pes2014/jacobian_M.m

61 lines
2.3 KiB
Mathematica
Raw Normal View History

2012-05-22 11:33:21 +08:00
function Jacob=jacobian_M(Busnum,Volt,Y,Angle,AngleIJMat)
%**************************************************************************
% <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> : <EFBFBD>Ӻ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>γ<EFBFBD><EFBFBD>ſɱȾ<EFBFBD><EFBFBD><EFBFBD>Jacobian
% <EFBFBD><EFBFBD> <EFBFBD>ߣ<EFBFBD>
% <EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD>2010.12
%**************************************************************************
%% <EFBFBD>ֱ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ſ˱Ⱦ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>H,L,N,J<EFBFBD><EFBFBD><EFBFBD>й<EFBFBD><EFBFBD>޹<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>P,Q
temp1=-Volt'*Volt.*Y;
AngleIJ=AngleIJMat-Angle;
temp11=Volt'*ones(1,Busnum).*Y;
temp2=sum(temp1.*sin(AngleIJ),2);
temp22 = sum(temp11.*sin(AngleIJ),2);
temp3 = sum(temp1.*cos(AngleIJ),2);
temp33 = sum(temp11.*cos(AngleIJ),2);
temp4=diag(temp2);
temp44=diag(temp22);
temp5=diag(temp3);
temp55=diag(temp33);
%<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Lii<EFBFBD><EFBFBD><EFBFBD>ۼ<EFBFBD><EFBFBD><EFBFBD>
t1=ones(Busnum,1)*Volt.*Y;
t2=sum(t1.*sin(AngleIJ),2);
t3=sum(t1.*cos(AngleIJ),2);
t4=diag(t2);
t5=diag(t3);
H = temp1.*sin(AngleIJ)-temp4;%
L = -temp11.*sin(AngleIJ);%
%L(1:Busnum,1:Busnum)=-temp44+;
L=L-t4;
N=-temp11.*cos(AngleIJ);%
%N(1:Busnum,1:Busnum)=-temp55-diag(diag(temp11.*cos(Angle) ) );
N=N-t5;
J = -temp1.*cos(AngleIJ)+temp5;%
%%
%Q = Q0+temp2'; %<EFBFBD><EFBFBD><EFBFBD>й<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>P
%P = P0+temp3'; %<EFBFBD><EFBFBD><EFBFBD>޹<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Q
%% <EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƽ<EFBFBD><EFBFBD><EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD>pv<EFBFBD>ڵ<EFBFBD>
% H(:,Balance) = 0;
% H(Balance,:) = 0;
% H(Balance,Balance) = 100; % ƽ<EFBFBD><EFBFBD><EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD>Ӧ<EFBFBD>ĶԽ<EFBFBD>Ԫ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
% L(:,PVi) = 0;
% L(PVi,:) = 0;
% L = L+sparse(PVi,PVi,ones(1,length(PVi)),Busnum,Busnum); % PV<EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD>Ӧ<EFBFBD>ĶԽ<EFBFBD>Ԫ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ1
% J(:,Balance) = 0;
% J(PVi,:) = 0;
% N(:,PVi) = 0;
% N(Balance,:) = 0;
% Q(PVi) = 0; % <EFBFBD><EFBFBD>pv<EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>޹<EFBFBD><EFBFBD><EFBFBD>ƽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
% P(Balance) = 0; % ƽ<EFBFBD><EFBFBD><EFBFBD>ڵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>й<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʲ<EFBFBD>ƽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
%% <EFBFBD>ϳ<EFBFBD>PQ<EFBFBD><EFBFBD><EFBFBD>ſɱȾ<EFBFBD><EFBFBD><EFBFBD>
t1=zeros(2*Busnum);
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
% t1(1:)
% PQ = cat(2,P,Q); % <EFBFBD>γɹ<EFBFBD><EFBFBD>ʲ<EFBFBD>ƽ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
%Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % <EFBFBD>γ<EFBFBD>Jacobian<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
Jacob=t1;
end