功率Jacobi
|
2013-08-17 11:44:02 +08:00
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial Q_{12}}{\partial V_1}&=
|
|
|
|
|
-2V_1B_{12}-V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial Q_{12}}{\partial V_2}&=
|
|
|
|
|
-V_1[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial Q_{12}}{\partial \theta_1}&=
|
|
|
|
|
-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial Q_{12}}{\partial \theta_2}&=
|
|
|
|
|
-V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
|
|
|
|
|
&=V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
2013-08-17 16:35:46 +08:00
|
|
|
变压器支路功率
|
|
|
|
|
\newline
|
|
|
|
|
变压器模型为
|
|
|
|
|
\newline
|
|
|
|
|
\begin{center}
|
|
|
|
|
----k:1----z----高压侧 \\
|
|
|
|
|
or \\
|
|
|
|
|
i----k:1----z----j \\
|
|
|
|
|
\end{center}
|
|
|
|
|
变压器支路功率
|
|
|
|
|
\newline
|
|
|
|
|
变压器有功输送功率
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
2013-08-31 11:48:03 +08:00
|
|
|
P_{ij}&=\frac{V_1^2}{k^2} G_{ij}-\frac{V_1}{k} V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
2013-08-17 16:35:46 +08:00
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
变压器无功输送功率
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
2013-08-31 11:48:03 +08:00
|
|
|
Q_{ij}&=-\frac{V_1^2}{k^2}B_{ij}-\frac{V_1}{k} V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
2013-08-17 16:35:46 +08:00
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
变压器输送有功功率Jacobi
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{ij}}{\partial V_1}=
|
|
|
|
|
2\frac{V_1}{k^2}G_{ij}-\frac{V_2}{k}[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{12}}{\partial V_2}=
|
|
|
|
|
-\frac{V_1}{k}[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{12}}{\partial \theta_1}
|
|
|
|
|
&=\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{12}}{\partial \theta_2}&=
|
|
|
|
|
-\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
变压器输送无功功率Jacobi
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial Q_{12}}{\partial V_1}&=
|
|
|
|
|
-2\frac{V_1}{k^2}B_{12}-\frac{V_2}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial Q_{12}}{\partial V_2}&=
|
|
|
|
|
-\frac{V_1}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial Q_{12}}{\partial \theta_1}&=
|
|
|
|
|
-\frac{V_1}{k}V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial Q_{12}}{\partial \theta_2}
|
|
|
|
|
&=\frac{V_1}{k}V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
2015-03-28 20:14:36 +08:00
|
|
|
为了推潮流公式,先从简单的开始推起。
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\Delta P =diag ( \left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1\\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
a & b \\
|
|
|
|
|
c & d
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1\\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\Delta P =
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
aV_1^2+bV_1V_2 \\
|
|
|
|
|
cV_1V_2+dV_2^2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\end{equation}
|
|
|
|
|
所以
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
\dfrac{\Delta P}{\partial V}&=
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
2aV_1+bV_2 & bV_1\\
|
|
|
|
|
cV_2 & cV_1+2dV_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right] \\
|
|
|
|
|
&=diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1\\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
a & b\\
|
|
|
|
|
c & d
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
+diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
a & b\\
|
|
|
|
|
c & d
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1\\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\end{array}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
再看
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\Delta P =diag ( \left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1\\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
cos(t_1-t_1) & cos(t_1-t_2) \\
|
|
|
|
|
cos(t_2-t_1) & cos(t_2-t_2)
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1\\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\Delta P=
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1cos(t_1-t_1)+V_2cos(t_1-t_2) \\
|
|
|
|
|
V_1cos(t_2-t_1)+V_2cos(t_2-t_2) \\
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\frac{\Delta P}{\partial t}=
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
-V_2sin(t_1-t_2) & V_2sin(t_1-t_2) \\
|
|
|
|
|
V_1sin(t_2-t_1) & -V_1sin(t_2-t_1) \\
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\end{equation}
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\frac{\Delta P}{\partial t}=
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\\
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
V_1sin(t_1-t_1)-V_2sin(t_1-t_2)-V_1sin(t_1-t_1) & V_2sin(t_1-t_2) \\
|
|
|
|
|
V_1sin(t_2-t_1) & V_2sin(t_2-t_2)-V_2sin(t_2-t_2)-V_1sin(t_2-t_1)
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\end{array}
|
|
|
|
|
\end{equation}
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\frac{\Delta P}{\partial t}=
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\left\{
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
sin(t_1-t_1) & sin(t_1-t_2) \\
|
|
|
|
|
sin(t_2-t_1) & sin(t_2-t_2)
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
-
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
sin(t_1-t_1) & sin(t_1-t_2) \\
|
|
|
|
|
sin(t_2-t_1) & sin(t_2-t_2)
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1\\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\right\}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
2015-03-28 21:57:04 +08:00
|
|
|
接下来推导潮流无功公式
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\Delta Q =diag ( \left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1\\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
sin(t_1-t_1) & sin(t_1-t_2) \\
|
|
|
|
|
sin(t_2-t_1) & sin(t_2-t_2)
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1\\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\Delta Q=
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1sin(t_1-t_1)+V_2sin(t_1-t_2) \\
|
|
|
|
|
V_1sin(t_2-t_1)+V_2sin(t_2-t_2) \\
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\dfrac{\partial \Delta Q}{\partial t}=
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
V_2cos(t_1-t_2) & -V_2cos(t_1-t_2) \\
|
|
|
|
|
-V_1cos(t_2-t_1) & V_1cos(t_2-t_1)
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\dfrac{\partial \Delta Q}{\partial t}=
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)\\
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
-V_1cos(t_1-t_1) & -V_2cos(t_1-t_2) \\
|
|
|
|
|
-V_1cos(t_2-t_1) & -V_2cos(t_2-t_2)
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
+
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
V_1cos(t_1-t_1)+V_2cos(t_1-t_2) & 0 \\
|
|
|
|
|
0 & V_1cos(t_2-t_1)+V_2cos(t_2-t_2)
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
|
|
|
|
|
\end{array}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\dfrac{\partial \Delta Q}{\partial t}=
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\left\{
|
|
|
|
|
-
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
cos(t_1-t_1) & cos(t_1-t_2) \\
|
|
|
|
|
cos(t_2-t_1) & cos(t_2-t_2)
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
+diag(
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{cc}
|
|
|
|
|
cos(t_1-t_1) & cos(t_1-t_2) \\
|
|
|
|
|
cos(t_2-t_1) & cos(t_2-t_2)
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
\left[
|
|
|
|
|
\begin{array}{c}
|
|
|
|
|
V_1 \\
|
|
|
|
|
V_2
|
|
|
|
|
\end{array}
|
|
|
|
|
\right]
|
|
|
|
|
)
|
|
|
|
|
\right\}
|
|
|
|
|
\end{equation}
|
2015-03-28 20:14:36 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
潮流方程有功的公式为
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\Delta P=diag(V)[Y.*cos(\theta e^T -e \theta^T-\alpha)]V+P_{D}-P_{G}=0
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\frac{\partial P}{\partial V}=
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
ps.已检验过线路以及变压器支路的公式。
|
2013-08-22 15:14:22 +08:00
|
|
|
\par
|
|
|
|
|
以上公式已经可以完成状态估计,若要实现更好的收敛性,需要利用二阶导数。
|
|
|
|
|
\par
|
|
|
|
|
线路支路功率二阶导数
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial^2 P_{12}}{\partial V_1^2}&=
|
|
|
|
|
\frac{-2}{k^2}B_{12}\\
|
|
|
|
|
&=\frac{-2B_{12}}{k^2}
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial^2 P_{12}}{\partial V_1 \partial V_2 }&=
|
|
|
|
|
\frac{-1}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
|
|
|
|
|
&=
|
|
|
|
|
\frac{-[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]}{k}
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial^2 P_{12}}{\partial V_2^2}&=0
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{12}}{\partial \theta_1^2}&=
|
|
|
|
|
V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{12}}{\partial \theta_1 \partial \theta_2}&=
|
|
|
|
|
V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
|
|
|
|
|
&=
|
|
|
|
|
-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
|
|
\begin{equation}
|
|
|
|
|
\begin{aligned}
|
|
|
|
|
\frac{\partial P_{12}}{\partial \theta_2^2}&=
|
|
|
|
|
-V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
|
|
|
|
|
&=
|
|
|
|
|
V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
|
|
|
|
\end{aligned}
|
|
|
|
|
\end{equation}
|
2013-08-17 11:44:02 +08:00
|
|
|
|
2013-08-15 20:59:36 +08:00
|
|
|
\end{document}
|