From 4ea4ceb639c6dabcb9628789ba0e50237af8c9f7 Mon Sep 17 00:00:00 2001 From: facat Date: Sat, 17 Aug 2013 16:35:46 +0800 Subject: [PATCH] =?UTF-8?q?=E6=B7=BB=E5=8A=A0=E5=8F=98=E5=8E=8B=E5=99=A8?= =?UTF-8?q?=E6=94=AF=E8=B7=AF=E7=9A=84=E5=85=AC=E5=BC=8F?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: facat --- run.m | 12 +++---- 鍏紡/鍏紡.tex | 87 ++++++++++++++++++++++++++++++++++++++++++++++++++- 2 files changed, 92 insertions(+), 7 deletions(-) diff --git a/run.m b/run.m index c555055..a27cf96 100644 --- a/run.m +++ b/run.m @@ -2,7 +2,7 @@ clear clc % yalmip('clear') addpath('.\Powerflow') -[~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('ieee14.dat', '0'); +[~, ~, ~, ~,Volt,Vangle,Y,Yangle,r,c,newwordParameter,PG,QG,PD,QD,Balance]=pf('ieee4.dat', '0'); %% 量测量 % 电压 节点电流 支路电流 节点功率 支路功率 %% @@ -170,9 +170,9 @@ dLQij_dThetaj=dLQij_dThetaj(setdiff( 1:size(dLQij_dThetaj,1),zerosRXInd),:); % dLPij_dVi+dLPij_dVj, dLPij_dThetai+dLPij_dThetaj; % dLQij_dVi+dLQij_dVj, dLQij_dThetai+dLQij_dThetaj];%jacobi -H=[dV_dV; - dLPij_dVi+dLPij_dVj ; - dLQij_dVi+dLQij_dVj ];%jacobi +H=[dV_dV,dV_dTyta; + dLPij_dVi+dLPij_dVj,dLPij_dThetai+dLPij_dThetaj ; + dLQij_dVi+dLQij_dVj,dLQij_dThetai+dLQij_dThetaj ];%jacobi SEBranchI=BranchI( SEVolt.*exp(1j*SEVAngel),lineI,lineJ,lineR,lineX );%复数支路电流 SEBranchP=BranchP( SEVolt.*exp(1j*SEVAngel),SEBranchI,lineI,lineB2 ); @@ -194,9 +194,9 @@ g=-H'*W*(z-h); dX=G\-g; maxD=max(abs(dX)) % 更新变量 -SEVolt=SEVolt+dX(1:length(mVolt)); +% SEVolt=SEVolt+dX(1:length(mVolt)); Iteration=Iteration+1; -% SEVAngel=SEVAngel+dX(length(mVolt)+1:end); +SEVAngel=SEVAngel+dX(1:end); end %% 输出结果 fprintf('迭代%d次\n',Iteration); diff --git a/鍏紡/鍏紡.tex b/鍏紡/鍏紡.tex index 781bc6b..33f19dd 100644 --- a/鍏紡/鍏紡.tex +++ b/鍏紡/鍏紡.tex @@ -90,7 +90,7 @@ Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \the -V_1V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\ \end{aligned} \end{equation} - +绾胯矾鏃犲姛鍔熺巼Jacobi \begin{equation} \begin{aligned} \frac{\partial Q_{12}}{\partial V_1}&= @@ -119,5 +119,90 @@ Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \the &=V_1V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] \end{aligned} \end{equation} +鍙樺帇鍣ㄦ敮璺姛鐜 +\newline +鍙樺帇鍣ㄦā鍨嬩负 +\newline +\begin{center} +----k:1----z----楂樺帇渚 \\ +or \\ +i----k:1----z----j \\ +\end{center} +鍙樺帇鍣ㄦ敮璺姛鐜 +\newline +鍙樺帇鍣ㄦ湁鍔熻緭閫佸姛鐜 +\begin{equation} +\begin{aligned} +P_{ij}&=[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]G_{ij}-V_1V_2sin (\theta_1 - \theta_2)B_{ij} \\ +&=\frac{V_1^2}{k^2} G_{ij}-\frac{V_1}{k} V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} +鍙樺帇鍣ㄦ棤鍔熻緭閫佸姛鐜 +\begin{equation} +\begin{aligned} +Q_{ij}&=-[V_1^2-V_1V_2cos(\theta_1 - \theta_2)]B_{ij}-V_1V_2sin (\theta_1 - \theta_2)G_{ij} \\ +&=-\frac{V_1^2}{k^2}B_{ij}-\frac{V_1}{k} V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} +鍙樺帇鍣ㄨ緭閫佹湁鍔熷姛鐜嘕acobi +\begin{equation} +\begin{aligned} +\frac{\partial P_{ij}}{\partial V_1}= +2\frac{V_1}{k^2}G_{ij}-\frac{V_2}{k}[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial P_{12}}{\partial V_2}= +-\frac{V_1}{k}[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial P_{12}}{\partial \theta_1} +&=\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial P_{12}}{\partial \theta_2}&= +-\frac{V_1}{k}V_2[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] \\ +\end{aligned} +\end{equation} + +鍙樺帇鍣ㄨ緭閫佹棤鍔熷姛鐜嘕acobi + +\begin{equation} +\begin{aligned} +\frac{\partial Q_{12}}{\partial V_1}&= +-2\frac{V_1}{k^2}B_{12}-\frac{V_2}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial Q_{12}}{\partial V_2}&= +-\frac{V_1}{k}[sin(\theta_1 - \theta_2)G_{ij}-cos (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial Q_{12}}{\partial \theta_1}&= +-\frac{V_1}{k}V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +\frac{\partial Q_{12}}{\partial \theta_2} +&=\frac{V_1}{k}V_2[cos(\theta_1 - \theta_2)G_{ij}+sin (\theta_1 - \theta_2)B_{ij}] +\end{aligned} +\end{equation} + +ps.宸叉楠岃繃绾胯矾鐨勫叕寮忋 \end{document}