diff --git a/公式/公式.tex b/公式/公式.tex index 33f19dd..73dc7ff 100644 --- a/公式/公式.tex +++ b/公式/公式.tex @@ -204,5 +204,56 @@ Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \the \end{equation} ps.已检验过线路的公式。 +\par +以上公式已经可以完成状态估计,若要实现更好的收敛性,需要利用二阶导数。 +\par +线路支路功率二阶导数 +\begin{equation} +\begin{aligned} +\frac{\partial^2 P_{12}}{\partial V_1^2}&= +\frac{-2}{k^2}B_{12}\\ +&=\frac{-2B_{12}}{k^2} +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial^2 P_{12}}{\partial V_1 \partial V_2 }&= +\frac{-1}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\ +&= +\frac{-[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]}{k} +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial^2 P_{12}}{\partial V_2^2}&=0 +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial P_{12}}{\partial \theta_1^2}&= +V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial P_{12}}{\partial \theta_1 \partial \theta_2}&= +V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\ +&= +-V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial P_{12}}{\partial \theta_2^2}&= +-V_1V_2[-cos(\theta_1 - \theta_2)G_{ij}-sin (\theta_1 - \theta_2)B_{ij}] \\ +&= +V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} \end{document}