添加变压器支路的公式

Signed-off-by: facat <facat@facat.cn>
This commit is contained in:
facat 2013-08-17 16:35:46 +08:00
parent a4d726da90
commit 4ea4ceb639
2 changed files with 92 additions and 7 deletions

12
run.m
View File

@ -2,7 +2,7 @@ clear
clc clc
% yalmip('clear') % yalmip('clear')
addpath('.\Powerflow') addpath('.\Powerflow')
[~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('ieee14.dat', '0'); [~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('ieee4.dat', '0');
%% %%
% %
%% %%
@ -170,9 +170,9 @@ dLQij_dThetaj=dLQij_dThetaj(setdiff( 1:size(dLQij_dThetaj,1),zerosRXInd),:);
% dLPij_dVi+dLPij_dVj, dLPij_dThetai+dLPij_dThetaj; % dLPij_dVi+dLPij_dVj, dLPij_dThetai+dLPij_dThetaj;
% dLQij_dVi+dLQij_dVj, dLQij_dThetai+dLQij_dThetaj];%jacobi % dLQij_dVi+dLQij_dVj, dLQij_dThetai+dLQij_dThetaj];%jacobi
H=[dV_dV; H=[dV_dV,dV_dTyta;
dLPij_dVi+dLPij_dVj ; dLPij_dVi+dLPij_dVj,dLPij_dThetai+dLPij_dThetaj ;
dLQij_dVi+dLQij_dVj ];%jacobi dLQij_dVi+dLQij_dVj,dLQij_dThetai+dLQij_dThetaj ];%jacobi
SEBranchI=BranchI( SEVolt.*exp(1j*SEVAngel),lineI,lineJ,lineR,lineX );% SEBranchI=BranchI( SEVolt.*exp(1j*SEVAngel),lineI,lineJ,lineR,lineX );%
SEBranchP=BranchP( SEVolt.*exp(1j*SEVAngel),SEBranchI,lineI,lineB2 ); SEBranchP=BranchP( SEVolt.*exp(1j*SEVAngel),SEBranchI,lineI,lineB2 );
@ -194,9 +194,9 @@ g=-H'*W*(z-h);
dX=G\-g; dX=G\-g;
maxD=max(abs(dX)) maxD=max(abs(dX))
% %
SEVolt=SEVolt+dX(1:length(mVolt)); % SEVolt=SEVolt+dX(1:length(mVolt));
Iteration=Iteration+1; Iteration=Iteration+1;
% SEVAngel=SEVAngel+dX(length(mVolt)+1:end); SEVAngel=SEVAngel+dX(1:end);
end end
%% %%
fprintf('%d\n',Iteration); fprintf('%d\n',Iteration);

View File

@ -90,7 +90,7 @@ Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \the
-V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\ -V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
\end{aligned} \end{aligned}
\end{equation} \end{equation}
线路无功功率Jacobi
\begin{equation} \begin{equation}
\begin{aligned} \begin{aligned}
\frac{\partial Q_{12}}{\partial V_1}&= \frac{\partial Q_{12}}{\partial V_1}&=
@ -119,5 +119,90 @@ Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \the
&=V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] &=V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned} \end{aligned}
\end{equation} \end{equation}
变压器支路功率
\newline
变压器模型为
\newline
\begin{center}
----k:1----z----高压侧 \\
or \\
i----k:1----z----j \\
\end{center}
变压器支路功率
\newline
变压器有功输送功率
\begin{equation}
\begin{aligned}
P_{ij}&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\
&=\frac{V_1^2}{k^2} G_{ij}-\frac{V_1}{k} V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
变压器无功输送功率
\begin{equation}
\begin{aligned}
Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \theta_2)G_{ij} \\
&=-\frac{V_1^2}{k^2}B_{ij}-\frac{V_1}{k} V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
变压器输送有功功率Jacobi
\begin{equation}
\begin{aligned}
\frac{\partial P_{ij}}{\partial V_1}=
2\frac{V_1}{k^2}G_{ij}-\frac{V_2}{k}[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial P_{12}}{\partial V_2}=
-\frac{V_1}{k}[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial P_{12}}{\partial \theta_1}
&=\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial P_{12}}{\partial \theta_2}&=
-\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\
\end{aligned}
\end{equation}
变压器输送无功功率Jacobi
\begin{equation}
\begin{aligned}
\frac{\partial Q_{12}}{\partial V_1}&=
-2\frac{V_1}{k^2}B_{12}-\frac{V_2}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial Q_{12}}{\partial V_2}&=
-\frac{V_1}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial Q_{12}}{\partial \theta_1}&=
-\frac{V_1}{k}V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
\begin{equation}
\begin{aligned}
\frac{\partial Q_{12}}{\partial \theta_2}
&=\frac{V_1}{k}V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}]
\end{aligned}
\end{equation}
ps.已检验过线路的公式。
\end{document} \end{document}