parent
703802da3f
commit
18dea8045f
3
FormG.m
3
FormG.m
|
|
@ -1,4 +1,4 @@
|
|||
function Mat_G=FormG(Volt,PVi,PGi,PG,QG)
|
||||
function Mat_G=FormG(Volt,PVi,PGi,PG,QG,PD)
|
||||
%t1=PG(PVi);
|
||||
%GP=t1;%发电机P
|
||||
%GP=[4.5 4.5]';
|
||||
|
|
@ -13,6 +13,7 @@ Mat_G=[
|
|||
%GP;
|
||||
PG(PGi);
|
||||
QG(PVi);
|
||||
PD;
|
||||
%GQ(PVi);
|
||||
%[0 1.45]';
|
||||
Volt';
|
||||
|
|
|
|||
12
FormLw.m
12
FormLw.m
|
|
@ -1,10 +1,12 @@
|
|||
function Lw=FormLw(Mat_G,Init_U,GenU,Busnum,PVQU)
|
||||
function Lw=FormLw(Mat_G,Init_U,GenU,Busnum,PVQU,PD0)
|
||||
|
||||
PU=GenU(:,2);%发电机有功上界
|
||||
PU=20*GenU(:,2);%发电机有功上界
|
||||
QU=PVQU(:,1);%发电机无功上界
|
||||
VoltU=1.1*ones(1,Busnum);
|
||||
|
||||
t1=([PU',QU',VoltU])';
|
||||
VoltU=1.5*ones(1,Busnum);
|
||||
%PDU=20*PD0';
|
||||
%PDU(PDU==0)=20;
|
||||
PDU=25*ones(Busnum,1)';
|
||||
t1=([PU',QU',PDU,VoltU])';
|
||||
t2=Mat_G+Init_U'-t1;
|
||||
Lw=t2;
|
||||
end
|
||||
11
FormLz.m
11
FormLz.m
|
|
@ -1,9 +1,12 @@
|
|||
function Lz=FormLz(Mat_G,Init_L,GenL,Busnum,PVQL)
|
||||
function Lz=FormLz(Mat_G,Init_L,GenL,Busnum,PVQL,PD0)
|
||||
|
||||
PL=GenL(:,2);%发电机有功下界
|
||||
PL=0.0001*GenL(:,2);%发电机有功下界
|
||||
QL=PVQL(:,1);%发电机无功下界
|
||||
VoltL=0.9*ones(1,Busnum);
|
||||
t1=([PL',QL',VoltL])';
|
||||
VoltL=0.5*ones(1,Busnum);
|
||||
%PDL=-0.001*PD0';
|
||||
%PDL(PD0<=0)=-20;
|
||||
PDL=-25*ones(Busnum,1)';
|
||||
t1=([PL',QL',PDL,VoltL])';
|
||||
|
||||
t2=Mat_G-Init_L'-t1;
|
||||
Lz=t2;
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,398 @@
|
|||
118 179 100 28 0.1
|
||||
1.e-5 2
|
||||
1 69
|
||||
0
|
||||
1 1 2 0.0303 0.0999 0.0127
|
||||
2 1 3 0.0129 0.0424 0.00541
|
||||
3 4 5 0.00176 0.00798 0.00105
|
||||
4 3 5 0.0241 0.1080 0.0142
|
||||
5 5 6 0.0119 0.0540 0.00713
|
||||
6 6 7 0.00459 0.0208 0.00275
|
||||
7 8 9 0.00244 0.0305 0.5810
|
||||
9 9 10 0.00258 0.0322 0.6150
|
||||
10 4 11 0.0209 0.0688 0.00874
|
||||
11 5 11 0.0203 0.0682 0.00869
|
||||
12 11 12 0.00595 0.0196 0.00251
|
||||
13 2 12 0.0187 0.0616 0.00786
|
||||
14 3 12 0.0484 0.1600 0.0203
|
||||
15 7 12 0.00862 0.0340 0.00437
|
||||
16 11 13 0.02225 0.0731 0.00938
|
||||
17 12 14 0.0215 0.0707 0.00908
|
||||
18 13 15 0.0744 0.2444 0.03134
|
||||
19 14 15 0.0595 0.1950 0.0251
|
||||
20 12 16 0.0212 0.0834 0.0107
|
||||
21 15 17 0.0132 0.0437 0.0222
|
||||
22 16 17 0.0454 0.1801 0.0233
|
||||
23 17 18 0.0123 0.0505 0.00649
|
||||
24 18 19 0.01119 0.0493 0.00571
|
||||
25 19 20 0.0252 0.1170 0.0149
|
||||
26 15 19 0.0120 0.0394 0.00505
|
||||
27 20 21 0.0183 0.0849 0.0108
|
||||
28 21 22 0.0209 0.0970 0.0123
|
||||
29 22 23 0.0342 0.1590 0.0202
|
||||
30 23 24 0.0135 0.0492 0.0249
|
||||
31 23 25 0.0156 0.0800 0.0432
|
||||
33 25 27 0.0318 0.1630 0.0882
|
||||
34 27 28 0.01913 0.0855 0.0108
|
||||
35 28 29 0.0237 0.0943 0.0119
|
||||
37 8 30 0.00431 0.0504 0.2570
|
||||
38 26 30 0.00799 0.0860 0.4540
|
||||
39 17 31 0.0474 0.1563 0.01995
|
||||
40 29 31 0.0108 0.0331 0.00415
|
||||
41 23 32 0.0317 0.1153 0.05865
|
||||
42 31 32 0.0298 0.0985 0.01255
|
||||
43 27 32 0.0229 0.0755 0.00963
|
||||
44 15 33 0.0380 0.1244 0.01597
|
||||
45 19 34 0.0752 0.2470 0.0316
|
||||
46 35 36 0.00224 0.0102 0.00124
|
||||
47 35 37 0.0110 0.0497 0.00659
|
||||
48 33 37 0.0415 0.1420 0.0183
|
||||
49 34 36 0.00871 0.0268 0.00284
|
||||
50 34 37 0.00256 0.0094 0.00429
|
||||
52 37 39 0.0321 0.1060 0.0135
|
||||
53 37 40 0.0593 0.1680 0.0210
|
||||
54 30 38 0.00464 0.0540 0.2110
|
||||
55 39 40 0.0184 0.0605 0.00776
|
||||
56 40 41 0.0145 0.0487 0.00611
|
||||
57 40 42 0.0555 0.1830 0.0233
|
||||
58 41 42 0.0410 0.1350 0.0172
|
||||
59 43 44 0.0608 0.2454 0.03034
|
||||
60 34 43 0.0413 0.1681 0.02113
|
||||
61 44 45 0.0224 0.0901 0.0112
|
||||
62 45 46 0.0400 0.1356 0.0166
|
||||
63 46 47 0.0380 0.1270 0.0158
|
||||
64 46 48 0.0601 0.1890 0.0236
|
||||
65 47 49 0.0191 0.0625 0.00802
|
||||
66 42 49 0.03575 0.1615 0.0860
|
||||
67 45 49 0.0684 0.1860 0.0222
|
||||
68 48 49 0.0179 0.0505 0.00629
|
||||
69 49 50 0.0267 0.0752 0.00937
|
||||
70 49 51 0.0486 0.1370 0.0171
|
||||
71 51 52 0.0203 0.0588 0.00698
|
||||
72 52 53 0.0405 0.1635 0.02029
|
||||
73 53 54 0.0263 0.1220 0.0155
|
||||
74 49 54 0.03976 0.1450 0.0734
|
||||
75 54 55 0.0169 0.0707 0.0101
|
||||
76 54 56 0.00275 0.00955 0.00366
|
||||
77 55 56 0.00488 0.0151 0.00187
|
||||
78 56 57 0.0343 0.0966 0.0121
|
||||
79 50 57 0.0474 0.1340 0.0166
|
||||
80 56 58 0.0343 0.0966 0.0121
|
||||
81 51 58 0.0255 0.0719 0.00894
|
||||
82 54 59 0.0503 0.2293 0.0299
|
||||
83 56 59 0.04069 0.12243 0.05525
|
||||
84 55 59 0.04739 0.2158 0.02823
|
||||
85 59 60 0.0317 0.1450 0.0188
|
||||
86 59 61 0.0328 0.1500 0.0194
|
||||
87 60 61 0.00264 0.0135 0.00728
|
||||
88 60 62 0.0123 0.0561 0.00734
|
||||
89 61 62 0.00824 0.0376 0.0049
|
||||
91 63 64 0.00172 0.0200 0.1080
|
||||
93 38 65 0.00901 0.0986 0.5230
|
||||
94 64 65 0.00269 0.0302 0.1900
|
||||
95 49 66 0.0090 0.04595 0.0248
|
||||
96 62 66 0.0482 0.2180 0.0289
|
||||
97 62 67 0.0258 0.1170 0.0155
|
||||
99 66 67 0.0224 0.1015 0.01341
|
||||
100 65 68 0.00138 0.0160 0.3190
|
||||
101 47 69 0.0844 0.2778 0.03546
|
||||
102 49 69 0.0985 0.3240 0.0414
|
||||
104 69 70 0.0300 0.1270 0.0610
|
||||
105 24 70 0.10221 0.4115 0.05099
|
||||
106 70 71 0.00882 0.0355 0.00439
|
||||
107 24 72 0.0488 0.1960 0.0244
|
||||
108 71 72 0.0446 0.1800 0.02222
|
||||
109 71 73 0.00866 0.0454 0.00589
|
||||
110 70 74 0.0401 0.1323 0.01684
|
||||
111 70 75 0.0428 0.1410 0.0180
|
||||
112 69 75 0.0405 0.1220 0.0620
|
||||
113 74 75 0.0123 0.0406 0.00517
|
||||
114 76 77 0.0444 0.1480 0.0184
|
||||
115 69 77 0.0309 0.1010 0.0519
|
||||
116 75 77 0.0601 0.1999 0.02489
|
||||
117 77 78 0.00376 0.0124 0.00632
|
||||
118 78 79 0.00546 0.0244 0.00324
|
||||
119 77 80 0.01077 0.03318 0.0350
|
||||
120 79 80 0.0156 0.0704 0.00945
|
||||
121 68 81 0.00175 0.0202 0.4040
|
||||
123 77 82 0.0298 0.0853 0.04087
|
||||
124 82 83 0.0112 0.03665 0.01898
|
||||
125 83 84 0.0625 0.1320 0.0129
|
||||
126 83 85 0.0430 0.1480 0.0174
|
||||
127 84 85 0.0302 0.0641 0.00617
|
||||
128 85 86 0.0350 0.1230 0.0138
|
||||
129 86 87 0.02828 0.2074 0.02225
|
||||
130 85 88 0.0200 0.1020 0.0138
|
||||
131 85 89 0.0239 0.1730 0.0235
|
||||
132 88 89 0.0139 0.0712 0.00969
|
||||
133 89 90 0.01631 0.06515 0.0794
|
||||
134 90 91 0.0254 0.0836 0.0107
|
||||
135 89 92 0.00791 0.03827 0.0481
|
||||
136 91 92 0.0387 0.1272 0.01634
|
||||
137 92 93 0.0258 0.0848 0.0109
|
||||
138 92 94 0.0481 0.1580 0.0203
|
||||
139 93 94 0.0223 0.0732 0.00938
|
||||
140 94 95 0.0132 0.0434 0.00555
|
||||
141 80 96 0.0356 0.1820 0.0247
|
||||
142 82 96 0.0162 0.0530 0.0272
|
||||
143 94 96 0.0269 0.0869 0.0115
|
||||
144 80 97 0.0183 0.0934 0.0127
|
||||
145 80 98 0.0238 0.1080 0.0143
|
||||
146 80 99 0.0454 0.2060 0.0273
|
||||
148 94 100 0.0178 0.0580 0.0302
|
||||
149 95 96 0.0171 0.0547 0.00737
|
||||
150 96 97 0.0173 0.0885 0.0120
|
||||
151 98 100 0.0397 0.1790 0.0238
|
||||
152 99 100 0.0180 0.0813 0.0108
|
||||
153 100 101 0.0277 0.1262 0.0164
|
||||
154 92 102 0.0123 0.0559 0.00732
|
||||
155 101 102 0.0246 0.1120 0.0147
|
||||
156 100 103 0.0160 0.0525 0.0268
|
||||
157 100 104 0.0451 0.2040 0.02705
|
||||
158 103 104 0.0466 0.1584 0.02035
|
||||
159 103 105 0.0535 0.1625 0.0204
|
||||
160 100 106 0.0605 0.2290 0.0310
|
||||
161 104 105 0.00994 0.0378 0.00493
|
||||
162 105 106 0.0140 0.0547 0.00717
|
||||
163 105 107 0.0530 0.1830 0.0236
|
||||
164 105 108 0.0261 0.0703 0.09222
|
||||
166 108 109 0.0105 0.0288 0.0038
|
||||
167 103 110 0.03906 0.1813 0.02305
|
||||
168 109 110 0.0278 0.0762 0.0101
|
||||
169 110 111 0.0220 0.0755 0.0100
|
||||
170 110 112 0.0247 0.0640 0.0310
|
||||
171 17 113 0.00913 0.0301 0.00384
|
||||
172 32 113 0.0615 0.2030 0.0259
|
||||
173 32 114 0.0135 0.0612 0.00814
|
||||
174 27 115 0.0164 0.0741 0.00986
|
||||
175 114 115 0.0023 0.0104 0.00138
|
||||
176 68 116 0.00034 0.00405 0.0820
|
||||
177 12 117 0.0329 0.1400 0.0179
|
||||
178 75 118 0.01450 0.04810 0.00599
|
||||
179 76 118 0.0164 0.0544 0.00678
|
||||
0
|
||||
5 -0.4
|
||||
17 0.
|
||||
34 .14
|
||||
37 -0.25
|
||||
44 .1
|
||||
45 .1
|
||||
46 .1
|
||||
48 .15
|
||||
74 .12
|
||||
79 .2
|
||||
82 .2
|
||||
83 .1
|
||||
105 .2
|
||||
107 .06
|
||||
110 .06
|
||||
0
|
||||
1 8 5 0.0 0.0267 0.9850 0.9 1.1
|
||||
2 25 26 0.0 0.0382 0.9600 0.9 1.1
|
||||
3 17 30 0.0 0.0388 0.9600 0.9 1.1
|
||||
4 37 38 0.0 0.0375 0.9350 0.9 1.1
|
||||
5 59 63 0.0 0.0386 0.9600 0.9 1.1
|
||||
6 61 64 0.0 0.0268 0.9850 0.9 1.1
|
||||
7 65 66 0.0 0.0370 0.9350 0.9 1.1
|
||||
8 68 69 0.0 0.0370 0.9350 0.9 1.1
|
||||
9 80 81 0.0 0.0370 0.9350 0.9 1.1
|
||||
10 92 100 0.0648 0.2950 1. 0.9 1.1
|
||||
11 106 107 0.0530 0.1830 1. 0.9 1.1
|
||||
0
|
||||
1 0 0 51 27
|
||||
2 0 0 20 9
|
||||
3 0 0 39 10
|
||||
4 -9 0 30 12
|
||||
5 0 0 0 0
|
||||
6 0 0 52 22
|
||||
7 0 0 19 2
|
||||
8 -28 0 0 0
|
||||
9 0 0 0 0
|
||||
10 308.8957824 0 0 0
|
||||
11 0 0 70 23
|
||||
12 199.999997 0 47 10
|
||||
13 0 0 34 16
|
||||
14 0 0 14 1
|
||||
15 0 0 90 30
|
||||
16 0 0 25 10
|
||||
17 0 0 11 3
|
||||
18 0 0 60 34
|
||||
19 0 0 45 25
|
||||
20 0 0 18 3
|
||||
21 0 0 14 8
|
||||
22 0 0 10 5
|
||||
23 0 0 7 3
|
||||
24 -13 0 0 0
|
||||
25 287.8800829 0 0 0
|
||||
26 290.2004416 0 0 0
|
||||
27 -9 0 62 13
|
||||
28 0 0 17 7
|
||||
29 0 0 24 4
|
||||
30 0 0 0 0
|
||||
31 7 0 43 27
|
||||
32 0 0 59 23
|
||||
33 0 0 23 9
|
||||
34 0 0 59 26
|
||||
35 0 0 33 9
|
||||
36 0 0 31 17
|
||||
37 0 0 0 0
|
||||
38 0 0 0 0
|
||||
39 0 0 27 11
|
||||
40 -46 0 20 23
|
||||
41 0 0 37 10
|
||||
42 -59 0 37 23
|
||||
43 0 0 18 7
|
||||
44 0 0 16 8
|
||||
45 0 0 53 22
|
||||
46 19 0 28 10
|
||||
47 0 0 34 0
|
||||
48 0 0 20 11
|
||||
49 267.2608745 0 87 30
|
||||
50 0 0 17 4
|
||||
51 0 0 17 8
|
||||
52 0 0 18 5
|
||||
53 0 0 23 11
|
||||
54 197.5120216 0 113 32
|
||||
55 0 0 63 22
|
||||
56 0 0 84 18
|
||||
57 0 0 12 3
|
||||
58 0 0 12 3
|
||||
59 287.6777704 0 277 113
|
||||
60 0 0 78 3
|
||||
61 289.5811164 0 0 0
|
||||
62 0 0 77 14
|
||||
63 0 0 0 0
|
||||
64 0 0 0 0
|
||||
65 291.8940482 0 0 0
|
||||
66 290.3512793 0 39 18
|
||||
67 0 0 28 7
|
||||
68 0 0 0 0
|
||||
69 316.6388411 0 0 0
|
||||
70 0 0 66 20
|
||||
71 0 0 0 0
|
||||
72 -12 0 0 0
|
||||
73 -6 0 0 0
|
||||
74 0 0 68 27
|
||||
75 0 0 47 11
|
||||
76 0 0 68 36
|
||||
77 0 0 61 28
|
||||
78 0 0 71 26
|
||||
79 0 0 39 32
|
||||
80 309.9650462 0 130 26
|
||||
81 0 0 0 0
|
||||
82 0 0 54 27
|
||||
83 0 0 20 10
|
||||
84 0 0 11 7
|
||||
85 0 0 24 15
|
||||
86 0 0 21 10
|
||||
87 4 0 0 0
|
||||
88 0 0 48 10
|
||||
89 312.5227132 0 0 0
|
||||
90 -85 0 78 42
|
||||
91 -10 0 0 0
|
||||
92 0 0 65 10
|
||||
93 0 0 12 7
|
||||
94 0 0 30 16
|
||||
95 0 0 42 31
|
||||
96 0 0 38 15
|
||||
97 0 0 15 9
|
||||
98 0 0 34 8
|
||||
99 -42 0 0 0
|
||||
100 280.2678821 0 37 18
|
||||
101 0 0 22 15
|
||||
102 0 0 5 3
|
||||
103 188.5147785 0 23 16
|
||||
104 0 0 38 25
|
||||
105 0 0 31 26
|
||||
106 0 0 43 16
|
||||
107 -22 0 28 12
|
||||
108 0 0 2 1
|
||||
109 0 0 8 3
|
||||
110 0 0 39 30
|
||||
111 183.7381328 0 0 0
|
||||
112 -43 0 25 13
|
||||
113 -6 0 0 0
|
||||
114 0 0 8 3
|
||||
115 0 0 22 7
|
||||
116 -184 0 0 0
|
||||
117 0 0 20 8
|
||||
118 0 0 33 15
|
||||
0
|
||||
1 .955 -5. 15.
|
||||
4 .998 -300. 300.
|
||||
6 .99 -13. 50.
|
||||
8 1.015 -300. 300.
|
||||
10 1.05 -147. 200.
|
||||
12 .99 -35. 120.
|
||||
15 .97 -10. 30.
|
||||
18 .973 -16. 50.
|
||||
19 .963 -8. 24.
|
||||
24 .992 -300. 300.
|
||||
25 1.05 -47. 140.
|
||||
26 1.015 -1000. 1000.
|
||||
27 .968 -300. 300.
|
||||
31 .967 -300. 300.
|
||||
32 .964 -14. 42.
|
||||
34 .984 -8. 24.
|
||||
36 .98 -8. 24.
|
||||
40 .97 -300. 300.
|
||||
42 .985 -300. 300.
|
||||
46 1.005 -100. 100.
|
||||
49 1.025 -85. 210.
|
||||
54 .955 -300. 300.
|
||||
55 .952 -8. 23.
|
||||
56 .954 -8. 15.
|
||||
59 .985 -60. 180.
|
||||
61 .995 -100. 300.
|
||||
62 .998 -20. 20.
|
||||
65 1.005 -67. 200.
|
||||
66 1.05 -67. 200.
|
||||
69 1.035 -300. 300.
|
||||
70 .984 -10. 32.
|
||||
72 .98 -100. 100.
|
||||
73 .991 -100. 100.
|
||||
74 .958 -6. 9.
|
||||
76 .943 -8. 23.
|
||||
77 1.006 -20. 70.
|
||||
80 1.04 -165. 280.
|
||||
85 .985 -8. 23.
|
||||
87 1.015 -100. 1000.
|
||||
89 1.005 -210. 300.
|
||||
90 .985 -300. 300.
|
||||
91 .98 -100. 100.
|
||||
92 .993 -3. 9.
|
||||
99 1.01 -100. 100.
|
||||
100 1.017 -50. 155.
|
||||
103 1.001 -15. 40.
|
||||
104 .971 -8. 23.
|
||||
105 .965 -8. 23.
|
||||
107 .952 -200. 200.
|
||||
110 .973 -8. 23.
|
||||
111 .98 -100. 1000.
|
||||
112 .975 -100. 1000.
|
||||
113 .993 -100. 200.
|
||||
116 1.005 -1000. 1000.
|
||||
0
|
||||
10 0. 1.25 1. 100. 600.
|
||||
12 0. 2.6 1.2 60. 200.
|
||||
25 0. 1.5 1. 50. 300.
|
||||
26 0. 1.5 1. 100. 400.
|
||||
49 0. 2.1 1. 100. 400.
|
||||
54 0. 2.0 1.4 20. 300.
|
||||
59 0. 1.6 1. 50. 350.
|
||||
61 0. 1.5 1. 50. 400.
|
||||
65 0. 1.5 1. 100. 500.
|
||||
66 0. 1.5 1. 100. 500.
|
||||
69 0. 1.0 1. 100. 800.
|
||||
80 0. 1.23 1. 100. 600.
|
||||
89 0. 1.2 1. 100. 800.
|
||||
100 0. 1.6 1. 100. 400.
|
||||
103 0. 2.5 1.2 20. 200.
|
||||
111 0. 2.4 1.1 10. 200.
|
||||
0
|
||||
0
|
||||
0
|
||||
1 100 92 -25. 25.
|
||||
2 106 107 -18. 18.
|
||||
0
|
||||
0
|
||||
|
|
@ -0,0 +1,58 @@
|
|||
14 20 100. 20 0.1
|
||||
1.e-5 2
|
||||
1 1
|
||||
0
|
||||
1 1 2 0.01938 0.05917 0.0264
|
||||
2 1 5 0.05403 0.22304 0.0246
|
||||
3 2 3 0.04699 0.19797 0.0219
|
||||
4 2 4 0.05811 0.17632 0.0187
|
||||
5 2 5 0.05695 0.17388 0.0170
|
||||
6 3 4 0.06701 0.17103 0.0173
|
||||
7 4 5 0.01335 0.04211 0.0064
|
||||
11 6 11 0.09498 0.19890 0.0
|
||||
12 6 12 0.12291 0.15581 0.0
|
||||
13 6 13 0.06615 0.13027 0.0
|
||||
14 7 8 0.0 0.17615 0.0
|
||||
15 7 9 0.0 0.11001 0.0
|
||||
16 9 10 0.03181 0.08450 0.0
|
||||
19 12 13 0.22092 0.19988 0.0
|
||||
20 13 14 0.17038 0.34802 0.0
|
||||
4 9 14 0.12711 0.27038 0.0
|
||||
5 10 11 0.08205 0.19207 0.0
|
||||
0
|
||||
9 0.19
|
||||
0
|
||||
1 4 7 0.0 0.20912 0.978 0.9 1.1
|
||||
2 4 9 0.0 0.55618 0.969 0.9 1.1
|
||||
3 5 6 0.0 0.25202 0.932 0.9 1.1
|
||||
0
|
||||
1 199.9999937 0 0 0
|
||||
2 50.1353376 42.4 21.7 12.7
|
||||
3 0 23.39 94.2 19
|
||||
4 0 0 47.8 -3.9
|
||||
5 0 0 7.6 1.6
|
||||
6 20.00001995 12.24 11.2 7.5
|
||||
7 0 0 0 0
|
||||
8 0 17.36 0 0
|
||||
9 0 0 29.5 16.6
|
||||
10 0 0 9 5.8
|
||||
11 0 0 3.5 1.8
|
||||
12 0 0 6.1 1.6
|
||||
13 0 0 13.5 5.8
|
||||
14 0 0 14.9 5
|
||||
0
|
||||
1 1.060 -40. 50.
|
||||
2 1.045 -40. 50.
|
||||
3 1.010 0. 40.
|
||||
6 1.070 -30. 40.
|
||||
8 1.090 -30. 45.
|
||||
0
|
||||
1 105. 2.45 0.005 50. 200.
|
||||
2 44.4 3.51 0.005 20. 100.
|
||||
6 40.6 3.89 0.005 20. 100.
|
||||
0
|
||||
0
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,824 @@
|
|||
300 409 100 28 0.100000000000000 0 0 0
|
||||
1.00000000000000e-05 4 0 0 0 0 0 0
|
||||
1 38 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
1 269 291 0.000800000000000000 0.00348000000000000 0 0 0
|
||||
2 226 271 0.0555800000000000 0.246660000000000 0 0 0
|
||||
3 226 300 0.0555900000000000 0.246660000000000 0 0 0
|
||||
4 227 225 0.0381100000000000 0.216480000000000 0 0 0
|
||||
5 225 228 0.0537000000000000 0.0702600000000000 0 0 0
|
||||
6 228 229 1.10680000000000 0.952780000000000 0 0 0
|
||||
7 271 300 0.0558000000000000 0.246660000000000 0 0 0
|
||||
8 300 144 0.0737800000000000 0.0635200000000000 0 0 0
|
||||
9 144 270 0.0383200000000000 0.0289400000000000 0 0 0
|
||||
10 227 68 0.235520000000000 0.990360000000000 0 0 0
|
||||
11 146 147 0.00100000000000000 0.00600000000000000 0 0 0
|
||||
12 230 71 0.00100000000000000 0.00900000000000000 0 0 0
|
||||
13 230 148 0.00600000000000000 0.0270000000000000 0.0540000000000000 0 0
|
||||
14 292 272 0 0.00300000000000000 0 0 0
|
||||
15 292 150 0.00800000000000000 0.0690000000000000 0.139000000000000 0 0
|
||||
16 292 104 0.00100000000000000 0.00700000000000000 0 0 0
|
||||
17 70 149 0.00200000000000000 0.0190000000000000 1.12700000000000 0 0
|
||||
18 147 72 0.00600000000000000 0.0290000000000000 0.0180000000000000 0 0
|
||||
19 272 231 0.00100000000000000 0.00900000000000000 0.0700000000000000 0 0
|
||||
20 272 98 0.00100000000000000 0.00700000000000000 0.0140000000000000 0 0
|
||||
21 148 273 0.0130000000000000 0.0595000000000000 0.0330000000000000 0 0
|
||||
22 148 75 0.0130000000000000 0.0420000000000000 0.0810000000000000 0 0
|
||||
23 72 273 0.00600000000000000 0.0270000000000000 0.0130000000000000 0 0
|
||||
24 273 74 0.00800000000000000 0.0340000000000000 0.0180000000000000 0 0
|
||||
25 231 233 0.00200000000000000 0.0150000000000000 0.118000000000000 0 0
|
||||
26 74 232 0.00600000000000000 0.0340000000000000 0.0160000000000000 0 0
|
||||
27 75 286 0.0140000000000000 0.0420000000000000 0.0970000000000000 0 0
|
||||
28 286 297 0.0650000000000000 0.248000000000000 0.121000000000000 0 0
|
||||
29 286 165 0.0990000000000000 0.248000000000000 0.0350000000000000 0 0
|
||||
30 286 166 0.0960000000000000 0.363000000000000 0.0480000000000000 0 0
|
||||
31 149 274 0.00200000000000000 0.0220000000000000 1.28000000000000 0 0
|
||||
32 150 233 0.00200000000000000 0.0180000000000000 0.0360000000000000 0 0
|
||||
33 150 163 0.0130000000000000 0.0800000000000000 0.151000000000000 0 0
|
||||
34 232 77 0.0160000000000000 0.0330000000000000 0.0150000000000000 0 0
|
||||
35 232 79 0.0690000000000000 0.186000000000000 0.0980000000000000 0 0
|
||||
36 233 235 0.00400000000000000 0.0340000000000000 0.280000000000000 0 0
|
||||
37 77 234 0.0520000000000000 0.111000000000000 0.0500000000000000 0 0
|
||||
38 234 78 0.0190000000000000 0.0390000000000000 0.0180000000000000 0 0
|
||||
39 235 14 0.00700000000000000 0.0680000000000000 0.134000000000000 0 0
|
||||
40 78 151 0.0360000000000000 0.0710000000000000 0.0340000000000000 0 0
|
||||
41 151 79 0.0450000000000000 0.120000000000000 0.0650000000000000 0 0
|
||||
42 151 15 0.0430000000000000 0.130000000000000 0.0140000000000000 0 0
|
||||
43 236 80 0 0.0630000000000000 0 0 0
|
||||
44 236 238 0.00250000000000000 0.0120000000000000 0.0130000000000000 0 0
|
||||
45 236 152 0.00600000000000000 0.0290000000000000 0.0200000000000000 0 0
|
||||
46 236 287 0.00700000000000000 0.0430000000000000 0.0260000000000000 0 0
|
||||
47 80 274 0.00100000000000000 0.00800000000000000 0.0420000000000000 0 0
|
||||
48 237 245 0.0120000000000000 0.0600000000000000 0.00800000000000000 0 0
|
||||
49 237 161 0.00600000000000000 0.0140000000000000 0.00200000000000000 0 0
|
||||
50 237 293 0.0100000000000000 0.0290000000000000 0.00300000000000000 0 0
|
||||
51 81 164 0.00400000000000000 0.0270000000000000 0.0430000000000000 0 0
|
||||
52 297 238 0.00800000000000000 0.0470000000000000 0.00800000000000000 0 0
|
||||
53 297 152 0.0220000000000000 0.0640000000000000 0.00700000000000000 0 0
|
||||
54 297 287 0.0100000000000000 0.0360000000000000 0.0200000000000000 0 0
|
||||
55 297 241 0.0170000000000000 0.0810000000000000 0.0480000000000000 0 0
|
||||
56 297 165 0.102000000000000 0.254000000000000 0.0330000000000000 0 0
|
||||
57 297 166 0.0470000000000000 0.127000000000000 0.0160000000000000 0 0
|
||||
58 238 287 0.00800000000000000 0.0370000000000000 0.0200000000000000 0 0
|
||||
59 238 239 0.0320000000000000 0.0870000000000000 0.0400000000000000 0 0
|
||||
60 82 274 0.000600000000000000 0.00640000000000000 0.404000000000000 0 0
|
||||
61 152 155 0.0260000000000000 0.154000000000000 0.0220000000000000 0 0
|
||||
62 287 274 0 0.0290000000000000 0 0 0
|
||||
63 287 241 0.0650000000000000 0.191000000000000 0.0200000000000000 0 0
|
||||
64 287 156 0.0310000000000000 0.0890000000000000 0.0360000000000000 0 0
|
||||
65 274 153 0.00200000000000000 0.0140000000000000 0.806000000000000 0 0
|
||||
66 239 275 0.0260000000000000 0.0720000000000000 0.0350000000000000 0 0
|
||||
67 239 155 0.0950000000000000 0.262000000000000 0.0320000000000000 0 0
|
||||
68 239 84 0.0130000000000000 0.0390000000000000 0.0160000000000000 0 0
|
||||
69 275 154 0.0270000000000000 0.0840000000000000 0.0390000000000000 0 0
|
||||
70 275 157 0.0280000000000000 0.0840000000000000 0.0370000000000000 0 0
|
||||
71 240 87 0.00700000000000000 0.0410000000000000 0.312000000000000 0 0
|
||||
72 240 246 0.00900000000000000 0.0540000000000000 0.411000000000000 0 0
|
||||
73 153 248 0.00500000000000000 0.0420000000000000 0.690000000000000 0 0
|
||||
74 154 277 0.0520000000000000 0.145000000000000 0.0730000000000000 0 0
|
||||
75 154 94 0.0430000000000000 0.118000000000000 0.0130000000000000 0 0
|
||||
76 155 173 0.0250000000000000 0.0620000000000000 0.00700000000000000 0 0
|
||||
77 241 156 0.0310000000000000 0.0940000000000000 0.0430000000000000 0 0
|
||||
78 156 83 0.0370000000000000 0.109000000000000 0.0490000000000000 0 0
|
||||
79 83 242 0.0270000000000000 0.0800000000000000 0.0360000000000000 0 0
|
||||
80 84 157 0.0250000000000000 0.0730000000000000 0.0350000000000000 0 0
|
||||
81 157 242 0.0350000000000000 0.103000000000000 0.0470000000000000 0 0
|
||||
82 242 243 0.0650000000000000 0.169000000000000 0.0820000000000000 0 0
|
||||
83 243 85 0.0460000000000000 0.0800000000000000 0.0360000000000000 0 0
|
||||
84 243 159 0.159000000000000 0.537000000000000 0.0710000000000000 0 0
|
||||
85 85 86 0.00900000000000000 0.0260000000000000 0.00500000000000000 0 0
|
||||
86 86 158 0.00200000000000000 0.0130000000000000 0.0150000000000000 0 0
|
||||
87 87 276 0.00900000000000000 0.0650000000000000 0.485000000000000 0 0
|
||||
88 276 88 0.0160000000000000 0.105000000000000 0.203000000000000 0 0
|
||||
89 276 101 0.00100000000000000 0.00700000000000000 0.0130000000000000 0 0
|
||||
90 159 19 0.0265000000000000 0.172000000000000 0.0260000000000000 0 0
|
||||
91 160 298 0.0510000000000000 0.232000000000000 0.0280000000000000 0 0
|
||||
92 160 247 0.0510000000000000 0.157000000000000 0.0230000000000000 0 0
|
||||
93 89 244 0.0320000000000000 0.100000000000000 0.0620000000000000 0 0
|
||||
94 89 20 0.0200000000000000 0.123400000000000 0.0280000000000000 0 0
|
||||
95 244 245 0.0360000000000000 0.131000000000000 0.0680000000000000 0 0
|
||||
96 244 277 0.0340000000000000 0.0990000000000000 0.0470000000000000 0 0
|
||||
97 245 293 0.0180000000000000 0.0870000000000000 0.0110000000000000 0 0
|
||||
98 245 21 0.0256000000000000 0.193000000000000 0 0 0
|
||||
99 277 161 0.0210000000000000 0.0570000000000000 0.0300000000000000 0 0
|
||||
100 277 247 0.0180000000000000 0.0520000000000000 0.0180000000000000 0 0
|
||||
101 246 164 0.00400000000000000 0.0270000000000000 0.0500000000000000 0 0
|
||||
102 246 23 0.0286000000000000 0.201300000000000 0.379000000000000 0 0
|
||||
103 161 293 0.0160000000000000 0.0430000000000000 0.00400000000000000 0 0
|
||||
104 293 162 0.00100000000000000 0.00600000000000000 0.00700000000000000 0 0
|
||||
105 293 90 0.0140000000000000 0.0700000000000000 0.0380000000000000 0 0
|
||||
106 293 22 0.0891000000000000 0.267600000000000 0.0290000000000000 0 0
|
||||
107 293 24 0.0782000000000000 0.212700000000000 0.0220000000000000 0 0
|
||||
108 162 247 0.00600000000000000 0.0220000000000000 0.0110000000000000 0 0
|
||||
109 162 1 0 0.0360000000000000 0 0 0
|
||||
110 247 298 0.0990000000000000 0.375000000000000 0.0510000000000000 0 0
|
||||
111 90 298 0.0220000000000000 0.107000000000000 0.0580000000000000 0 0
|
||||
112 248 205 0.00350000000000000 0.0330000000000000 0.530000000000000 0 0
|
||||
113 248 206 0.00350000000000000 0.0330000000000000 0.530000000000000 0 0
|
||||
114 91 249 0.00800000000000000 0.0640000000000000 0.128000000000000 0 0
|
||||
115 249 163 0.0120000000000000 0.0930000000000000 0.183000000000000 0 0
|
||||
116 249 17 0.00600000000000000 0.0480000000000000 0.0920000000000000 0 0
|
||||
117 165 167 0.0470000000000000 0.119000000000000 0.0140000000000000 0 0
|
||||
118 166 168 0.0320000000000000 0.174000000000000 0.0240000000000000 0 0
|
||||
119 167 169 0.100000000000000 0.253000000000000 0.0310000000000000 0 0
|
||||
120 167 278 0.0220000000000000 0.0770000000000000 0.0390000000000000 0 0
|
||||
121 168 171 0.0190000000000000 0.144000000000000 0.0170000000000000 0 0
|
||||
122 168 250 0.0170000000000000 0.0920000000000000 0.0120000000000000 0 0
|
||||
123 169 278 0.278000000000000 0.427000000000000 0.0430000000000000 0 0
|
||||
124 278 170 0.0220000000000000 0.0530000000000000 0.00700000000000000 0 0
|
||||
125 278 280 0.0380000000000000 0.0920000000000000 0.0120000000000000 0 0
|
||||
126 278 171 0.0480000000000000 0.122000000000000 0.0150000000000000 0 0
|
||||
127 92 170 0.0240000000000000 0.0640000000000000 0.00700000000000000 0 0
|
||||
128 92 280 0.0340000000000000 0.121000000000000 0.0150000000000000 0 0
|
||||
129 279 173 0.0530000000000000 0.135000000000000 0.0170000000000000 0 0
|
||||
130 279 174 0.00200000000000000 0.00400000000000000 0.00200000000000000 0 0
|
||||
131 279 251 0.0450000000000000 0.354000000000000 0.0440000000000000 0 0
|
||||
132 279 252 0.0500000000000000 0.174000000000000 0.0220000000000000 0 0
|
||||
133 170 280 0.0160000000000000 0.0380000000000000 0.00400000000000000 0 0
|
||||
134 280 172 0.0430000000000000 0.0640000000000000 0.0270000000000000 0 0
|
||||
135 171 250 0.0190000000000000 0.0620000000000000 0.00800000000000000 0 0
|
||||
136 172 174 0.0760000000000000 0.130000000000000 0.0440000000000000 0 0
|
||||
137 172 16 0.0440000000000000 0.124000000000000 0.0150000000000000 0 0
|
||||
138 250 173 0.0120000000000000 0.0880000000000000 0.0110000000000000 0 0
|
||||
139 250 252 0.157000000000000 0.400000000000000 0.0470000000000000 0 0
|
||||
140 174 18 0.0740000000000000 0.208000000000000 0.0260000000000000 0 0
|
||||
141 251 252 0.0700000000000000 0.184000000000000 0.0210000000000000 0 0
|
||||
142 251 94 0.100000000000000 0.274000000000000 0.0310000000000000 0 0
|
||||
143 251 175 0.109000000000000 0.393000000000000 0.0360000000000000 0 0
|
||||
144 252 93 0.142000000000000 0.404000000000000 0.0500000000000000 0 0
|
||||
145 93 175 0.0170000000000000 0.0420000000000000 0.00600000000000000 0 0
|
||||
146 95 256 0.00360000000000000 0.0199000000000000 0.00400000000000000 0 0
|
||||
147 96 255 0.00200000000000000 0.104900000000000 0.00100000000000000 0 0
|
||||
148 97 253 0.000100000000000000 0.00180000000000000 0.0170000000000000 0 0
|
||||
149 253 254 0 0.0271000000000000 0 0 0
|
||||
150 253 142 0 0.616300000000000 0 0 0
|
||||
151 142 255 0 -0.369700000000000 0 0 0
|
||||
152 253 176 0.00220000000000000 0.291500000000000 0 0 0
|
||||
153 254 255 0 0.0339000000000000 0 0 0
|
||||
154 254 176 0 0.0582000000000000 0 0 0
|
||||
155 256 177 0.0808000000000000 0.234400000000000 0.0290000000000000 0 0
|
||||
156 256 179 0.0965000000000000 0.366900000000000 0.0540000000000000 0 0
|
||||
157 177 178 0.0360000000000000 0.107600000000000 0.117000000000000 0 0
|
||||
158 177 179 0.0476000000000000 0.141400000000000 0.149000000000000 0 0
|
||||
159 179 294 0.000600000000000000 0.0197000000000000 0 0 0
|
||||
160 294 257 0.00590000000000000 0.0405000000000000 0.250000000000000 0 0
|
||||
161 294 181 0.0115000000000000 0.110600000000000 0.185000000000000 0 0
|
||||
162 294 182 0.0198000000000000 0.168800000000000 0.321000000000000 0 0
|
||||
163 294 191 0.00500000000000000 0.0500000000000000 0.330000000000000 0 0
|
||||
164 294 192 0.00770000000000000 0.0538000000000000 0.335000000000000 0 0
|
||||
165 294 196 0.0165000000000000 0.115700000000000 0.171000000000000 0 0
|
||||
166 257 180 0.00590000000000000 0.0577000000000000 0.0950000000000000 0 0
|
||||
167 257 183 0.00490000000000000 0.0336000000000000 0.208000000000000 0 0
|
||||
168 257 195 0.00590000000000000 0.0577000000000000 0.0950000000000000 0 0
|
||||
169 180 299 0.00780000000000000 0.0773000000000000 0.126000000000000 0 0
|
||||
170 180 288 0.00260000000000000 0.0193000000000000 0.0300000000000000 0 0
|
||||
171 181 299 0.00760000000000000 0.0752000000000000 0.122000000000000 0 0
|
||||
172 181 288 0.00210000000000000 0.0186000000000000 0.0300000000000000 0 0
|
||||
173 299 182 0.00160000000000000 0.0164000000000000 0.0260000000000000 0 0
|
||||
174 299 105 0.00170000000000000 0.0165000000000000 0.0260000000000000 0 0
|
||||
175 299 115 0.00790000000000000 0.0793000000000000 0.127000000000000 0 0
|
||||
176 299 195 0.00780000000000000 0.0784000000000000 0.125000000000000 0 0
|
||||
177 288 295 0.00170000000000000 0.0117000000000000 0.289000000000000 0 0
|
||||
178 288 195 0.00260000000000000 0.0193000000000000 0.0300000000000000 0 0
|
||||
179 288 196 0.00210000000000000 0.0186000000000000 0.0300000000000000 0 0
|
||||
180 288 2 0.000200000000000000 0.0101000000000000 0 0 0
|
||||
181 183 99 0.00430000000000000 0.0293000000000000 0.180000000000000 0 0
|
||||
182 183 121 0.00390000000000000 0.0381000000000000 0.258000000000000 0 0
|
||||
183 99 184 0.00910000000000000 0.0623000000000000 0.385000000000000 0 0
|
||||
184 184 295 0.0125000000000000 0.0890000000000000 0.540000000000000 0 0
|
||||
185 184 106 0.00560000000000000 0.0390000000000000 0.953000000000000 0 0
|
||||
186 295 296 0.00150000000000000 0.0114000000000000 0.284000000000000 0 0
|
||||
187 295 201 0.000500000000000000 0.00340000000000000 0.0210000000000000 0 0
|
||||
188 295 122 0.000700000000000000 0.0151000000000000 0.126000000000000 0 0
|
||||
189 295 262 0.000500000000000000 0.00340000000000000 0.0210000000000000 0 0
|
||||
190 185 197 0.0562000000000000 0.224800000000000 0.0810000000000000 0 0
|
||||
191 296 186 0.0120000000000000 0.0836000000000000 0.123000000000000 0 0
|
||||
192 296 187 0.0152000000000000 0.113200000000000 0.684000000000000 0 0
|
||||
193 296 282 0.0468000000000000 0.336900000000000 0.519000000000000 0 0
|
||||
194 296 258 0.0430000000000000 0.303100000000000 0.463000000000000 0 0
|
||||
195 296 102 0.0489000000000000 0.349200000000000 0.538000000000000 0 0
|
||||
196 296 119 0.00130000000000000 0.00890000000000000 0.119000000000000 0 0
|
||||
197 186 258 0.0291000000000000 0.226700000000000 0.342000000000000 0 0
|
||||
198 187 281 0.00600000000000000 0.0570000000000000 0.767000000000000 0 0
|
||||
199 281 282 0.00750000000000000 0.0773000000000000 0.119000000000000 0 0
|
||||
200 281 103 0.0127000000000000 0.0909000000000000 0.135000000000000 0 0
|
||||
201 282 258 0.00850000000000000 0.0588000000000000 0.0870000000000000 0 0
|
||||
202 282 103 0.0218000000000000 0.151100000000000 0.223000000000000 0 0
|
||||
203 258 102 0.00730000000000000 0.0504000000000000 0.0740000000000000 0 0
|
||||
204 188 261 0.0523000000000000 0.152600000000000 0.0740000000000000 0 0
|
||||
205 188 200 0.137100000000000 0.391900000000000 0.0760000000000000 0 0
|
||||
206 106 189 0.0137000000000000 0.0957000000000000 0.141000000000000 0 0
|
||||
207 189 110 0.00550000000000000 0.0288000000000000 0.190000000000000 0 0
|
||||
208 107 108 0.174600000000000 0.316100000000000 0.0400000000000000 0 0
|
||||
209 107 120 0.0804000000000000 0.305400000000000 0.0450000000000000 0 0
|
||||
210 190 110 0.0110000000000000 0.0568000000000000 0.388000000000000 0 0
|
||||
211 191 193 0.000800000000000000 0.00980000000000000 0.0690000000000000 0 0
|
||||
212 192 193 0.00290000000000000 0.0285000000000000 0.190000000000000 0 0
|
||||
213 192 109 0.00660000000000000 0.0448000000000000 0.277000000000000 0 0
|
||||
214 111 194 0.00240000000000000 0.0326000000000000 0.236000000000000 0 0
|
||||
215 111 113 0.00180000000000000 0.0245000000000000 1.66200000000000 0 0
|
||||
216 112 194 0.00440000000000000 0.0514000000000000 3.59700000000000 0 0
|
||||
217 113 114 0.000200000000000000 0.0123000000000000 0 0 0
|
||||
218 115 196 0.00180000000000000 0.0178000000000000 0.0290000000000000 0 0
|
||||
219 197 259 0.0669000000000000 0.484300000000000 0.0630000000000000 0 0
|
||||
220 197 198 0.0558000000000000 0.221000000000000 0.0310000000000000 0 0
|
||||
221 259 198 0.0807000000000000 0.333100000000000 0.0490000000000000 0 0
|
||||
222 259 260 0.0739000000000000 0.307100000000000 0.0430000000000000 0 0
|
||||
223 259 199 0.179900000000000 0.501700000000000 0.0690000000000000 0 0
|
||||
224 260 199 0.0904000000000000 0.362600000000000 0.0480000000000000 0 0
|
||||
225 260 200 0.0770000000000000 0.309200000000000 0.0540000000000000 0 0
|
||||
226 199 117 0.0251000000000000 0.0829000000000000 0.0470000000000000 0 0
|
||||
227 117 261 0.0222000000000000 0.0847000000000000 0.0500000000000000 0 0
|
||||
228 261 200 0.0498000000000000 0.185500000000000 0.0290000000000000 0 0
|
||||
229 261 118 0.00610000000000000 0.0290000000000000 0.0840000000000000 0 0
|
||||
230 201 100 0.000400000000000000 0.0202000000000000 0 0 0
|
||||
231 201 123 0.000400000000000000 0.00830000000000000 0.115000000000000 0 0
|
||||
232 121 3 0.00250000000000000 0.0245000000000000 0.164000000000000 0 0
|
||||
233 122 262 0.000700000000000000 0.00860000000000000 0.115000000000000 0 0
|
||||
234 123 262 0.000700000000000000 0.00860000000000000 0.115000000000000 0 0
|
||||
235 262 100 0.000400000000000000 0.0202000000000000 0 0 0
|
||||
236 202 212 0.0330000000000000 0.0950000000000000 0 0 0
|
||||
237 202 131 0.0460000000000000 0.0690000000000000 0 0 0
|
||||
238 203 290 0.000400000000000000 0.00220000000000000 6.20000000000000 0 0
|
||||
239 203 138 0 0.0275000000000000 0 0 0
|
||||
240 124 125 0.00300000000000000 0.0480000000000000 0 0 0
|
||||
241 125 218 0.00200000000000000 0.00900000000000000 0 0 0
|
||||
242 204 210 0.0450000000000000 0.0630000000000000 0 0 0
|
||||
243 204 212 0.0480000000000000 0.127000000000000 0 0 0
|
||||
244 205 284 0.00310000000000000 0.0286000000000000 0.500000000000000 0 0
|
||||
245 205 25 0.00240000000000000 0.0355000000000000 0.360000000000000 0 0
|
||||
246 206 284 0.00310000000000000 0.0286000000000000 0.500000000000000 0 0
|
||||
247 263 207 0.0140000000000000 0.0400000000000000 0.00400000000000000 0 0
|
||||
248 263 283 0.0300000000000000 0.0810000000000000 0.0100000000000000 0 0
|
||||
249 207 289 0.0100000000000000 0.0600000000000000 0.00900000000000000 0 0
|
||||
250 207 298 0.0150000000000000 0.0400000000000000 0.00600000000000000 0 0
|
||||
251 289 128 0.332000000000000 0.688000000000000 0 0 0
|
||||
252 289 129 0.00900000000000000 0.0460000000000000 0.0250000000000000 0 0
|
||||
253 289 283 0.0200000000000000 0.0730000000000000 0.00800000000000000 0 0
|
||||
254 289 298 0.0340000000000000 0.109000000000000 0.0320000000000000 0 0
|
||||
255 126 208 0.0760000000000000 0.135000000000000 0.00900000000000000 0 0
|
||||
256 126 283 0.0400000000000000 0.102000000000000 0.00500000000000000 0 0
|
||||
257 208 283 0.0810000000000000 0.128000000000000 0.0140000000000000 0 0
|
||||
258 127 209 0.124000000000000 0.183000000000000 0 0 0
|
||||
259 129 298 0.0100000000000000 0.0590000000000000 0.00800000000000000 0 0
|
||||
260 209 210 0.0460000000000000 0.0680000000000000 0 0 0
|
||||
261 210 211 0.302000000000000 0.446000000000000 0 0 0
|
||||
262 211 130 0.0730000000000000 0.0930000000000000 0 0 0
|
||||
263 211 212 0.240000000000000 0.421000000000000 0 0 0
|
||||
264 213 215 0.0139000000000000 0.0778000000000000 0.0860000000000000 0 0
|
||||
265 214 215 0.00170000000000000 0.0185000000000000 0.0200000000000000 0 0
|
||||
266 214 222 0.00150000000000000 0.0108000000000000 0.00200000000000000 0 0
|
||||
267 215 132 0.00450000000000000 0.0249000000000000 0.0260000000000000 0 0
|
||||
268 132 264 0.00400000000000000 0.0497000000000000 0.0180000000000000 0 0
|
||||
269 264 216 0 0.0456000000000000 0 0 0
|
||||
270 264 284 0.000500000000000000 0.0177000000000000 0.0200000000000000 0 0
|
||||
271 264 265 0.00270000000000000 0.0395000000000000 0.832000000000000 0 0
|
||||
272 284 285 0.000300000000000000 0.00180000000000000 5.20000000000000 0 0
|
||||
273 265 216 0.00370000000000000 0.0484000000000000 0.430000000000000 0 0
|
||||
274 265 133 0.00100000000000000 0.0295000000000000 0.503000000000000 0 0
|
||||
275 265 221 0.00160000000000000 0.00460000000000000 0.402000000000000 0 0
|
||||
276 133 134 0.000300000000000000 0.00130000000000000 1 0 0
|
||||
277 217 218 0.0100000000000000 0.0640000000000000 0.480000000000000 0 0
|
||||
278 217 135 0.00190000000000000 0.00810000000000000 0.860000000000000 0 0
|
||||
279 218 124 0.00100000000000000 0.0610000000000000 0 0 0
|
||||
280 135 290 0.000500000000000000 0.0212000000000000 0 0 0
|
||||
281 219 220 0.00190000000000000 0.00870000000000000 1.28000000000000 0 0
|
||||
282 219 290 0.00260000000000000 0.0917000000000000 0 0 0
|
||||
283 219 266 0.00130000000000000 0.0288000000000000 0.810000000000000 0 0
|
||||
284 220 203 0 0.0626000000000000 0 0 0
|
||||
285 290 136 0.000200000000000000 0.00690000000000000 1.36400000000000 0 0
|
||||
286 290 285 0.000100000000000000 0.000600000000000000 3.57000000000000 0 0
|
||||
287 136 8 0.00170000000000000 0.0485000000000000 0 0 0
|
||||
288 266 137 0.000200000000000000 0.0259000000000000 0.144000000000000 0 0
|
||||
289 266 285 0.000600000000000000 0.0272000000000000 0 0 0
|
||||
290 137 221 0.000200000000000000 0.000600000000000000 0.800000000000000 0 0
|
||||
291 138 13 0.000300000000000000 0.00430000000000000 0.00900000000000000 0 0
|
||||
292 222 267 0.00820000000000000 0.0851000000000000 0 0 0
|
||||
293 222 268 0.0112000000000000 0.0723000000000000 0 0 0
|
||||
294 139 140 0.0127000000000000 0.0355000000000000 0 0 0
|
||||
295 139 267 0.0326000000000000 0.180400000000000 0 0 0
|
||||
296 140 223 0.0195000000000000 0.0551000000000000 0 0 0
|
||||
297 267 223 0.0157000000000000 0.0732000000000000 0 0 0
|
||||
298 267 268 0.0360000000000000 0.211900000000000 0 0 0
|
||||
299 223 268 0.0268000000000000 0.128500000000000 0 0 0
|
||||
300 268 224 0.0428000000000000 0.121500000000000 0 0 0
|
||||
301 224 141 0.0351000000000000 0.100400000000000 0 0 0
|
||||
302 141 12 0.0616000000000000 0.185700000000000 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
97 3.25000000000000 0 0 0 0 0 0
|
||||
255 0.550000000000000 0 0 0 0 0 0
|
||||
107 0.345000000000000 0 0 0 0 0 0
|
||||
194 -2.12000000000000 0 0 0 0 0 0
|
||||
114 -1.03000000000000 0 0 0 0 0 0
|
||||
259 0.530000000000000 0 0 0 0 0 0
|
||||
200 0.450000000000000 0 0 0 0 0 0
|
||||
203 -1.50000000000000 0 0 0 0 0 0
|
||||
290 -3 0 0 0 0 0 0
|
||||
221 -1.50000000000000 0 0 0 0 0 0
|
||||
138 -1.40000000000000 0 0 0 0 0 0
|
||||
224 0.456000000000000 0 0 0 0 0 0
|
||||
300 0.0240000000000000 0 0 0 0 0 0
|
||||
54 0.0170000000000000 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
1 297 269 0.000100000000000000 0.000500000000000000 1.00820000000000 0.904300000000000 1.10430000000000
|
||||
2 269 226 0.0244000000000000 0.436800000000000 0.966800000000000 0.939100000000000 1.14780000000000
|
||||
3 269 227 0.0362000000000000 0.649000000000000 0.979600000000000 0.939100000000000 1.14780000000000
|
||||
4 291 62 0.0158000000000000 0.374900000000000 1.04350000000000 0.939100000000000 1.14780000000000
|
||||
5 291 63 0.0158000000000000 0.374900000000000 0.939100000000000 0.939100000000000 1.14780000000000
|
||||
6 291 145 0.0160000000000000 0.380500000000000 1.04350000000000 0.939100000000000 1.14780000000000
|
||||
7 291 64 0 0.152000000000000 1.04350000000000 0.939100000000000 1.10000000000000
|
||||
8 291 65 0 0.800000000000000 1.04350000000000 0.939100000000000 1.10000000000000
|
||||
9 228 47 0.443600000000000 2.81520000000000 1 0.939100000000000 1.10000000000000
|
||||
10 225 48 0.507500000000000 3.22020000000000 1 0.939100000000000 1.10000000000000
|
||||
11 229 49 0.666900000000000 3.94400000000000 1 0.939100000000000 1.10000000000000
|
||||
12 229 50 0.611300000000000 3.61520000000000 1 0.939100000000000 1.10000000000000
|
||||
13 271 66 0.441200000000000 2.96680000000000 1 0.939100000000000 1.10000000000000
|
||||
14 271 67 0.307900000000000 2.05700000000000 1 0.939100000000000 1.10000000000000
|
||||
15 300 51 0.736300000000000 4.67240000000000 1 0.939100000000000 1.10000000000000
|
||||
16 300 52 0.769800000000000 4.88460000000000 1 0.939100000000000 1.10000000000000
|
||||
17 300 53 0.757300000000000 4.80560000000000 1 0.939100000000000 1.10000000000000
|
||||
18 270 59 0.366100000000000 2.45600000000000 1 0.939100000000000 1.10000000000000
|
||||
19 270 60 1.05930000000000 5.45360000000000 1 0.939100000000000 1.10000000000000
|
||||
20 270 61 0.156700000000000 1.69940000000000 1 0.900000000000000 1.10000000000000
|
||||
21 300 54 0.130100000000000 1.39120000000000 1 0.939100000000000 1.10000000000000
|
||||
22 300 55 0.544800000000000 3.45720000000000 1 0.939100000000000 1.10000000000000
|
||||
23 300 56 0.154300000000000 1.67290000000000 1 0.939100000000000 1.10000000000000
|
||||
24 300 57 0.384900000000000 2.57120000000000 1 0.939100000000000 1.10000000000000
|
||||
25 300 58 0.441200000000000 2.96680000000000 1 0.939100000000000 1.10000000000000
|
||||
26 145 69 0 0.750000000000000 0.958300000000000 0.939100000000000 1.10000000000000
|
||||
27 4 214 0.00250000000000000 0.0380000000000000 1 0.939100000000000 1.10000000000000
|
||||
28 5 285 0.00140000000000000 0.0514000000000000 1 0.939100000000000 1.10000000000000
|
||||
29 6 290 0.000900000000000000 0.0472000000000000 1 0.939100000000000 1.10000000000000
|
||||
30 11 285 0.000500000000000000 0.0154000000000000 1 0.939100000000000 1.10000000000000
|
||||
31 292 146 0 0.0520000000000000 0.947000000000000 0.900000000000000 1.10000000000000
|
||||
32 292 230 0 0.0520000000000000 0.956000000000000 0.900000000000000 1.10000000000000
|
||||
33 292 70 0 0.00500000000000000 0.971000000000000 0.900000000000000 1.10000000000000
|
||||
34 272 147 0 0.0390000000000000 0.948000000000000 0.900000000000000 1.10000000000000
|
||||
35 272 71 0 0.0390000000000000 0.959000000000000 0.900000000000000 1.10000000000000
|
||||
36 73 273 0 0.0890000000000000 1.04600000000000 0.900000000000000 1.10000000000000
|
||||
37 231 73 0 0.0530000000000000 0.985000000000000 0.900000000000000 1.10000000000000
|
||||
38 286 76 0.0194000000000000 0.0311000000000000 0.956100000000000 0.900000000000000 1.10000000000000
|
||||
39 149 286 0.00100000000000000 0.0380000000000000 0.971000000000000 0.900000000000000 1.10000000000000
|
||||
40 233 232 0 0.0140000000000000 0.952000000000000 0.900000000000000 1.10000000000000
|
||||
41 235 234 0 0.0640000000000000 0.943000000000000 0.900000000000000 1.10000000000000
|
||||
42 81 237 0 0.0470000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
||||
43 240 275 0 0.0200000000000000 1.00800000000000 0.900000000000000 1.10000000000000
|
||||
44 240 153 0 0.0210000000000000 1 0.900000000000000 1.10000000000000
|
||||
45 276 158 0 0.0590000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
||||
46 159 88 0 0.0380000000000000 1.01700000000000 0.900000000000000 1.10000000000000
|
||||
47 277 246 0 0.0244000000000000 1 0.900000000000000 1.10000000000000
|
||||
48 248 164 0 0.0200000000000000 1 0.900000000000000 1.10000000000000
|
||||
49 91 279 0 0.0480000000000000 1 0.900000000000000 1.10000000000000
|
||||
50 249 280 0 0.0480000000000000 1 0.900000000000000 1.10000000000000
|
||||
51 163 169 0 0.0460000000000000 1.01500000000000 0.900000000000000 1.10000000000000
|
||||
52 175 130 0 0.149000000000000 0.967000000000000 0.900000000000000 1.10000000000000
|
||||
53 96 178 0.00520000000000000 0.0174000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
||||
54 176 95 0 0.0280000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
55 256 191 0.000500000000000000 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
||||
56 299 98 0 0.0180000000000000 1.05220000000000 0.900000000000000 1.10000000000000
|
||||
57 299 104 0 0.0140000000000000 1.05220000000000 0.900000000000000 1.10000000000000
|
||||
58 182 116 0.00100000000000000 0.0402000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
59 186 198 0.00240000000000000 0.0603000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
||||
60 187 260 0.00240000000000000 0.0498000000000000 1 0.900000000000000 1.10000000000000
|
||||
61 281 101 0 0.0833000000000000 1.03500000000000 0.900000000000000 1.10000000000000
|
||||
62 281 188 0.00130000000000000 0.0371000000000000 0.956500000000000 0.900000000000000 1.10000000000000
|
||||
63 282 118 0.000500000000000000 0.0182000000000000 1 0.900000000000000 1.10000000000000
|
||||
64 105 116 0.00100000000000000 0.0392000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
65 189 120 0.00270000000000000 0.0639000000000000 1.07300000000000 0.900000000000000 1.10000000000000
|
||||
66 190 108 0.000800000000000000 0.0256000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
67 193 97 0 0.0160000000000000 1.05060000000000 0.900000000000000 1.10000000000000
|
||||
68 109 178 0.00120000000000000 0.0396000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
||||
69 112 295 0.00130000000000000 0.0384000000000000 0.980000000000000 0.900000000000000 1.10000000000000
|
||||
70 194 190 0.000900000000000000 0.0231000000000000 0.956000000000000 0.900000000000000 1.10000000000000
|
||||
71 119 185 0.000300000000000000 0.0131000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
72 202 283 0 0.252000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
73 204 263 0 0.237000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
74 206 213 0.000800000000000000 0.0366000000000000 0.985000000000000 0.900000000000000 1.10000000000000
|
||||
75 208 224 0 0.220000000000000 1 0.900000000000000 1.10000000000000
|
||||
76 127 160 0 0.0980000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
77 128 298 0 0.128000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
||||
78 209 143 0.0200000000000000 0.204000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
79 131 289 0.0260000000000000 0.211000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
80 298 213 0.00300000000000000 0.0122000000000000 1 0.900000000000000 1.10000000000000
|
||||
81 216 284 0.00300000000000000 0.0122000000000000 0.970000000000000 0.900000000000000 1.10000000000000
|
||||
82 134 217 0.00120000000000000 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
||||
83 220 7 0.00100000000000000 0.0332000000000000 1.02000000000000 0.900000000000000 1.10000000000000
|
||||
84 266 9 0.000500000000000000 0.0160000000000000 1.07000000000000 0.900000000000000 1.10000000000000
|
||||
85 221 10 0.000500000000000000 0.0160000000000000 1.02000000000000 0.900000000000000 1.10000000000000
|
||||
86 263 143 0.000100000000000000 0.0200000000000000 1 0.900000000000000 1.10000000000000
|
||||
87 254 26 0.00100000000000000 0.0230000000000000 1.02230000000000 0.900000000000000 1.10000000000000
|
||||
88 255 27 0 0.0230000000000000 0.928400000000000 0.900000000000000 1.10000000000000
|
||||
89 29 230 0.00100000000000000 0.0146000000000000 1 0.900000000000000 1.10000000000000
|
||||
90 30 292 0 0.0105000000000000 1 0.900000000000000 1.10000000000000
|
||||
91 41 158 0 0.0238000000000000 1 0.900000000000000 1.10000000000000
|
||||
92 42 276 0 0.0321000000000000 0.950000000000000 0.900000000000000 1.10000000000000
|
||||
93 46 114 0 0.0154000000000000 1 0.900000000000000 1.10000000000000
|
||||
94 35 235 0 0.0289000000000000 1 0.900000000000000 1.10000000000000
|
||||
95 28 146 0 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
||||
96 44 299 0 0.0193000000000000 1 0.900000000000000 1.10000000000000
|
||||
97 31 273 0 0.0192000000000000 1 0.900000000000000 1.10000000000000
|
||||
98 34 234 0 0.0230000000000000 1 0.900000000000000 1.10000000000000
|
||||
99 38 241 0 0.0124000000000000 1 0.900000000000000 1.10000000000000
|
||||
100 45 185 0 0.0167000000000000 1 0.900000000000000 1.10000000000000
|
||||
101 32 231 0 0.0312000000000000 1 0.900000000000000 1.10000000000000
|
||||
102 33 76 0 0.0165000000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
||||
103 36 82 0 0.0316000000000000 0.965000000000000 0.900000000000000 1.10000000000000
|
||||
104 40 243 0 0.0535000000000000 0.950000000000000 0.900000000000000 1.10000000000000
|
||||
105 37 275 0 0.181800000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
||||
106 39 242 0 0.196100000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
||||
107 43 244 0 0.0690000000000000 0.956500000000000 0.900000000000000 1.10000000000000
|
||||
0 0 0 0 0 0 0 0
|
||||
1 375 0 37 13 0 0 0
|
||||
2 0 0 763.6 291.1 0 0 0
|
||||
3 200 0 0 0 0 0 0
|
||||
4 471.8339454 0 0 0 0 0 0
|
||||
5 599.9999916 0 328 188 0 0 0
|
||||
6 303 0 538 369 0 0 0
|
||||
7 345 0 0 0 0 0 0
|
||||
8 300 0 404 212 0 0 0
|
||||
9 799.9999966 0 0 0 0 0 0
|
||||
10 550 0 0 0 0 0 0
|
||||
11 664.3132491 0 0 0 0 0 0
|
||||
12 0 0 -23 -17 0 0 0
|
||||
13 0 0 -33.1 -29.4 0 0 0
|
||||
14 0 0 115.8 -24 0 0 0
|
||||
15 0 0 2.4 -12.6 0 0 0
|
||||
16 0 0 2.4 -3.9 0 0 0
|
||||
17 0 0 -14.9 26.5 0 0 0
|
||||
18 0 0 24.7 -1.2 0 0 0
|
||||
19 0 0 145.3 -34.9 0 0 0
|
||||
20 0 0 28.1 -20.5 0 0 0
|
||||
21 0 0 14 2.5 0 0 0
|
||||
22 0 0 -11.1 -1.4 0 0 0
|
||||
23 0 0 50.5 17.4 0 0 0
|
||||
24 0 0 29.6 0.6 0 0 0
|
||||
25 0 0 -113.7 76.7 0 0 0
|
||||
26 0 0 100.31 29.17 0 0 0
|
||||
27 0 0 -100 34.17 0 0 0
|
||||
28 395.8896056 0 0 0 0 0 0
|
||||
29 395.6602564 0 0 0 0 0 0
|
||||
30 600.0000006 0 0 0 0 0 0
|
||||
31 220.1833677 0 0 0 0 0 0
|
||||
32 200.0000012 0 0 0 0 0 0
|
||||
33 499.9999996 0 0 0 0 0 0
|
||||
34 299.9999995 0 0 0 0 0 0
|
||||
35 320.0000205 0 0 0 0 0 0
|
||||
36 400.0000002 0 0 0 0 0 0
|
||||
37 37 0 0 0 0 0 0
|
||||
38 798.6100734 0 0 0 0 0 0
|
||||
39 45 0 0 0 0 0 0
|
||||
40 313.2858398 0 0 0 0 0 0
|
||||
41 250.0000004 0 0 0 0 0 0
|
||||
42 599.9999989 0 0 0 0 0 0
|
||||
43 212.8594084 0 0 0 0 0 0
|
||||
44 824.4170571 0 0 0 0 0 0
|
||||
45 704.4236744 0 0 0 0 0 0
|
||||
46 584.1742333 0 0 0 0 0 0
|
||||
47 0 0 1.53 0.53 0 0 0
|
||||
48 0 0 1.35 0.47 0 0 0
|
||||
49 0 0 0.45 0.16 0 0 0
|
||||
50 0 0 0.45 0.16 0 0 0
|
||||
51 0 0 1.84 0.64 0 0 0
|
||||
52 0 0 1.39 0.48 0 0 0
|
||||
53 0 0 1.89 0.65 0 0 0
|
||||
54 0 0 1.55 0.54 0 0 0
|
||||
55 0 0 1.66 0.58 0 0 0
|
||||
56 0 0 3.03 1 0 0 0
|
||||
57 0 0 1.86 0.64 0 0 0
|
||||
58 0 0 2.58 0.89 0 0 0
|
||||
59 0 0 1.01 0.35 0 0 0
|
||||
60 0 0 0.81 0.28 0 0 0
|
||||
61 0 0 1.6 0.52 0 0 0
|
||||
62 -35.81 0 0 0 0 0 0
|
||||
63 0 0 30 23 0 0 0
|
||||
64 50 0 0 0 0 0 0
|
||||
65 8 0 0 0 0 0 0
|
||||
66 0 0 1.02 0.35 0 0 0
|
||||
67 0 0 1.02 0.35 0 0 0
|
||||
68 0 0 3.8 1.25 0 0 0
|
||||
69 0 0 1.19 0.41 0 0 0
|
||||
70 0 0 0 0 0 0 0
|
||||
71 0 0 120 41 0 0 0
|
||||
72 0 0 96 43 0 0 0
|
||||
73 -5 0 148 33 0 0 0
|
||||
74 0 0 58 10 0 0 0
|
||||
75 0 0 160 60 0 0 0
|
||||
76 0 0 561 220 0 0 0
|
||||
77 0 0 81 23 0 0 0
|
||||
78 0 0 45 12 0 0 0
|
||||
79 0 0 69 13 0 0 0
|
||||
80 0 0 0 0 0 0 0
|
||||
81 0 0 0 0 0 0 0
|
||||
82 0 0 0 0 0 0 0
|
||||
83 0 0 61 28 0 0 0
|
||||
84 0 0 69 3 0 0 0
|
||||
85 0 0 14 1 0 0 0
|
||||
86 0 0 218 106 0 0 0
|
||||
87 0 0 0 0 0 0 0
|
||||
88 0 0 0 0 0 0 0
|
||||
89 0 0 56 20 0 0 0
|
||||
90 0 0 28 7 0 0 0
|
||||
91 0 0 0 0 0 0 0
|
||||
92 68 0 66.7 0 0 0 0
|
||||
93 0 0 19.6 0 0 0 0
|
||||
94 0 0 26.2 0 0 0 0
|
||||
95 0 0 0 0 0 0 0
|
||||
96 0 0 0 0 0 0 0
|
||||
97 0 0 0 0 0 0 0
|
||||
98 0 0 0 0 0 0 0
|
||||
99 0 0 169.2 41.6 0 0 0
|
||||
100 -192.5 0 826.7 135.2 0 0 0
|
||||
101 0 0 0 0 0 0 0
|
||||
102 217 0 0 0 0 0 0
|
||||
103 103 0 0 0 0 0 0
|
||||
104 0 0 0 0 0 0 0
|
||||
105 0 0 0 0 0 0 0
|
||||
106 372 0 17 9 0 0 0
|
||||
107 0 0 70 5 0 0 0
|
||||
108 0 0 75 50 0 0 0
|
||||
109 0 0 0 0 0 0 0
|
||||
110 0 0 35 15 0 0 0
|
||||
111 0 0 85 24 0 0 0
|
||||
112 0 0 0 0.4 0 0 0
|
||||
113 0 0 0 0 0 0 0
|
||||
114 0 0 0 0 0 0 0
|
||||
115 0 0 299.9 95.7 0 0 0
|
||||
116 205 0 481.8 205 0 0 0
|
||||
117 84 0 28 12 0 0 0
|
||||
118 0 0 69.5 49.3 0 0 0
|
||||
119 0 0 240.7 89 0 0 0
|
||||
120 0 0 40 4 0 0 0
|
||||
121 0 0 136.8 16.6 0 0 0
|
||||
122 1200 0 59.8 24.3 0 0 0
|
||||
123 1200 0 59.8 24.3 0 0 0
|
||||
124 1973 0 489 53 0 0 0
|
||||
125 0 0 800 72 0 0 0
|
||||
126 0 0 35 12 0 0 0
|
||||
127 0 0 41 14 0 0 0
|
||||
128 0 0 38 13 0 0 0
|
||||
129 0 0 42 14 0 0 0
|
||||
130 0 0 -21 -14.2 0 0 0
|
||||
131 0 0 38 13 0 0 0
|
||||
132 0 0 176 105 0 0 0
|
||||
133 450 0 171 70 0 0 0
|
||||
134 0 0 428 232 0 0 0
|
||||
135 0 0 0 0 0 0 0
|
||||
136 0 0 448 143 0 0 0
|
||||
137 0 0 269 157 0 0 0
|
||||
138 0 0 0 0 0 0 0
|
||||
139 84 0 8 3 0 0 0
|
||||
140 0 0 0 0 0 0 0
|
||||
141 0 0 29 14 0 0 0
|
||||
142 0 0 0 0 0 0 0
|
||||
143 0 0 0 0 0 0 0
|
||||
144 0 0 0 0 0 0 0
|
||||
145 -26.48 0 0 0 0 0 0
|
||||
146 0 0 90 49 0 0 0
|
||||
147 0 0 353 130 0 0 0
|
||||
148 -5 0 58 14 0 0 0
|
||||
149 0 0 0 0 0 0 0
|
||||
150 0 0 0 0 0 0 0
|
||||
151 0 0 28 9 0 0 0
|
||||
152 0 0 46 -21 0 0 0
|
||||
153 0 0 0 0 0 0 0
|
||||
154 0 0 58 11.8 0 0 0
|
||||
155 0 0 41 19 0 0 0
|
||||
156 0 0 -5 5 0 0 0
|
||||
157 0 0 10 1 0 0 0
|
||||
158 0 0 227 110 0 0 0
|
||||
159 0 0 70 30 0 0 0
|
||||
160 0 0 0 0 0 0 0
|
||||
161 0 0 208 107 0 0 0
|
||||
162 0 0 0 0 0 0 0
|
||||
163 0 0 0 0 0 0 0
|
||||
164 0 0 0 0 0 0 0
|
||||
165 0 0 44.2 0 0 0 0
|
||||
166 0 0 66 0 0 0 0
|
||||
167 155 0 17.4 0 0 0 0
|
||||
168 290 0 15.8 0 0 0 0
|
||||
169 0 0 60.3 0 0 0 0
|
||||
170 0 0 0 0 0 0 0
|
||||
171 0 0 32 0 0 0 0
|
||||
172 0 0 8.6 0 0 0 0
|
||||
173 0 0 4.6 0 0 0 0
|
||||
174 117 0 112.1 0 0 0 0
|
||||
175 0 0 18.2 0 0 0 0
|
||||
176 0 0 535 55 0 0 0
|
||||
177 0 0 78 1.4 0 0 0
|
||||
178 240 0 276.4 59.3 0 0 0
|
||||
179 0 0 514.8 82.7 0 0 0
|
||||
180 0 0 0 0 0 0 0
|
||||
181 0 0 0 0 0 0 0
|
||||
182 0 0 0 0 0 0 0
|
||||
183 0 0 0 0 0 0 0
|
||||
184 0 0 55.2 18.2 0 0 0
|
||||
185 0 0 595 83.3 0 0 0
|
||||
186 281 0 145 58 0 0 0
|
||||
187 0 0 56.5 24.5 0 0 0
|
||||
188 0 0 63 25 0 0 0
|
||||
189 216 0 0 0 0 0 0
|
||||
190 0 0 200 50 0 0 0
|
||||
191 0 0 123.5 -24.3 0 0 0
|
||||
192 0 0 0 0 0 0 0
|
||||
193 0 0 33 16.5 0 0 0
|
||||
194 0 0 0 0 0 0 0
|
||||
195 0 0 0 0 0 0 0
|
||||
196 0 0 0 0 0 0 0
|
||||
197 0 0 26.5 0 0 0 0
|
||||
198 0 0 0 0 0 0 0
|
||||
199 228 0 5 4 0 0 0
|
||||
200 0 0 74 29 0 0 0
|
||||
201 0 0 73.4 0 0 0 0
|
||||
202 0 0 7 2 0 0 0
|
||||
203 475 0 0 0 0 0 0
|
||||
204 0 0 0 0 0 0 0
|
||||
205 0 0 0 0 0 0 0
|
||||
206 0 0 0 0 0 0 0
|
||||
207 0 0 43 14 0 0 0
|
||||
208 0 0 27 12 0 0 0
|
||||
209 0 0 72 24 0 0 0
|
||||
210 0 0 0 -5 0 0 0
|
||||
211 0 0 12 2 0 0 0
|
||||
212 0 0 7 2 0 0 0
|
||||
213 0 0 0 0 0 0 0
|
||||
214 0 0 22 16 0 0 0
|
||||
215 0 0 47 26 0 0 0
|
||||
216 0 0 131 96 0 0 0
|
||||
217 0 0 173 99 0 0 0
|
||||
218 0 0 410 40 0 0 0
|
||||
219 0 0 223 148 0 0 0
|
||||
220 0 0 96 46 0 0 0
|
||||
221 250 0 255 149 0 0 0
|
||||
222 170 0 0 0 0 0 0
|
||||
223 0 0 77 33 0 0 0
|
||||
224 0 0 29 14 0 0 0
|
||||
225 -4.2 0 0 0 0 0 0
|
||||
226 0 0 0 0 0 0 0
|
||||
227 0 0 0 0 0 0 0
|
||||
228 0 0 4.75 1.56 0 0 0
|
||||
229 0 0 0 0 0 0 0
|
||||
230 0 0 56 15 0 0 0
|
||||
231 0 0 0 0 0 0 0
|
||||
232 -10 0 595 120 0 0 0
|
||||
233 0 0 77 1 0 0 0
|
||||
234 0 0 21 7 0 0 0
|
||||
235 0 0 0 0 0 0 0
|
||||
236 0 0 55 6 0 0 0
|
||||
237 0 0 0 0 0 0 0
|
||||
238 0 0 155 18 0 0 0
|
||||
239 0 0 39 9 0 0 0
|
||||
240 0 0 0 0 0 0 0
|
||||
241 0 0 92 26 0 0 0
|
||||
242 0 0 22 10 0 0 0
|
||||
243 0 0 98 20 0 0 0
|
||||
244 0 0 116 38 0 0 0
|
||||
245 0 0 57 19 0 0 0
|
||||
246 0 0 0 0 0 0 0
|
||||
247 0 0 48 14 0 0 0
|
||||
248 0 0 0 0 0 0 0
|
||||
249 0 0 0 0 0 0 0
|
||||
250 0 0 49.6 0 0 0 0
|
||||
251 0 0 30.7 0 0 0 0
|
||||
252 0 0 63 0 0 0 0
|
||||
253 0 0 14.1 650 0 0 0
|
||||
254 1930 0 0 0 0 0 0
|
||||
255 0 0 777 215 0 0 0
|
||||
256 0 0 229.1 11.8 0 0 0
|
||||
257 0 0 380.8 37 0 0 0
|
||||
258 84 0 0 0 0 0 0
|
||||
259 0 0 163.5 43 0 0 0
|
||||
260 0 0 176 83 0 0 0
|
||||
261 0 0 427.4 173.6 0 0 0
|
||||
262 0 0 182.6 43.6 0 0 0
|
||||
263 0 0 10 3 0 0 0
|
||||
264 0 0 100 75 0 0 0
|
||||
265 100 0 285 100 0 0 0
|
||||
266 0 0 572 244 0 0 0
|
||||
267 0 0 61 30 0 0 0
|
||||
268 0 0 61 30 0 0 0
|
||||
269 0 0 0 0 0 0 0
|
||||
270 0 0 0.86 0.28 0 0 0
|
||||
271 0 0 0 0 0 0 0
|
||||
272 0 0 0 0 0 0 0
|
||||
273 0 0 83 21 0 0 0
|
||||
274 0 0 0 0 0 0 0
|
||||
275 0 0 195 29 0 0 0
|
||||
276 0 0 0 0 0 0 0
|
||||
277 0 0 224 71 0 0 0
|
||||
278 0 0 39.9 0 0 0 0
|
||||
279 0 0 83.5 0 0 0 0
|
||||
280 0 0 77.8 0 0 0 0
|
||||
281 696 0 89.5 35.5 0 0 0
|
||||
282 0 0 24 14 0 0 0
|
||||
283 0 0 0 0 0 0 0
|
||||
284 0 0 0 0 0 0 0
|
||||
285 0 0 0 0 0 0 0
|
||||
286 0 0 126.7 23 0 0 0
|
||||
287 0 0 86 0 0 0 0
|
||||
288 0 0 0 0 0 0 0
|
||||
289 424 0 64 21 0 0 0
|
||||
290 0 0 159 107 0 0 0
|
||||
291 0 0 0 0 0 0 0
|
||||
292 0 0 20 0 0 0 0
|
||||
293 0 0 74 28 0 0 0
|
||||
294 0 0 57.9 5.1 0 0 0
|
||||
295 0 0 273.6 99.8 0 0 0
|
||||
296 0 0 387.7 114.7 0 0 0
|
||||
297 0 0 85 32 0 0 0
|
||||
298 0 0 96 7 0 0 0
|
||||
299 0 0 0 0 0 0 0
|
||||
300 0 0 2.71 0.94 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
148 1.01530000000000 -10 10 0 0 0 0
|
||||
73 1.02050000000000 -20 20 0 0 0 0
|
||||
232 1.00100000000000 -20 20 0 0 0 0
|
||||
159 0.958300000000000 -25 25 0 0 0 0
|
||||
161 0.963200000000000 12 35 0 0 0 0
|
||||
1 1.02500000000000 -240 240 0 0 0 0
|
||||
167 1.05200000000000 -11 96 0 0 0 0
|
||||
168 1.05200000000000 -153 153 0 0 0 0
|
||||
92 1 -30 56 0 0 0 0
|
||||
174 0.990000000000000 -24 77 0 0 0 0
|
||||
254 1.04350000000000 -500 1500 0 0 0 0
|
||||
178 1.02330000000000 -60 120 0 0 0 0
|
||||
179 1.01030000000000 -25 200 0 0 0 0
|
||||
100 1.05500000000000 -125 350 0 0 0 0
|
||||
186 1.05100000000000 -50 75 0 0 0 0
|
||||
281 1.04350000000000 -100 300 0 0 0 0
|
||||
258 1.05280000000000 -15 35 0 0 0 0
|
||||
102 1.05280000000000 -50 100 0 0 0 0
|
||||
103 1.07350000000000 -25 50 0 0 0 0
|
||||
106 1.05350000000000 -50 175 0 0 0 0
|
||||
189 1.04350000000000 -50 90 0 0 0 0
|
||||
108 0.963000000000000 -10 15 0 0 0 0
|
||||
116 0.929000000000000 -40 90 0 0 0 0
|
||||
2 0.982900000000000 -50 150 0 0 0 0
|
||||
199 1.05220000000000 -45 90 0 0 0 0
|
||||
117 1.00770000000000 -15 35 0 0 0 0
|
||||
3 1.05220000000000 -50 80 0 0 0 0
|
||||
122 1.06500000000000 -100 400 0 0 0 0
|
||||
123 1.06500000000000 -100 400 0 0 0 0
|
||||
203 1.05510000000000 -300 300 0 0 0 0
|
||||
124 1.04350000000000 -1000 1000 0 0 0 0
|
||||
289 1.01500000000000 -260 260 0 0 0 0
|
||||
4 1.01000000000000 -150 150 0 0 0 0
|
||||
265 1.00800000000000 -60 60 0 0 0 0
|
||||
133 1 -320 320 0 0 0 0
|
||||
5 1.05000000000000 -300 300 0 0 0 0
|
||||
6 1 -300 300 0 0 0 0
|
||||
7 1.04000000000000 -250 250 0 0 0 0
|
||||
8 1 -500 500 0 0 0 0
|
||||
9 1.01650000000000 -300 300 0 0 0 0
|
||||
221 1.01000000000000 -200 200 0 0 0 0
|
||||
10 1 -400 400 0 0 0 0
|
||||
11 1.05000000000000 -600 600 0 0 0 0
|
||||
222 0.993000000000000 40 100 0 0 0 0
|
||||
139 1.01000000000000 40 80 0 0 0 0
|
||||
28 1.05070000000000 -210 210 0 0 0 0
|
||||
29 1.05070000000000 -280 280 0 0 0 0
|
||||
30 1.03230000000000 -420 420 0 0 0 0
|
||||
31 1.01450000000000 -100 100 0 0 0 0
|
||||
32 1.01450000000000 -224 224 0 0 0 0
|
||||
33 1.05070000000000 0 350 0 0 0 0
|
||||
34 1.05070000000000 0 120 0 0 0 0
|
||||
35 1.02900000000000 -224 224 0 0 0 0
|
||||
36 1.05000000000000 -200 200 0 0 0 0
|
||||
37 1.01450000000000 0 42 0 0 0 0
|
||||
38 1.05070000000000 -500 500 0 0 0 0
|
||||
39 0.996700000000000 0 25 0 0 0 0
|
||||
40 1.02120000000000 -90 90 0 0 0 0
|
||||
41 1.01450000000000 -150 150 0 0 0 0
|
||||
42 1.00170000000000 0 150 0 0 0 0
|
||||
43 0.989300000000000 0 87 0 0 0 0
|
||||
44 1.05070000000000 -100 600 0 0 0 0
|
||||
45 1.05070000000000 -125 325 0 0 0 0
|
||||
46 1.01450000000000 -200 300 0 0 0 0
|
||||
225 0.994500000000000 -2 2 0 0 0 0
|
||||
62 1 -17.3500000000000 17.3500000000000 0 0 0 0
|
||||
145 1 -12.8000000000000 12.8300000000000 0 0 0 0
|
||||
64 1 -38 38 0 0 0 0
|
||||
65 1 -6 6 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
5 0.200000000000000 0.200000000000000 0.137500000000000 210 600 0 0
|
||||
4 0.300000000000000 0.175000000000000 0.175000000000000 200 580 0 0
|
||||
9 0.300000000000000 0.125000000000000 0.100000000000000 200 800 0 0
|
||||
11 0.350000000000000 0.225000000000000 0.128300000000000 300 800 0 0
|
||||
28 0.220000000000000 0.143000000000000 0.250000000000000 300 600 0 0
|
||||
29 0.750000000000000 0.125000000000000 0.250000000000000 300 800 0 0
|
||||
30 0.540000000000000 0.195000000000000 0.252000000000000 600 1600 0 0
|
||||
31 0.380000000000000 0.220000000000000 0.439000000000000 200 400 0 0
|
||||
32 0.360000000000000 0.125000000000000 0.635000000000000 200 500 0 0
|
||||
33 0.900000000000000 0.130000000000000 0.0250000000000000 200 500 0 0
|
||||
34 0.830000000000000 0.230000000000000 0.0730000000000000 100 300 0 0
|
||||
35 0.440000000000000 0.143000000000000 0.312000000000000 320 600 0 0
|
||||
36 0.120000000000000 0.140000000000000 0.665000000000000 400 800 0 0
|
||||
38 0.540000000000000 0.115000000000000 0.102000000000000 600 1600 0 0
|
||||
40 0.660000000000000 0.155000000000000 0.265000000000000 100 350 0 0
|
||||
41 0.820000000000000 0.160000000000000 0.700000000000000 250 600 0 0
|
||||
42 0.440000000000000 0.145000000000000 0.105000000000000 250 600 0 0
|
||||
43 0.350000000000000 0.127000000000000 0.450000000000000 80 300 0 0
|
||||
44 0.540000000000000 0.125000000000000 0.122000000000000 600 1600 0 0
|
||||
45 0.380000000000000 0.200000000000000 0.139000000000000 500 900 0 0
|
||||
46 0.360000000000000 0.125000000000000 0.235000000000000 400 800 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
|
|
@ -0,0 +1,96 @@
|
|||
30 41 100.0 28 0.1
|
||||
1.e-5 2
|
||||
1 1
|
||||
0
|
||||
1 1 2 0.0192 0.0575 0.0264
|
||||
2 1 3 0.0452 0.1852 0.0204
|
||||
3 2 4 0.0570 0.1737 0.0184
|
||||
4 3 4 0.0132 0.0379 0.0042
|
||||
5 2 5 0.0472 0.1983 0.0209
|
||||
6 2 6 0.0581 0.1763 0.0187
|
||||
7 4 6 0.0119 0.0414 0.0045
|
||||
8 5 7 0.0460 0.1160 0.0102
|
||||
9 6 7 0.0267 0.0820 0.0085
|
||||
10 6 8 0.0120 0.0420 0.0045
|
||||
13 9 11 0.0 0.2080 0.0
|
||||
15 12 13 0.0 0.1400 0.0
|
||||
16 12 14 0.1231 0.2559 0.0
|
||||
17 12 15 0.0662 0.1304 0.0
|
||||
18 12 16 0.945 0.1987 0.0
|
||||
19 14 15 0.2210 0.1997 0.0
|
||||
20 16 17 0.0824 0.1923 0.0
|
||||
21 15 18 0.1070 0.2185 0.0
|
||||
22 18 19 0.0639 0.1292 0.0
|
||||
23 19 20 0.0340 0.0680 0.0
|
||||
24 10 20 0.0936 0.2090 0.0
|
||||
25 10 17 0.0324 0.0845 0.0
|
||||
26 10 21 0.0348 0.0749 0.0
|
||||
27 10 22 0.0727 0.1499 0.0
|
||||
28 21 22 0.0116 0.0236 0.0
|
||||
29 15 23 0.1000 0.2020 0.0
|
||||
30 22 24 0.1150 0.1790 0.0
|
||||
31 23 24 0.1320 0.2700 0.0
|
||||
32 24 25 0.1885 0.3292 0.0
|
||||
33 25 26 0.2554 0.3800 0.0
|
||||
34 25 27 0.1093 0.2087 0.0
|
||||
36 27 29 0.2198 0.4153 0.0
|
||||
37 27 30 0.3202 0.6027 0.0
|
||||
38 29 30 0.2399 0.4533 0.0
|
||||
39 8 28 0.0636 0.2000 0.0214
|
||||
40 6 28 0.0169 0.0599 0.0065
|
||||
41 9 10 0.0 0.1100 0.0
|
||||
0
|
||||
10 0.19
|
||||
24 0.043
|
||||
0
|
||||
1 9 6 0.0 0.2080 0.978 0.9 1.1
|
||||
2 6 10 0.0 0.5560 0.969 0.9 1.1
|
||||
3 12 4 0.0 0.2560 0.932 0.9 1.1
|
||||
4 28 27 0.0 0.3960 0.968 0.9 1.1
|
||||
0
|
||||
1 20. 0. 0. 0.
|
||||
2 27.56 2.43 21.7 12.7
|
||||
3 0. 0. 2.4 1.2
|
||||
4 0. 0. 7.6 1.6
|
||||
5 67.56 22.25 94.2 19.
|
||||
6 0. 0. 0. 0.
|
||||
7 0. 0. 22.8 10.9
|
||||
8 74 37.27 30. 30.
|
||||
9 0. 0. 0. 0.
|
||||
10 0. 0. 5.8 2.
|
||||
11 63.93 17.61 0. 0.
|
||||
12 0. 0. 11.2 7.5
|
||||
13 32.91 24.69 0. 0.
|
||||
14 0. 0. 6.2 1.6
|
||||
15 0. 0. 8.2 2.5
|
||||
16 0. 0. 3.5 1.8
|
||||
17 0. 0. 9. 5.8
|
||||
18 0. 0. 3.2 .9
|
||||
19 0. 0. 9.5 3.4
|
||||
20 0. 0. 2.2 .7
|
||||
21 0. 0. 17.5 11.2
|
||||
22 0. 0. 0. 0.
|
||||
23 0. 0. 3.2 1.6
|
||||
24 0. 0. 8.7 6.7
|
||||
25 0. 0. 0. 0.
|
||||
26 0. 0. 3.5 2.3
|
||||
27 0. 0. 0. 0.
|
||||
28 0. 0. 0. 0.
|
||||
29 0. 0. 2.4 .9
|
||||
30 0. 0. 10.6 1.9
|
||||
0
|
||||
1 1.060 -50 50.
|
||||
2 1.045 -40. 60.
|
||||
5 1.010 -40. 40.
|
||||
8 1.010 -10. 40.
|
||||
11 1.082 -6. 24.
|
||||
13 1.071 -6. 24.
|
||||
0
|
||||
1 10. 2.0 2.0 10. 60.
|
||||
2 10. 1.5 2.4 10. 60.
|
||||
5 20. 1.8 0.8 10. 150.
|
||||
8 10. 1.0 1.2 10. 120.
|
||||
11 20. 1.8 0.8 10. 150.
|
||||
13 10. 1.5 2.0 10. 60.
|
||||
0
|
||||
0
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
4 4 1. 18 .1
|
||||
1.e-5 2
|
||||
1 4
|
||||
0
|
||||
1 1 2 .1 .4 0.01528
|
||||
2 1 4 .12 .5 0.0192
|
||||
3 2 4 .08 .4 0.01413
|
||||
0
|
||||
0
|
||||
1 1 3 .0 .3 0.90909 .9 1.15
|
||||
0
|
||||
1 0 0 0.3 0.18
|
||||
2 0 0 0.55 0.13
|
||||
3 0.568188176 0 0 0
|
||||
4 0.300000011 0.26 0 0
|
||||
0
|
||||
3 1.1 -0.1 0.6
|
||||
4 1.05 -0.6 0.6
|
||||
0
|
||||
3 44.4 351. 50. 0.3 1.2
|
||||
4 40.6 389. 50. 0.3 1.2
|
||||
0
|
||||
0
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
function [Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,Volt,UAngel]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,Volt,UAngel,PVi,ContrlCount,Balance,Busnum,PGi)
|
||||
function [Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,Volt,UAngel,PD]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,Volt,UAngel,PVi,ContrlCount,Balance,Busnum,PGi,PD)
|
||||
AlphaP=FormAlphaP(Init_L,deltL,Init_U,deltU);
|
||||
fprintf('AlphaP %f\n',AlphaP);
|
||||
AlphaD=FormAlphaD(Init_Z,deltZ,Init_W,deltW);
|
||||
|
|
@ -13,7 +13,9 @@ Init_Y=Init_Y+AlphaD*deltY';
|
|||
PG(PGi)=PG(PGi)+AlphaP*deltX(1:size(PGi,1));
|
||||
%QG(PVi)=QG(PVi)+deltX(size(PGi,1)+1:size(PVi,1)+size(PGi,1) );
|
||||
QG(PVi)=QG(PVi)+AlphaP*deltX(size(PGi,1)+1:size(PVi,1)+size(PGi,1) );
|
||||
t=deltX(size(PVi,1)+size(PGi,1)+1:ContrlCount)';
|
||||
t=deltX(size(PVi,1)+size(PGi,1)+1:size(PVi,1)+size(PGi,1)+Busnum);
|
||||
PD=PD+AlphaP*t;
|
||||
t=deltX(size(PVi,1)+size(PGi,1)+Busnum+1:ContrlCount)';
|
||||
t(Busnum+Balance)=0;
|
||||
%Volt=Volt+AlphaP*t(2:2:2*Busnum);暂时改一下20111227
|
||||
%UAngel=UAngel+AlphaP*t(1:2:2*Busnum);暂时改一下20111227
|
||||
|
|
|
|||
33
OPF.m
33
OPF.m
|
|
@ -10,12 +10,13 @@ UAngel*180/3.1415926;
|
|||
%sprintf('%f\n',Volt);
|
||||
%sprintf('%f\n',Angel);
|
||||
%% 初值
|
||||
|
||||
[Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL);
|
||||
PD0=PD;
|
||||
[Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount,wD,PD]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL,PD0);
|
||||
Gap=(Init_L*Init_Z'-Init_U*Init_W');
|
||||
KK=0;
|
||||
plotGap=zeros(1,50);
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*3;
|
||||
kmax=600;
|
||||
while(abs(Gap)>Precision)
|
||||
if KK>kmax
|
||||
break;
|
||||
|
|
@ -23,8 +24,6 @@ while(abs(Gap)>Precision)
|
|||
plotGap(KK+1)=Gap;
|
||||
Init_u=Gap/2/RestraintCount*CenterA;
|
||||
AngleIJMat=repmat(UAngel',1,Busnum)-repmat(UAngel,Busnum,1);
|
||||
%indexi=[Linei',Transfori'];
|
||||
%indexj=[Linej',Transforj'];
|
||||
%% 开始计算OPF
|
||||
%% 形成等式约束的雅克比
|
||||
deltH=func_deltH(Busnum,Volt,PVi,AngleIJMat,Y,GB,PGi);
|
||||
|
|
@ -34,42 +33,36 @@ while(abs(Gap)>Precision)
|
|||
L_1Z=diag(Init_Z./Init_L);
|
||||
U_1W=diag(Init_W./Init_U);
|
||||
%% 形成海森阵
|
||||
deltdeltF=func_deltdeltF(Busnum,GenC,PVi,PGi);
|
||||
deltdeltF=func_deltdeltF(Busnum,GenC,PVi,PGi,wD,PD0);
|
||||
%% 形成ddHy
|
||||
ddh=func_ddh3(AngleIJMat,GB,Volt,Init_Y,Busnum,PVi,PGi,Y);
|
||||
%% 开始构建ddg
|
||||
ddg=func_ddg(PGi,PVi,Busnum,RestraintCount);
|
||||
%% 开始构建deltF
|
||||
deltF=func_deltF(PG,PVi,GenC,ContrlCount,PGi);
|
||||
deltF=func_deltF(PG,PVi,GenC,ContrlCount,PGi,wD,PD0,PD,Busnum);
|
||||
|
||||
%% 形成方程矩阵
|
||||
% Hcoma=-deltdeltF+ddh+ddg-deltG*(L_1Z-U_1W)*deltG';
|
||||
%AA=FormAA1(deltG,deltdeltF,ddh,ddg,deltH,Init_L,Init_U,Init_W,Init_Z,Busnum,PVi,PGi,RestraintCount,Balance);
|
||||
%AA=FormAA(L_1Z,deltG,U_1W,Hcoma,deltH);
|
||||
%%
|
||||
Luu=Init_U'.*Init_W'+Init_u*ones(RestraintCount,1);
|
||||
Lul=Init_L'.*Init_Z'-Init_u*ones(RestraintCount,1);
|
||||
Mat_G=FormG(Volt,PVi,PGi,PG,QG);
|
||||
Mat_G=FormG(Volt,PVi,PGi,PG,QG,PD);
|
||||
Mat_H=FormH(Busnum,GB,AngleIJMat,Volt,PG,PD,QG,QD,Y);
|
||||
Ly=Mat_H;
|
||||
Lz=FormLz(Mat_G,Init_L,GenL,Busnum,PVQL);
|
||||
Lw=FormLw(Mat_G,Init_U,GenU,Busnum,PVQU);
|
||||
Lz=FormLz(Mat_G,Init_L,GenL,Busnum,PVQL,PD0);
|
||||
Lw=FormLw(Mat_G,Init_U,GenU,Busnum,PVQU,PD0);
|
||||
Lx=FormLx(deltF,deltH,Init_Y,deltG,Init_Z,Init_W);
|
||||
%LxComa=FormLxComa(deltF,deltG,deltH,Init_L,Luu,Lul,Init_Z,Init_Y,Lz,Init_U,Init_W,Lw);
|
||||
YY=FormYY1(Lul,Lz,Ly,Luu,Lw,Lx);
|
||||
%YY=FormYY(Init_L,Lul,Lz,Ly,Init_U,Luu,Lw,LxComa);
|
||||
%% 开始解方程
|
||||
%XX=AA\YY;
|
||||
XX=SolveIt(deltF,deltG,Init_L,Init_Z,Init_U,Init_W,deltdeltF,ddh,ddg,deltH,Init_Y,Ly,Lz,ContrlCount,Lw,Lul,Luu,RestraintCount,Lx,Balance,PVi,PGi,Busnum);
|
||||
%%取各分量
|
||||
[deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX1(XX,ContrlCount,RestraintCount,Busnum);
|
||||
%[deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX(XX);
|
||||
[Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,Volt,UAngel]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,Volt,UAngel,PVi,ContrlCount,Balance,Busnum,PGi);
|
||||
[Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,Volt,UAngel,PD]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,Volt,UAngel,PVi,ContrlCount,Balance,Busnum,PGi,PD);
|
||||
Gap=(Init_L*Init_Z'-Init_U*Init_W');
|
||||
KK=KK+1;
|
||||
end
|
||||
fprintf('迭代次数%d\n',KK);
|
||||
CalCost(GenC,PG,PGi);
|
||||
%CalCost(GenC,PG,PGi);
|
||||
ObjectiveFun(PG,PGi,PD,PD0,wD)
|
||||
DrawGap(plotGap);
|
||||
Volt=Volt';
|
||||
toc
|
||||
|
||||
|
|
|
|||
23
OPF_Init.asv
23
OPF_Init.asv
|
|
@ -1,22 +1,27 @@
|
|||
function [Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount]=OPF_Init(Busnum,Balance,PG,QG,Volt,LineNum,GenU,GenL,PVi,PGi)
|
||||
RestraintCount=size(PVi,1)+size(PGi,1)+Busnum+LineNum; %约束条件数
|
||||
function [Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount,wD,PD]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL,PD0)
|
||||
RestraintCount=size(PVi,1)+size(PGi,1)+Busnum*2; %约束条件数
|
||||
t_Bal_volt=Volt(Balance);
|
||||
Volt=ones(1,Busnum);
|
||||
Volt(Balance)=t_Bal_volt;
|
||||
%Volt(Balance)=1;
|
||||
UAngel=zeros(1,Busnum);
|
||||
Init_Z=ones(1,RestraintCount);
|
||||
Init_W=-.5*ones(1,RestraintCount);
|
||||
Init_W=-1*ones(1,RestraintCount);
|
||||
Init_L=ones(1,RestraintCount);
|
||||
Init_U=ones(1,RestraintCount);
|
||||
Init_Y=zeros(1,2*Busnum);
|
||||
Init_Y(1:2:2*Busnum)=1e-10;
|
||||
Init_Y(2:2:2*Busnum)=-1e-10;
|
||||
%Init_Y=zeros(1,2*Busnum);
|
||||
%Init_Y=ones(1,2*Busnum);
|
||||
Init_Y=zeros(1,2*Busnum);%与学姐一致
|
||||
%Init_Y(1:2:2*Busnum)=1e-10;
|
||||
%Init_Y(2:2:2*Busnum)=-1e-10;
|
||||
tPU=GenU(:,2);% 发电机有功上限
|
||||
tQU=GenU(:,3);% 发电机无功上限
|
||||
tQU=PVQU(:,1);% 无功上限
|
||||
tPL=GenL(:,2);% 发电机有功下限
|
||||
tQL=GenL(:,3);% 发电机无功下限
|
||||
tQL=PVQL(:,1);% 无功下限
|
||||
%PG(4:5)=[4.5 4.5];
|
||||
PG(PVi)=(tPU+tPL)/2;
|
||||
PG(PGi)=(tPU+tPL)/2;
|
||||
%QG(4:5)=[0 1.45];
|
||||
QG(PVi)=(tQU+tQL)/2;
|
||||
wD=ones(Busnum,1);
|
||||
PD=.5*PD0
|
||||
end
|
||||
|
|
@ -1,5 +1,5 @@
|
|||
function [Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL)
|
||||
RestraintCount=size(PVi,1)+size(PGi,1)+Busnum; %约束条件数
|
||||
function [Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount,wD,PD]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL,PD0)
|
||||
RestraintCount=size(PVi,1)+size(PGi,1)+Busnum*2; %约束条件数
|
||||
t_Bal_volt=Volt(Balance);
|
||||
Volt=ones(1,Busnum);
|
||||
Volt(Balance)=t_Bal_volt;
|
||||
|
|
@ -22,4 +22,8 @@ tQL=PVQL(:,1);%
|
|||
PG(PGi)=(tPU+tPL)/2;
|
||||
%QG(4:5)=[0 1.45];
|
||||
QG(PVi)=(tQU+tQL)/2;
|
||||
wD=ones(Busnum,1);
|
||||
wD(Balance)=0;
|
||||
PD=.5*PD0;
|
||||
PD(PD==0)=.2;
|
||||
end
|
||||
|
|
@ -0,0 +1,5 @@
|
|||
function [out_arg]=ObjectiveFun(PG,PGi,PD,PD0,wD)
|
||||
|
||||
t3=wD.*((PD-PD0).*(PD-PD0));
|
||||
out_arg= sum(t3);
|
||||
end
|
||||
|
|
@ -9,13 +9,13 @@ aa=[
|
|||
];
|
||||
yy=[LxComa;-Ly];
|
||||
%% 平衡节点电压不变
|
||||
t=size(PVi,1)+size(PGi,1);
|
||||
t=size(PVi,1)+size(PGi,1)+Busnum;
|
||||
aa(t+Balance,:)=0;
|
||||
aa(:,t+Balance)=0;
|
||||
aa(t+Balance,t+Balance)=1;
|
||||
deltG(t+Balance,:)=0;
|
||||
%%
|
||||
t=size(PVi,1)+size(PGi,1)+Busnum;
|
||||
t=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
aa(t+Balance,:)=0;
|
||||
aa(:,t+Balance)=0;
|
||||
aa(t+Balance,t+Balance)=1;
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
function ddg=func_ddg(PGi,PVi,Busnum,RestraintCount)
|
||||
|
||||
t=zeros(size(PVi,1)+size(PGi,1)+2*Busnum,RestraintCount);
|
||||
t=zeros(size(PVi,1)+size(PGi,1)+3*Busnum,RestraintCount);
|
||||
|
||||
ddg=t;
|
||||
end
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
function ddh=func_ddh3(AngleIJMat,GB,Volt,Init_Y,Busnum,PVi,PGi,Y)
|
||||
%决定用循环重写
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*3;
|
||||
%deltaPi/deltaThytai_deltaThytaj 非对角元素
|
||||
% dPidTidTj=zeros(Busnum);
|
||||
% t1=-Volt'*Volt;
|
||||
|
|
@ -406,8 +406,8 @@ ddQdVdV=t1+t2;
|
|||
t=[ddPdVdV+ddQdVdV,ddPdTdV+ddQdTdV ;
|
||||
ddPdVdT+ddQdVdT,ddPdTdT+ddQdTdT;
|
||||
];
|
||||
t=[zeros(size(PGi,1)+size(PVi,1),ContrlCount);
|
||||
zeros(2*Busnum,size(PVi,1)+size(PGi,1)),-t;
|
||||
t=[zeros(size(PGi,1)+size(PVi,1)+Busnum,ContrlCount);
|
||||
zeros(2*Busnum,size(PVi,1)+size(PGi,1)+Busnum),-t;
|
||||
];
|
||||
ddh=t;
|
||||
end
|
||||
|
|
@ -1,14 +1,18 @@
|
|||
function deltF=func_deltF(PG,GB,Balance,PVi,AngleIJMat,GenC)
|
||||
t1=PG(PVi);
|
||||
t2=Volt'*Volt;
|
||||
t3=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t4=t2.*t3;
|
||||
t5=sum(t4,2);
|
||||
PBal=t5(Balance);
|
||||
PPG=([PG',PBal])';
|
||||
function deltF=func_deltF(PG,PVi,GenC,ContrlCount,PGi,wD,PD0,PD)
|
||||
%t1=PG(setdiff(PVi,Balance));
|
||||
% t2=Volt'*Volt;
|
||||
% t3=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
% t4=t2.*t3;
|
||||
% t5=sum(t4,2);
|
||||
% PBal=t5(Balance);
|
||||
% PPG=([PQ(1),PBal])';%暂时用土办法处理一下
|
||||
%%
|
||||
c2=GenC(:,1);
|
||||
c1=GenC(:,2);
|
||||
t1=PPG.*c2+c1;
|
||||
t1=2*wD.*(PD-PD0);
|
||||
deltF=[
|
||||
zeros(size(PGi));
|
||||
zeros(size(PVi));
|
||||
t1;
|
||||
zeros(ContrlCount-size(PGi,1)-,1);
|
||||
];
|
||||
|
||||
end
|
||||
10
func_deltF.m
10
func_deltF.m
|
|
@ -1,4 +1,4 @@
|
|||
function deltF=func_deltF(PG,PVi,GenC,ContrlCount,PGi)
|
||||
function deltF=func_deltF(PG,PVi,GenC,ContrlCount,PGi,wD,PD0,PD,Busnum)
|
||||
%t1=PG(setdiff(PVi,Balance));
|
||||
% t2=Volt'*Volt;
|
||||
% t3=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
|
|
@ -7,12 +7,12 @@ function deltF=func_deltF(PG,PVi,GenC,ContrlCount,PGi)
|
|||
% PBal=t5(Balance);
|
||||
% PPG=([PQ(1),PBal])';%暂时用土办法处理一下
|
||||
%%
|
||||
c2=GenC(:,2);
|
||||
c1=GenC(:,3);
|
||||
t1=2*PG(PGi).*c2+c1;
|
||||
t1=2*wD.*(PD-PD0);
|
||||
deltF=[
|
||||
zeros(size(PGi));
|
||||
zeros(size(PVi));
|
||||
t1;
|
||||
zeros(ContrlCount-size(PGi,1),1);
|
||||
zeros(2*Busnum,1);
|
||||
];
|
||||
|
||||
end
|
||||
|
|
@ -1,78 +1,30 @@
|
|||
function deltG=func_deltG(Busnum,PVi,GB,Volt,UAngel,indexi,indexj,PGi)
|
||||
function deltG=func_deltG(Busnum,PVi,PGi)
|
||||
dg1_dPg=eye(size(PGi,1));
|
||||
dg2_dPg=zeros(size(PGi,1));
|
||||
dg2_dPg=zeros(size(PGi,1),size(PVi,1));
|
||||
dg3_dPg=zeros(size(PGi,1),Busnum);
|
||||
dg4_dPg=zeros(size(PGi,1),Busnum);
|
||||
|
||||
%%
|
||||
dg1_dQr=zeros(size(PVi,1));
|
||||
dg1_dQr=zeros(size(PVi,1),size(PGi,1));
|
||||
dg2_dQr=eye(size(PVi,1));
|
||||
dg3_dQr=zeros(size(PVi,1),Busnum);
|
||||
dg4_dQr=zeros(size(PVi,1),Busnum);
|
||||
%%
|
||||
dg1_dx=zeros(2*Busnum,2);
|
||||
dg2_dx=zeros(2*Busnum,2);
|
||||
dg3_dx=zeros(2*Busnum,Busnum);
|
||||
for I=1:Busnum
|
||||
dg3_dx(2*I,I)=1;
|
||||
end
|
||||
|
||||
dg4_dx=zeros(2*Busnum,Busnum);
|
||||
indexi=indexi';
|
||||
indexj=indexj';
|
||||
|
||||
%% Ïß·
|
||||
t1=Volt(indexi).*Volt(indexj);
|
||||
t2=real(...
|
||||
GB( ...
|
||||
sub2ind(size(GB),indexi,indexj) ...
|
||||
...
|
||||
)...
|
||||
).*...
|
||||
sin(...
|
||||
UAngel(indexi)'-UAngel(indexj)'...
|
||||
);
|
||||
|
||||
t3=imag(...
|
||||
GB( sub2ind(size(GB),indexi,indexj) )...
|
||||
).*...
|
||||
cos(...
|
||||
UAngel(indexi)'-UAngel(indexj)'...
|
||||
);
|
||||
dPij_dThytai=t1.*(t2-t3)';
|
||||
%%
|
||||
t1=-Volt(indexj);
|
||||
t2=real(...
|
||||
GB( ...
|
||||
sub2ind(size(GB),indexi,indexj) ...
|
||||
...
|
||||
)...
|
||||
).*...
|
||||
cos(...
|
||||
UAngel(indexi)'-UAngel(indexj)' ...
|
||||
);
|
||||
|
||||
t3=imag(...
|
||||
GB( sub2ind(size(GB),indexi,indexj) )...
|
||||
).*...
|
||||
sin(...
|
||||
UAngel(indexi)'-UAngel(indexj)'...
|
||||
);
|
||||
|
||||
t4=2*Volt(indexi).*real(...
|
||||
GB( sub2ind(size(GB),indexi,indexj) )...
|
||||
)';
|
||||
dPij_dVi=t4+t1.*(t2+t3)';
|
||||
dPij_dVj=-Volt(indexi).*(t2+t3)';
|
||||
%% ¿ªÊ¼ÐγÉdg4_dx
|
||||
for I=1:size(indexi,1)
|
||||
dg4_dx(2*indexi(I)-1,I)=dPij_dThytai(I);
|
||||
dg4_dx(2*indexj(I)-1,I)=-dPij_dThytai(I);
|
||||
dg4_dx(2*indexi(I),I)=dPij_dVi(I);
|
||||
dg4_dx(2*indexj(I),I)=dPij_dVj(I);
|
||||
dg1_dPD=zeros(Busnum,size(PGi,1));
|
||||
dg2_dPD=zeros(Busnum,size(PVi,1));
|
||||
dg3_dPD=zeros(Busnum,Busnum);
|
||||
dg4_dPD=zeros(Busnum,2*Busnum);
|
||||
%%
|
||||
dg1_dx=zeros(2*Busnum,size(PGi,1));
|
||||
dg2_dx=zeros(2*Busnum,size(PVi,1));
|
||||
dg3_dx=zeros(2*Busnum,Busnum);
|
||||
dg4_dx=zeros(2*Busnum,Busnum);
|
||||
for I=1:Busnum
|
||||
%dg3_dx(2*I,I)=1;ÔÝĘą¸ÄŇťĎÂ
|
||||
dg4_dx(I,I)=1;
|
||||
end
|
||||
%%
|
||||
deltG=[dg1_dPg,dg2_dPg,dg3_dPg,dg4_dPg;
|
||||
dg1_dQr,dg2_dQr,dg3_dQr,dg4_dQr;
|
||||
dg1_dx,dg2_dx,dg3_dx,dg4_dx;
|
||||
deltG=[dg1_dPg,dg2_dPg,dg3_dPg;
|
||||
dg1_dQr,dg2_dQr,dg3_dQr;
|
||||
dg1_dPD,dg1_dPD,dg3_dPD,dg4_dPD;
|
||||
dg1_dx,dg2_dx,dg3_dx;
|
||||
];
|
||||
17
func_deltG.m
17
func_deltG.m
|
|
@ -2,20 +2,29 @@ function deltG=func_deltG(Busnum,PVi,PGi)
|
|||
dg1_dPg=eye(size(PGi,1));
|
||||
dg2_dPg=zeros(size(PGi,1),size(PVi,1));
|
||||
dg3_dPg=zeros(size(PGi,1),Busnum);
|
||||
dg4_dPg=zeros(size(PGi,1),Busnum);
|
||||
%%
|
||||
dg1_dQr=zeros(size(PVi,1),size(PGi,1));
|
||||
dg2_dQr=eye(size(PVi,1));
|
||||
dg3_dQr=zeros(size(PVi,1),Busnum);
|
||||
dg4_dQr=zeros(size(PVi,1),Busnum);
|
||||
%%
|
||||
dg1_dPD=zeros(Busnum,size(PGi,1));
|
||||
dg2_dPD=zeros(Busnum,size(PVi,1));
|
||||
dg3_dPD=eye(Busnum,Busnum);
|
||||
dg4_dPD=zeros(Busnum,Busnum);
|
||||
%%
|
||||
dg1_dx=zeros(2*Busnum,size(PGi,1));
|
||||
dg2_dx=zeros(2*Busnum,size(PVi,1));
|
||||
dg3_dx=zeros(2*Busnum,Busnum);
|
||||
dg4_dx=zeros(2*Busnum,Busnum);
|
||||
for I=1:Busnum
|
||||
%dg3_dx(2*I,I)=1;ÔÝĘą¸ÄŇťĎÂ
|
||||
dg3_dx(I,I)=1;
|
||||
dg4_dx(I,I)=1;
|
||||
end
|
||||
%%
|
||||
deltG=[dg1_dPg,dg2_dPg,dg3_dPg;
|
||||
dg1_dQr,dg2_dQr,dg3_dQr;
|
||||
dg1_dx,dg2_dx,dg3_dx;
|
||||
deltG=[dg1_dPg,dg2_dPg,dg3_dPg,dg4_dPg;
|
||||
dg1_dQr,dg2_dQr,dg3_dQr,dg4_dQr;
|
||||
dg1_dPD,dg2_dPD,dg3_dPD,dg4_dPD;
|
||||
dg1_dx,dg2_dx,dg3_dx,dg4_dx;
|
||||
];
|
||||
|
|
@ -13,8 +13,9 @@ for I=1:size(PVi,1)
|
|||
%dH_dQr(I,2*PVi(I))=1;暂时改一下20111227
|
||||
dH_dQr(I,PVi(I)+Busnum)=1;
|
||||
end
|
||||
dH_dPD=[-eye(Busnum) zeros(Busnum)];
|
||||
Angle=angle(GB);
|
||||
dH_dx = jacobian_M3(Busnum,Volt,Y,Angle,AngleIJMat); %形成雅克比矩阵
|
||||
%deltH=[dH_dPg;dH_dQr;dH_dx'];%dH_dx 需要使用一下转置 暂时改一下
|
||||
deltH=[dH_dPg;dH_dQr;dH_dx'];
|
||||
deltH=[dH_dPg;dH_dQr;dH_dPD;dH_dx'];
|
||||
end
|
||||
|
|
@ -1,8 +1,9 @@
|
|||
function deltdeltF=func_deltdeltF(Busnum,GenC,PVi,PGi)
|
||||
function deltdeltF=func_deltdeltF(Busnum,GenC,PVi,PGi,wD,PD0)
|
||||
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2; %P,Q,Volt theta这些控制变量数
|
||||
deltdeltF=[diag(GenC(:,2))*2,zeros(size(GenC,1),ContrlCount-size(GenC,1));
|
||||
zeros(ContrlCount-size(GenC,1),ContrlCount);
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*3; %P,Q,Volt theta这些控制变量数
|
||||
C=[zeros(size(PGi))' zeros(size(PVi))' wD'];
|
||||
deltdeltF=[diag(C)*2,zeros(size(C,2),ContrlCount-size(C,2));
|
||||
zeros(ContrlCount-size(C,2),ContrlCount);
|
||||
];
|
||||
|
||||
end
|
||||
Loading…
Reference in New Issue