pes2014-basic/jacobian_M.asv

60 lines
2.3 KiB
Plaintext
Raw Normal View History

2012-05-22 11:33:21 +08:00
function Jacob=jacobian_M(Busnum,Volt,Y,Angle,AngleIJMat)
%**************************************************************************
% <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> : <20>Ӻ<EFBFBD><D3BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>γ<EFBFBD><CEB3>ſɱȾ<C9B1><C8BE><EFBFBD>Jacobian
% <20><> <20>ߣ<EFBFBD>
% <20><><EFBFBD><EFBFBD>ʱ<EFBFBD>䣺2010.12
%**************************************************************************
%% <20>ֱ<EFBFBD><D6B1><EFBFBD><EFBFBD>ſ˱Ⱦ<CBB1><C8BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>H,L,N,J<><4A><EFBFBD>й<EFBFBD><D0B9>޹<EFBFBD><DEB9><EFBFBD><EFBFBD><EFBFBD>P,Q
temp1=-Volt'*Volt.*Y;
AngleIJ=AngleIJMat-Angle;
temp11=Volt'*ones(1,Busnum).*Y;
temp2=sum(temp1.*sin(AngleIJ),2);
temp22 = sum(temp11.*sin(AngleIJ),2);
temp3 = sum(temp1.*cos(AngleIJ),2);
temp33 = sum(temp11.*cos(AngleIJ),2);
temp4=diag(temp2);
temp44=diag(temp22);
temp5=diag(temp3);
temp55=diag(temp33);
%<25><><EFBFBD><EFBFBD>Lii<69><69><EFBFBD>ۼ<EFBFBD><DBBC><EFBFBD>
t1=ones(Busnum,1)*Volt.*Y;
t2=sum(t1.*sin(AngleIJ),2);
t3=sum(t1.*cos(AngleIJ),2);
t4=diag(t2);
H = temp1.*sin(AngleIJ)-temp4;%
L = -temp11.*sin(AngleIJ);%
%L(1:Busnum,1:Busnum)=-temp44+;
L=L-t3.*
N=-temp11.*cos(AngleIJ);%
N(1:Busnum,1:Busnum)=-temp55-diag(diag(temp11.*cos(Angle) ) );
J = -temp1.*cos(AngleIJ)+temp5;%
%%
%Q = Q0+temp2'; %<25><><EFBFBD>й<EFBFBD><D0B9><EFBFBD><EFBFBD><EFBFBD>P
%P = P0+temp3'; %<25><><EFBFBD>޹<EFBFBD><DEB9><EFBFBD><EFBFBD><EFBFBD>Q
%% <20><><EFBFBD><EFBFBD>ƽ<EFBFBD><C6BD><EFBFBD>ڵ<EFBFBD><DAB5><EFBFBD>pv<70>ڵ<EFBFBD>
% H(:,Balance) = 0;
% H(Balance,:) = 0;
% H(Balance,Balance) = 100; % ƽ<><C6BD><EFBFBD>ڵ<EFBFBD><DAB5><EFBFBD>Ӧ<EFBFBD>ĶԽ<C4B6>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
% L(:,PVi) = 0;
% L(PVi,:) = 0;
% L = L+sparse(PVi,PVi,ones(1,length(PVi)),Busnum,Busnum); % PV<50>ڵ<EFBFBD><DAB5><EFBFBD>Ӧ<EFBFBD>ĶԽ<C4B6>Ԫ<EFBFBD><D4AA><EFBFBD><EFBFBD>Ϊ1
% J(:,Balance) = 0;
% J(PVi,:) = 0;
% N(:,PVi) = 0;
% N(Balance,:) = 0;
% Q(PVi) = 0; % <20><>pv<70>ڵ<EFBFBD><DAB5><EFBFBD><EFBFBD>޹<EFBFBD><DEB9><EFBFBD>ƽ<EFBFBD><C6BD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
% P(Balance) = 0; % ƽ<><C6BD><EFBFBD>ڵ<EFBFBD><DAB5><EFBFBD><EFBFBD>й<EFBFBD><D0B9><EFBFBD><EFBFBD>ʲ<EFBFBD>ƽ<EFBFBD><C6BD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
%% <20>ϳ<EFBFBD>PQ<50><51><EFBFBD>ſɱȾ<C9B1><C8BE><EFBFBD>
t1=zeros(2*Busnum);
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
% t1(1:)
% PQ = cat(2,P,Q); % <20>γɹ<CEB3><C9B9>ʲ<EFBFBD>ƽ<EFBFBD><C6BD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
%Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % <20>γ<EFBFBD>Jacobian<61><6E><EFBFBD><EFBFBD>
Jacob=t1;
end