parent
c4aeb069b4
commit
6de744f51c
51
公式/公式.tex
51
公式/公式.tex
|
|
@ -204,5 +204,56 @@ Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \the
|
|||
\end{equation}
|
||||
|
||||
ps.已检验过线路的公式。
|
||||
\par
|
||||
以上公式已经可以完成状态估计,若要实现更好的收敛性,需要利用二阶导数。
|
||||
\par
|
||||
线路支路功率二阶导数
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial^2 P_{12}}{\partial V_1^2}&=
|
||||
\frac{-2}{k^2}B_{12}\\
|
||||
&=\frac{-2B_{12}}{k^2}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial^2 P_{12}}{\partial V_1 \partial V_2 }&=
|
||||
\frac{-1}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
|
||||
&=
|
||||
\frac{-[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]}{k}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial^2 P_{12}}{\partial V_2^2}&=0
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{12}}{\partial \theta_1^2}&=
|
||||
V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{12}}{\partial \theta_1 \partial \theta_2}&=
|
||||
V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
|
||||
&=
|
||||
-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
\frac{\partial P_{12}}{\partial \theta_2^2}&=
|
||||
-V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\
|
||||
&=
|
||||
V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\end{document}
|
||||
|
|
|
|||
Loading…
Reference in New Issue