1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
*.asv
|
||||
32
5sj.txt
Normal file
32
5sj.txt
Normal file
@@ -0,0 +1,32 @@
|
||||
5 5 1. 50 .1
|
||||
1.e-5 2
|
||||
1 5
|
||||
0
|
||||
1 1 2 0.04 0.25 0.25
|
||||
2 1 3 0.1 0.35 0
|
||||
3 2 3 0.08 0.30 0.25
|
||||
0
|
||||
0
|
||||
1 2 4 0 0.015 1.05 1 1.06
|
||||
2 3 5 0 0.03 1.05 1 1.06
|
||||
0
|
||||
1 0 0 1.6 0.8
|
||||
2 0 0 2 1
|
||||
3 0 0 3.7 1.3
|
||||
4 5 0 0 0
|
||||
5 0 0 0 0
|
||||
0
|
||||
4 1.05 -3 3
|
||||
5 1.05 -2.1 5
|
||||
0
|
||||
4 1200.6485 200.4335 50.439 1 8
|
||||
5 1857.201 500.746 200.55 1 8
|
||||
0
|
||||
1 1 2 2
|
||||
2 1 3 0.65
|
||||
3 2 3 2
|
||||
4 2 4 6
|
||||
5 3 5 5
|
||||
0
|
||||
0
|
||||
0
|
||||
9
AssignXX.m
Normal file
9
AssignXX.m
Normal file
@@ -0,0 +1,9 @@
|
||||
function [deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX(XX)
|
||||
deltZ=XX(1:14);
|
||||
deltL=XX(15:28);
|
||||
deltW=XX(29:42);
|
||||
deltU=XX(43:56);
|
||||
deltX=XX(57:70);
|
||||
deltY=XX(71:80);
|
||||
|
||||
end
|
||||
23
AssignXX1.m
Normal file
23
AssignXX1.m
Normal file
@@ -0,0 +1,23 @@
|
||||
function [deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX1(XX,ContrlCount,RestraintCount,Busnum)
|
||||
% deltX=XX(1:14);
|
||||
% deltY=XX(15:24);
|
||||
% deltZ=XX(25:38);
|
||||
% deltW=XX(39:52);
|
||||
% deltL=XX(53:66);
|
||||
% deltU=XX(67:80);
|
||||
deltX=XX(1:ContrlCount);
|
||||
k1=ContrlCount+2*Busnum;
|
||||
deltY=XX(ContrlCount+1:k1);
|
||||
k2=k1;
|
||||
k1=k2+RestraintCount;
|
||||
deltZ=XX(k2+1:k1);
|
||||
k2=k1;
|
||||
k1=k2+RestraintCount;
|
||||
deltW=XX(k2+1:k1);
|
||||
k2=k1;
|
||||
k1=k2+RestraintCount;
|
||||
deltL=XX(k2+1:k1);
|
||||
k2=k1;
|
||||
k1=k2+RestraintCount;
|
||||
deltU=XX(k2+1:k1);
|
||||
end
|
||||
13
CalCost.m
Normal file
13
CalCost.m
Normal file
@@ -0,0 +1,13 @@
|
||||
function CalCost(GenC,PG,PGi)
|
||||
cost=GenC(:,2).*PG(PGi).^2+GenC(:,3).*PG(PGi)+GenC(:,4);
|
||||
% Org_PG=[5;
|
||||
% 2.5794];
|
||||
% book_PG=[5.5056;
|
||||
% 2.1568];
|
||||
% cost2=GenC(:,2).*Org_PG(1:2).^2+GenC(:,3).*Org_PG(1:2)+GenC(:,4);
|
||||
% cost3=GenC(:,2).*book_PG(1:2).^2+GenC(:,3).*book_PG(1:2)+GenC(:,4);
|
||||
fprintf('总花费为%f\n',sum(cost,1));
|
||||
% fprintf('PF总花费为%f\n',sum(cost2,1));
|
||||
% fprintf('书上OPF总花费为%f\n',sum(cost3,1));
|
||||
% fprintf('较书上减少费用为为%f\n',sum(cost3,1)-sum(cost,1));
|
||||
end
|
||||
6
DrawGap.m
Normal file
6
DrawGap.m
Normal file
@@ -0,0 +1,6 @@
|
||||
function DrawGap(plotGap)
|
||||
x=find(plotGap);
|
||||
ts=size(x,2);
|
||||
plot(1:ts,plotGap(1:ts));
|
||||
|
||||
end
|
||||
12
FormAA.m
Normal file
12
FormAA.m
Normal file
@@ -0,0 +1,12 @@
|
||||
function AA=FormAA(L_1Z,deltG,U_1W,Hcoma,deltH)
|
||||
tOnes=eye(14);
|
||||
tZeros=zeros(14);
|
||||
AA=[
|
||||
tOnes,L_1Z,tZeros,tZeros,tZeros,zeros(14,10);
|
||||
tZeros,tOnes,tZeros,tZeros,-deltG',zeros(14,10);
|
||||
tZeros,tZeros,tOnes,U_1W,tZeros,zeros(14,10);
|
||||
tZeros,tZeros,tZeros,tOnes,deltG',zeros(14,10);
|
||||
tZeros,tZeros,tZeros,tZeros,Hcoma,deltH;
|
||||
zeros(10,14),zeros(10,14),zeros(10,14),zeros(10,14),deltH',zeros(10,10);
|
||||
];
|
||||
end
|
||||
17
FormAA1.m
Normal file
17
FormAA1.m
Normal file
@@ -0,0 +1,17 @@
|
||||
function AA=FormAA1(deltG,deltdeltF,ddh,ddg,deltH,Init_L,Init_U,Init_W,Init_Z,Busnum,PVi,PGi,RestraintCount,Balance)
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
H=-deltdeltF+ddh;%+ddg;
|
||||
AA=[
|
||||
H,deltH,deltG,deltG,zeros(ContrlCount,RestraintCount),zeros(ContrlCount,RestraintCount);
|
||||
deltH',zeros(2*Busnum,2*Busnum),zeros(2*Busnum,RestraintCount),zeros(2*Busnum,RestraintCount),zeros(2*Busnum,RestraintCount),zeros(2*Busnum,RestraintCount);
|
||||
deltG',zeros(RestraintCount,2*Busnum),zeros(RestraintCount,RestraintCount),zeros(RestraintCount,RestraintCount),-eye(RestraintCount,RestraintCount),zeros(RestraintCount,RestraintCount);
|
||||
deltG',zeros(RestraintCount,2*Busnum),zeros(RestraintCount),zeros(RestraintCount),zeros(RestraintCount),eye(RestraintCount);
|
||||
zeros(RestraintCount,ContrlCount),zeros(RestraintCount,2*Busnum),diag(Init_L),zeros(RestraintCount),diag(Init_Z),zeros(RestraintCount);
|
||||
zeros(RestraintCount,ContrlCount),zeros(RestraintCount,2*Busnum),zeros(RestraintCount),diag(Init_U),zeros(RestraintCount),diag(Init_W);
|
||||
];
|
||||
%´¦ÀíÆ½ºâ½Úµã
|
||||
t=size(PVi,1)+size(PGi,1);
|
||||
AA(t+2*Balance-1,:)=0;
|
||||
AA(:,t+2*Balance-1)=0;
|
||||
AA(t+2*Balance-1,t+2*Balance-1)=1;
|
||||
end
|
||||
9
FormAlphaD.m
Normal file
9
FormAlphaD.m
Normal file
@@ -0,0 +1,9 @@
|
||||
function AlphaD=FormAlphaD(Init_Z,deltZ,Init_W,deltW)
|
||||
tdeltZinx=find(deltZ<0);
|
||||
tdeltWinx=find(deltW>0);
|
||||
t1=-Init_Z(tdeltZinx)./deltZ(tdeltZinx)';
|
||||
t2=-Init_W(tdeltWinx)./deltW(tdeltWinx)';
|
||||
t3=[t1,t2];
|
||||
t4=min(t3);
|
||||
AlphaD=0.9995*min([t4 1]);
|
||||
end
|
||||
9
FormAlphaP.m
Normal file
9
FormAlphaP.m
Normal file
@@ -0,0 +1,9 @@
|
||||
function AlphaP=FormAlphaP(Init_L,deltL,Init_U,deltU)
|
||||
tdeltLinx=find(deltL<0);
|
||||
tdeltUinx=find(deltU<0);
|
||||
t1=-Init_L(tdeltLinx)./deltL(tdeltLinx)';
|
||||
t2=-Init_U(tdeltUinx)./deltU(tdeltUinx)';
|
||||
t3=[t1,t2];
|
||||
t4=min(t3);
|
||||
AlphaP=0.9995*min([t4 1]);
|
||||
end
|
||||
20
FormG.m
Normal file
20
FormG.m
Normal file
@@ -0,0 +1,20 @@
|
||||
function Mat_G=FormG(Volt,PVi,PGi,PG,QG)
|
||||
%t1=PG(PVi);
|
||||
%GP=t1;%发电机P
|
||||
%GP=[4.5 4.5]';
|
||||
%%线路
|
||||
%发电机Q
|
||||
% t1=Volt'*Volt;
|
||||
% t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
% t3=t1.*t2;
|
||||
% t4=sum(t3,2);%发电机Q
|
||||
%GQ=t4;
|
||||
Mat_G=[
|
||||
%GP;
|
||||
PG(PGi);
|
||||
QG(PVi);
|
||||
%GQ(PVi);
|
||||
%[0 1.45]';
|
||||
Volt';
|
||||
];
|
||||
end
|
||||
24
FormH.m
Normal file
24
FormH.m
Normal file
@@ -0,0 +1,24 @@
|
||||
function Mat_H=FormH(Busnum,GB,AngleIJMat,Volt,PG,PD,QG,QD,Y,UAngel,r,c,Angle)
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=Volt'*Volt;
|
||||
t3=t1.*t2;
|
||||
t4=sum(-t3,2);%P
|
||||
t5=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t6=t2.*t5;
|
||||
t7=sum(-t6,2);%Q
|
||||
t8=PG-PD;
|
||||
t9=QG-QD;
|
||||
|
||||
% Mat_H(1:2:2*Busnum)=t8(1:Busnum)+t4(1:Busnum);
|
||||
% Mat_H(2:2:2*Busnum)=t9(1:Busnum)+t7(1:Busnum);
|
||||
% Mat_H=Mat_H';
|
||||
%%%%Ò»ÏÂÊÇѧ½ã¸øµÄ¹«Ê½
|
||||
%AngleIJ=AngleIJMat-angle(GB);
|
||||
AngleIJ=sparse(r,c,UAngel(r)-UAngel(c)-Angle',Busnum,Busnum);
|
||||
%dP=PG-PD-diag(Volt)*Y*cos(AngleIJ)*Volt';
|
||||
dP=PG-PD-diag(Volt)*Y.*cos(AngleIJ)*Volt';
|
||||
dQ=QG-QD-diag(Volt)*Y.*sin(AngleIJ)*Volt';
|
||||
|
||||
Mat_H=[dP;dQ;];
|
||||
|
||||
end
|
||||
10
FormLw.m
Normal file
10
FormLw.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function Lw=FormLw(Mat_G,Init_U,GenU,Busnum,PVQU)
|
||||
|
||||
PU=GenU(:,2);%发电机有功上界
|
||||
QU=PVQU(:,1);%发电机无功上界
|
||||
VoltU=1.1*ones(1,Busnum);
|
||||
|
||||
t1=([PU',QU',VoltU])';
|
||||
t2=Mat_G+Init_U'-t1;
|
||||
Lw=t2;
|
||||
end
|
||||
4
FormLx.m
Normal file
4
FormLx.m
Normal file
@@ -0,0 +1,4 @@
|
||||
function Lx=FormLx(deltF,deltH,Init_Y,deltG,Init_Z,Init_W)
|
||||
t1=deltF-deltH*Init_Y'-deltG*(Init_Z'+Init_W');
|
||||
Lx=t1;
|
||||
end
|
||||
11
FormLxComa.m
Normal file
11
FormLxComa.m
Normal file
@@ -0,0 +1,11 @@
|
||||
function LxComa=FormLxComa(deltF,deltG,deltH,Init_L,Luu,Lul,Init_Z,Init_Y,Lz,Init_U,Init_W,Lw,Lx)
|
||||
%t1=deltG*(Init_Z'+Init_W');%%
|
||||
t2=Lul+diag(Init_Z)*Lz;
|
||||
t3=inv(diag(Init_L));
|
||||
t4=t3*t2;%
|
||||
t5=Luu-diag(Init_W)*Lw;
|
||||
t6=inv(diag(Init_U));
|
||||
t7=t6*t5;%
|
||||
t8=deltG*(t4+t7);%%
|
||||
LxComa=Lx+t8;
|
||||
end
|
||||
10
FormLz.m
Normal file
10
FormLz.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function Lz=FormLz(Mat_G,Init_L,GenL,Busnum,PVQL)
|
||||
|
||||
PL=GenL(:,2);%发电机有功下界
|
||||
QL=PVQL(:,1);%发电机无功下界
|
||||
VoltL=0.9*ones(1,Busnum);
|
||||
t1=([PL',QL',VoltL])';
|
||||
|
||||
t2=Mat_G-Init_L'-t1;
|
||||
Lz=t2;
|
||||
end
|
||||
11
FormYY.m
Normal file
11
FormYY.m
Normal file
@@ -0,0 +1,11 @@
|
||||
function YY=FormYY(Init_L,Lul,Lz,Ly,Init_U,Luu,Lw,LxComa)
|
||||
t=[
|
||||
-inv(diag(Init_L))*Lul;
|
||||
Lz;
|
||||
-inv(diag(Init_U))*Luu;
|
||||
-Lw;
|
||||
LxComa;
|
||||
-Ly;
|
||||
];
|
||||
YY=t;
|
||||
end
|
||||
10
FormYY1.m
Normal file
10
FormYY1.m
Normal file
@@ -0,0 +1,10 @@
|
||||
function YY=FormYY1(Lul,Lz,Ly,Luu,Lw,Lx)
|
||||
YY=[
|
||||
Lx;
|
||||
-Ly;
|
||||
-Lz;
|
||||
-Lw;
|
||||
-Lul;
|
||||
-Luu;
|
||||
];
|
||||
end
|
||||
3515
IEEE1047.dat
Normal file
3515
IEEE1047.dat
Normal file
File diff suppressed because it is too large
Load Diff
3516
IEEE10471.dat
Normal file
3516
IEEE10471.dat
Normal file
File diff suppressed because it is too large
Load Diff
398
IEEE118.dat
Normal file
398
IEEE118.dat
Normal file
@@ -0,0 +1,398 @@
|
||||
118 179 100 28 0.1
|
||||
1.e-5 2
|
||||
1 69
|
||||
0
|
||||
1 1 2 0.0303 0.0999 0.0127
|
||||
2 1 3 0.0129 0.0424 0.00541
|
||||
3 4 5 0.00176 0.00798 0.00105
|
||||
4 3 5 0.0241 0.1080 0.0142
|
||||
5 5 6 0.0119 0.0540 0.00713
|
||||
6 6 7 0.00459 0.0208 0.00275
|
||||
7 8 9 0.00244 0.0305 0.5810
|
||||
9 9 10 0.00258 0.0322 0.6150
|
||||
10 4 11 0.0209 0.0688 0.00874
|
||||
11 5 11 0.0203 0.0682 0.00869
|
||||
12 11 12 0.00595 0.0196 0.00251
|
||||
13 2 12 0.0187 0.0616 0.00786
|
||||
14 3 12 0.0484 0.1600 0.0203
|
||||
15 7 12 0.00862 0.0340 0.00437
|
||||
16 11 13 0.02225 0.0731 0.00938
|
||||
17 12 14 0.0215 0.0707 0.00908
|
||||
18 13 15 0.0744 0.2444 0.03134
|
||||
19 14 15 0.0595 0.1950 0.0251
|
||||
20 12 16 0.0212 0.0834 0.0107
|
||||
21 15 17 0.0132 0.0437 0.0222
|
||||
22 16 17 0.0454 0.1801 0.0233
|
||||
23 17 18 0.0123 0.0505 0.00649
|
||||
24 18 19 0.01119 0.0493 0.00571
|
||||
25 19 20 0.0252 0.1170 0.0149
|
||||
26 15 19 0.0120 0.0394 0.00505
|
||||
27 20 21 0.0183 0.0849 0.0108
|
||||
28 21 22 0.0209 0.0970 0.0123
|
||||
29 22 23 0.0342 0.1590 0.0202
|
||||
30 23 24 0.0135 0.0492 0.0249
|
||||
31 23 25 0.0156 0.0800 0.0432
|
||||
33 25 27 0.0318 0.1630 0.0882
|
||||
34 27 28 0.01913 0.0855 0.0108
|
||||
35 28 29 0.0237 0.0943 0.0119
|
||||
37 8 30 0.00431 0.0504 0.2570
|
||||
38 26 30 0.00799 0.0860 0.4540
|
||||
39 17 31 0.0474 0.1563 0.01995
|
||||
40 29 31 0.0108 0.0331 0.00415
|
||||
41 23 32 0.0317 0.1153 0.05865
|
||||
42 31 32 0.0298 0.0985 0.01255
|
||||
43 27 32 0.0229 0.0755 0.00963
|
||||
44 15 33 0.0380 0.1244 0.01597
|
||||
45 19 34 0.0752 0.2470 0.0316
|
||||
46 35 36 0.00224 0.0102 0.00124
|
||||
47 35 37 0.0110 0.0497 0.00659
|
||||
48 33 37 0.0415 0.1420 0.0183
|
||||
49 34 36 0.00871 0.0268 0.00284
|
||||
50 34 37 0.00256 0.0094 0.00429
|
||||
52 37 39 0.0321 0.1060 0.0135
|
||||
53 37 40 0.0593 0.1680 0.0210
|
||||
54 30 38 0.00464 0.0540 0.2110
|
||||
55 39 40 0.0184 0.0605 0.00776
|
||||
56 40 41 0.0145 0.0487 0.00611
|
||||
57 40 42 0.0555 0.1830 0.0233
|
||||
58 41 42 0.0410 0.1350 0.0172
|
||||
59 43 44 0.0608 0.2454 0.03034
|
||||
60 34 43 0.0413 0.1681 0.02113
|
||||
61 44 45 0.0224 0.0901 0.0112
|
||||
62 45 46 0.0400 0.1356 0.0166
|
||||
63 46 47 0.0380 0.1270 0.0158
|
||||
64 46 48 0.0601 0.1890 0.0236
|
||||
65 47 49 0.0191 0.0625 0.00802
|
||||
66 42 49 0.03575 0.1615 0.0860
|
||||
67 45 49 0.0684 0.1860 0.0222
|
||||
68 48 49 0.0179 0.0505 0.00629
|
||||
69 49 50 0.0267 0.0752 0.00937
|
||||
70 49 51 0.0486 0.1370 0.0171
|
||||
71 51 52 0.0203 0.0588 0.00698
|
||||
72 52 53 0.0405 0.1635 0.02029
|
||||
73 53 54 0.0263 0.1220 0.0155
|
||||
74 49 54 0.03976 0.1450 0.0734
|
||||
75 54 55 0.0169 0.0707 0.0101
|
||||
76 54 56 0.00275 0.00955 0.00366
|
||||
77 55 56 0.00488 0.0151 0.00187
|
||||
78 56 57 0.0343 0.0966 0.0121
|
||||
79 50 57 0.0474 0.1340 0.0166
|
||||
80 56 58 0.0343 0.0966 0.0121
|
||||
81 51 58 0.0255 0.0719 0.00894
|
||||
82 54 59 0.0503 0.2293 0.0299
|
||||
83 56 59 0.04069 0.12243 0.05525
|
||||
84 55 59 0.04739 0.2158 0.02823
|
||||
85 59 60 0.0317 0.1450 0.0188
|
||||
86 59 61 0.0328 0.1500 0.0194
|
||||
87 60 61 0.00264 0.0135 0.00728
|
||||
88 60 62 0.0123 0.0561 0.00734
|
||||
89 61 62 0.00824 0.0376 0.0049
|
||||
91 63 64 0.00172 0.0200 0.1080
|
||||
93 38 65 0.00901 0.0986 0.5230
|
||||
94 64 65 0.00269 0.0302 0.1900
|
||||
95 49 66 0.0090 0.04595 0.0248
|
||||
96 62 66 0.0482 0.2180 0.0289
|
||||
97 62 67 0.0258 0.1170 0.0155
|
||||
99 66 67 0.0224 0.1015 0.01341
|
||||
100 65 68 0.00138 0.0160 0.3190
|
||||
101 47 69 0.0844 0.2778 0.03546
|
||||
102 49 69 0.0985 0.3240 0.0414
|
||||
104 69 70 0.0300 0.1270 0.0610
|
||||
105 24 70 0.10221 0.4115 0.05099
|
||||
106 70 71 0.00882 0.0355 0.00439
|
||||
107 24 72 0.0488 0.1960 0.0244
|
||||
108 71 72 0.0446 0.1800 0.02222
|
||||
109 71 73 0.00866 0.0454 0.00589
|
||||
110 70 74 0.0401 0.1323 0.01684
|
||||
111 70 75 0.0428 0.1410 0.0180
|
||||
112 69 75 0.0405 0.1220 0.0620
|
||||
113 74 75 0.0123 0.0406 0.00517
|
||||
114 76 77 0.0444 0.1480 0.0184
|
||||
115 69 77 0.0309 0.1010 0.0519
|
||||
116 75 77 0.0601 0.1999 0.02489
|
||||
117 77 78 0.00376 0.0124 0.00632
|
||||
118 78 79 0.00546 0.0244 0.00324
|
||||
119 77 80 0.01077 0.03318 0.0350
|
||||
120 79 80 0.0156 0.0704 0.00945
|
||||
121 68 81 0.00175 0.0202 0.4040
|
||||
123 77 82 0.0298 0.0853 0.04087
|
||||
124 82 83 0.0112 0.03665 0.01898
|
||||
125 83 84 0.0625 0.1320 0.0129
|
||||
126 83 85 0.0430 0.1480 0.0174
|
||||
127 84 85 0.0302 0.0641 0.00617
|
||||
128 85 86 0.0350 0.1230 0.0138
|
||||
129 86 87 0.02828 0.2074 0.02225
|
||||
130 85 88 0.0200 0.1020 0.0138
|
||||
131 85 89 0.0239 0.1730 0.0235
|
||||
132 88 89 0.0139 0.0712 0.00969
|
||||
133 89 90 0.01631 0.06515 0.0794
|
||||
134 90 91 0.0254 0.0836 0.0107
|
||||
135 89 92 0.00791 0.03827 0.0481
|
||||
136 91 92 0.0387 0.1272 0.01634
|
||||
137 92 93 0.0258 0.0848 0.0109
|
||||
138 92 94 0.0481 0.1580 0.0203
|
||||
139 93 94 0.0223 0.0732 0.00938
|
||||
140 94 95 0.0132 0.0434 0.00555
|
||||
141 80 96 0.0356 0.1820 0.0247
|
||||
142 82 96 0.0162 0.0530 0.0272
|
||||
143 94 96 0.0269 0.0869 0.0115
|
||||
144 80 97 0.0183 0.0934 0.0127
|
||||
145 80 98 0.0238 0.1080 0.0143
|
||||
146 80 99 0.0454 0.2060 0.0273
|
||||
148 94 100 0.0178 0.0580 0.0302
|
||||
149 95 96 0.0171 0.0547 0.00737
|
||||
150 96 97 0.0173 0.0885 0.0120
|
||||
151 98 100 0.0397 0.1790 0.0238
|
||||
152 99 100 0.0180 0.0813 0.0108
|
||||
153 100 101 0.0277 0.1262 0.0164
|
||||
154 92 102 0.0123 0.0559 0.00732
|
||||
155 101 102 0.0246 0.1120 0.0147
|
||||
156 100 103 0.0160 0.0525 0.0268
|
||||
157 100 104 0.0451 0.2040 0.02705
|
||||
158 103 104 0.0466 0.1584 0.02035
|
||||
159 103 105 0.0535 0.1625 0.0204
|
||||
160 100 106 0.0605 0.2290 0.0310
|
||||
161 104 105 0.00994 0.0378 0.00493
|
||||
162 105 106 0.0140 0.0547 0.00717
|
||||
163 105 107 0.0530 0.1830 0.0236
|
||||
164 105 108 0.0261 0.0703 0.09222
|
||||
166 108 109 0.0105 0.0288 0.0038
|
||||
167 103 110 0.03906 0.1813 0.02305
|
||||
168 109 110 0.0278 0.0762 0.0101
|
||||
169 110 111 0.0220 0.0755 0.0100
|
||||
170 110 112 0.0247 0.0640 0.0310
|
||||
171 17 113 0.00913 0.0301 0.00384
|
||||
172 32 113 0.0615 0.2030 0.0259
|
||||
173 32 114 0.0135 0.0612 0.00814
|
||||
174 27 115 0.0164 0.0741 0.00986
|
||||
175 114 115 0.0023 0.0104 0.00138
|
||||
176 68 116 0.00034 0.00405 0.0820
|
||||
177 12 117 0.0329 0.1400 0.0179
|
||||
178 75 118 0.01450 0.04810 0.00599
|
||||
179 76 118 0.0164 0.0544 0.00678
|
||||
0
|
||||
5 -0.4
|
||||
17 0.
|
||||
34 .14
|
||||
37 -0.25
|
||||
44 .1
|
||||
45 .1
|
||||
46 .1
|
||||
48 .15
|
||||
74 .12
|
||||
79 .2
|
||||
82 .2
|
||||
83 .1
|
||||
105 .2
|
||||
107 .06
|
||||
110 .06
|
||||
0
|
||||
1 8 5 0.0 0.0267 0.9850 0.9 1.1
|
||||
2 25 26 0.0 0.0382 0.9600 0.9 1.1
|
||||
3 17 30 0.0 0.0388 0.9600 0.9 1.1
|
||||
4 37 38 0.0 0.0375 0.9350 0.9 1.1
|
||||
5 59 63 0.0 0.0386 0.9600 0.9 1.1
|
||||
6 61 64 0.0 0.0268 0.9850 0.9 1.1
|
||||
7 65 66 0.0 0.0370 0.9350 0.9 1.1
|
||||
8 68 69 0.0 0.0370 0.9350 0.9 1.1
|
||||
9 80 81 0.0 0.0370 0.9350 0.9 1.1
|
||||
10 92 100 0.0648 0.2950 1. 0.9 1.1
|
||||
11 106 107 0.0530 0.1830 1. 0.9 1.1
|
||||
0
|
||||
1 0. 0. 51. 27.
|
||||
2 0. 0. 20. 9.
|
||||
3 0. 0. 39. 10.
|
||||
4 -9. 0. 30. 12.
|
||||
5 0. 0. 0. 0.
|
||||
6 0. 0. 52. 22.
|
||||
7 0. 0. 19. 2.
|
||||
8 -28. 0. 0. 0.
|
||||
9 0. 0. 0. 0.
|
||||
10 450. 0. 0. 0.
|
||||
11 0. 0. 70. 23.
|
||||
12 85. 0. 47. 10.
|
||||
13 0. 0. 34. 16.
|
||||
14 0. 0. 14. 1.
|
||||
15 0. 0. 90. 30.
|
||||
16 0. 0. 25. 10.
|
||||
17 0. 0. 11. 3.
|
||||
18 0. 0. 60. 34.
|
||||
19 0. 0. 45. 25.
|
||||
20 0. 0. 18. 3.
|
||||
21 0. 0. 14. 8.
|
||||
22 0. 0. 10. 5.
|
||||
23 0. 0. 7. 3.
|
||||
24 -13. 0. 0. 0.
|
||||
25 220. 0. 0. 0.
|
||||
26 314. 0. 0. 0.
|
||||
27 -9. 0. 62. 13.
|
||||
28 0. 0. 17. 7.
|
||||
29 0. 0. 24. 4.
|
||||
30 0. 0. 0. 0.
|
||||
31 7. 0. 43. 27.
|
||||
32 0. 0. 59. 23.
|
||||
33 0. 0. 23. 9.
|
||||
34 0. 0. 59. 26.
|
||||
35 0. 0. 33. 9.
|
||||
36 0. 0. 31. 17.
|
||||
37 0. 0. 0. 0.
|
||||
38 0. 0. 0. 0.
|
||||
39 0. 0. 27. 11.
|
||||
40 -46. 0. 20. 23.
|
||||
41 0. 0. 37. 10.
|
||||
42 -59. 0. 37. 23.
|
||||
43 0. 0. 18. 7.
|
||||
44 0. 0. 16. 8.
|
||||
45 0. 0. 53. 22.
|
||||
46 19. 0. 28. 10.
|
||||
47 0. 0. 34. 0.
|
||||
48 0. 0. 20. 11.
|
||||
49 204. 0. 87. 30.
|
||||
50 0. 0. 17. 4.
|
||||
51 0. 0. 17. 8.
|
||||
52 0. 0. 18. 5.
|
||||
53 0. 0. 23. 11.
|
||||
54 48. 0. 113. 32.
|
||||
55 0. 0. 63. 22.
|
||||
56 0. 0. 84. 18.
|
||||
57 0. 0. 12. 3.
|
||||
58 0. 0. 12. 3.
|
||||
59 155. 0. 277. 113.
|
||||
60 0. 0. 78. 3.
|
||||
61 160. 0. 0. 0.
|
||||
62 0. 0. 77. 14.
|
||||
63 0. 0. 0. 0.
|
||||
64 0. 0. 0. 0.
|
||||
65 391. 0. 0. 0.
|
||||
66 392. 0. 39. 18.
|
||||
67 0. 0. 28. 7.
|
||||
68 0. 0. 0. 0.
|
||||
69 516.4 0. 0. 0.
|
||||
70 0. 0. 66. 20.
|
||||
71 0. 0. 0. 0.
|
||||
72 -12. 0. 0. 0.
|
||||
73 -6. 0. 0. 0.
|
||||
74 0. 0. 68. 27.
|
||||
75 0. 0. 47. 11.
|
||||
76 0. 0. 68. 36.
|
||||
77 0. 0. 61. 28.
|
||||
78 0. 0. 71. 26.
|
||||
79 0. 0. 39. 32.
|
||||
80 477. 0. 130. 26.
|
||||
81 0. 0. 0. 0.
|
||||
82 0. 0. 54. 27.
|
||||
83 0. 0. 20. 10.
|
||||
84 0. 0. 11. 7.
|
||||
85 0. 0. 24. 15.
|
||||
86 0. 0. 21. 10.
|
||||
87 4. 0. 0. 0.
|
||||
88 0. 0. 48. 10.
|
||||
89 607. 0. 0. 0.
|
||||
90 -85. 0. 78. 42.
|
||||
91 -10. 0. 0. 0.
|
||||
92 0. 0. 65. 10.
|
||||
93 0. 0. 12. 7.
|
||||
94 0. 0. 30. 16.
|
||||
95 0. 0. 42. 31.
|
||||
96 0. 0. 38. 15.
|
||||
97 0. 0. 15. 9.
|
||||
98 0. 0. 34. 8.
|
||||
99 -42. 0. 0. 0.
|
||||
100 252. 0. 37. 18.
|
||||
101 0. 0. 22. 15.
|
||||
102 0. 0. 5. 3.
|
||||
103 40. 0. 23. 16.
|
||||
104 0. 0. 38. 25.
|
||||
105 0. 0. 31. 26.
|
||||
106 0. 0. 43. 16.
|
||||
107 -22. 0. 28. 12.
|
||||
108 0. 0. 2. 1.
|
||||
109 0. 0. 8. 3.
|
||||
110 0. 0. 39. 30.
|
||||
111 36. 0. 0. 0.
|
||||
112 -43. 0. 25. 13.
|
||||
113 -6. 0. 0. 0.
|
||||
114 0. 0. 8. 3.
|
||||
115 0. 0. 22. 7.
|
||||
116 -184. 0. 0. 0.
|
||||
117 0. 0. 20. 8.
|
||||
118 0. 0. 33. 15.
|
||||
0
|
||||
1 .955 -5. 15.
|
||||
4 .998 -300. 300.
|
||||
6 .99 -13. 50.
|
||||
8 1.015 -300. 300.
|
||||
10 1.05 -147. 200.
|
||||
12 .99 -35. 120.
|
||||
15 .97 -10. 30.
|
||||
18 .973 -16. 50.
|
||||
19 .963 -8. 24.
|
||||
24 .992 -300. 300.
|
||||
25 1.05 -47. 140.
|
||||
26 1.015 -1000. 1000.
|
||||
27 .968 -300. 300.
|
||||
31 .967 -300. 300.
|
||||
32 .964 -14. 42.
|
||||
34 .984 -8. 24.
|
||||
36 .98 -8. 24.
|
||||
40 .97 -300. 300.
|
||||
42 .985 -300. 300.
|
||||
46 1.005 -100. 100.
|
||||
49 1.025 -85. 210.
|
||||
54 .955 -300. 300.
|
||||
55 .952 -8. 23.
|
||||
56 .954 -8. 15.
|
||||
59 .985 -60. 180.
|
||||
61 .995 -100. 300.
|
||||
62 .998 -20. 20.
|
||||
65 1.005 -67. 200.
|
||||
66 1.05 -67. 200.
|
||||
69 1.035 -300. 300.
|
||||
70 .984 -10. 32.
|
||||
72 .98 -100. 100.
|
||||
73 .991 -100. 100.
|
||||
74 .958 -6. 9.
|
||||
76 .943 -8. 23.
|
||||
77 1.006 -20. 70.
|
||||
80 1.04 -165. 280.
|
||||
85 .985 -8. 23.
|
||||
87 1.015 -100. 1000.
|
||||
89 1.005 -210. 300.
|
||||
90 .985 -300. 300.
|
||||
91 .98 -100. 100.
|
||||
92 .993 -3. 9.
|
||||
99 1.01 -100. 100.
|
||||
100 1.017 -50. 155.
|
||||
103 1.001 -15. 40.
|
||||
104 .971 -8. 23.
|
||||
105 .965 -8. 23.
|
||||
107 .952 -200. 200.
|
||||
110 .973 -8. 23.
|
||||
111 .98 -100. 1000.
|
||||
112 .975 -100. 1000.
|
||||
113 .993 -100. 200.
|
||||
116 1.005 -1000. 1000.
|
||||
0
|
||||
10 0. 1.25 1. 100. 600.
|
||||
12 0. 2.6 1.2 60. 200.
|
||||
25 0. 1.5 1. 50. 300.
|
||||
26 0. 1.5 1. 100. 400.
|
||||
49 0. 2.1 1. 100. 400.
|
||||
54 0. 2.0 1.4 20. 300.
|
||||
59 0. 1.6 1. 50. 350.
|
||||
61 0. 1.5 1. 50. 400.
|
||||
65 0. 1.5 1. 100. 500.
|
||||
66 0. 1.5 1. 100. 500.
|
||||
69 0. 1.0 1. 100. 800.
|
||||
80 0. 1.23 1. 100. 600.
|
||||
89 0. 1.2 1. 100. 800.
|
||||
100 0. 1.6 1. 100. 400.
|
||||
103 0. 2.5 1.2 20. 200.
|
||||
111 0. 2.4 1.1 10. 200.
|
||||
0
|
||||
0
|
||||
0
|
||||
1 100 92 -25. 25.
|
||||
2 106 107 -18. 18.
|
||||
0
|
||||
0
|
||||
58
IEEE14.dat
Normal file
58
IEEE14.dat
Normal file
@@ -0,0 +1,58 @@
|
||||
14 20 100. 20 0.1
|
||||
1.e-5 2
|
||||
1 1
|
||||
0
|
||||
1 1 2 0.01938 0.05917 0.0264
|
||||
2 1 5 0.05403 0.22304 0.0246
|
||||
3 2 3 0.04699 0.19797 0.0219
|
||||
4 2 4 0.05811 0.17632 0.0187
|
||||
5 2 5 0.05695 0.17388 0.0170
|
||||
6 3 4 0.06701 0.17103 0.0173
|
||||
7 4 5 0.01335 0.04211 0.0064
|
||||
11 6 11 0.09498 0.19890 0.0
|
||||
12 6 12 0.12291 0.15581 0.0
|
||||
13 6 13 0.06615 0.13027 0.0
|
||||
14 7 8 0.0 0.17615 0.0
|
||||
15 7 9 0.0 0.11001 0.0
|
||||
16 9 10 0.03181 0.08450 0.0
|
||||
19 12 13 0.22092 0.19988 0.0
|
||||
20 13 14 0.17038 0.34802 0.0
|
||||
4 9 14 0.12711 0.27038 0.0
|
||||
5 10 11 0.08205 0.19207 0.0
|
||||
0
|
||||
9 0.19
|
||||
0
|
||||
1 4 7 0.0 0.20912 0.978 0.9 1.1
|
||||
2 4 9 0.0 0.55618 0.969 0.9 1.1
|
||||
3 5 6 0.0 0.25202 0.932 0.9 1.1
|
||||
0
|
||||
1 60. 0. 0. 0.
|
||||
2 40. 42.4 21.7 12.7
|
||||
3 0. 23.39 94.2 19.0
|
||||
4 0. 0. 47.8 -3.9
|
||||
5 0. 0. 7.6 1.6
|
||||
6 0. 12.24 11.2 7.5
|
||||
7 0. 0. 0. 0.
|
||||
8 0. 17.36 0. 0.
|
||||
9 0. 0. 29.5 16.6
|
||||
10 0. 0. 9. 5.8
|
||||
11 0. 0. 3.5 1.8
|
||||
12 0. 0. 6.1 1.6
|
||||
13 0. 0. 13.5 5.8
|
||||
14 0. 0. 14.9 5.
|
||||
0
|
||||
1 1.060 -40. 50.
|
||||
2 1.045 -40. 50.
|
||||
3 1.010 0. 40.
|
||||
6 1.070 -30. 40.
|
||||
8 1.090 -30. 45.
|
||||
0
|
||||
1 105. 2.45 0.005 50. 200.
|
||||
2 44.4 3.51 0.005 20. 100.
|
||||
6 40.6 3.89 0.005 20. 100.
|
||||
0
|
||||
0
|
||||
|
||||
|
||||
|
||||
|
||||
96
IEEE30.dat
Normal file
96
IEEE30.dat
Normal file
@@ -0,0 +1,96 @@
|
||||
30 41 100.0 28 0.1
|
||||
1.e-5 2
|
||||
1 1
|
||||
0
|
||||
1 1 2 0.0192 0.0575 0.0264
|
||||
2 1 3 0.0452 0.1852 0.0204
|
||||
3 2 4 0.0570 0.1737 0.0184
|
||||
4 3 4 0.0132 0.0379 0.0042
|
||||
5 2 5 0.0472 0.1983 0.0209
|
||||
6 2 6 0.0581 0.1763 0.0187
|
||||
7 4 6 0.0119 0.0414 0.0045
|
||||
8 5 7 0.0460 0.1160 0.0102
|
||||
9 6 7 0.0267 0.0820 0.0085
|
||||
10 6 8 0.0120 0.0420 0.0045
|
||||
13 9 11 0.0 0.2080 0.0
|
||||
15 12 13 0.0 0.1400 0.0
|
||||
16 12 14 0.1231 0.2559 0.0
|
||||
17 12 15 0.0662 0.1304 0.0
|
||||
18 12 16 0.945 0.1987 0.0
|
||||
19 14 15 0.2210 0.1997 0.0
|
||||
20 16 17 0.0824 0.1923 0.0
|
||||
21 15 18 0.1070 0.2185 0.0
|
||||
22 18 19 0.0639 0.1292 0.0
|
||||
23 19 20 0.0340 0.0680 0.0
|
||||
24 10 20 0.0936 0.2090 0.0
|
||||
25 10 17 0.0324 0.0845 0.0
|
||||
26 10 21 0.0348 0.0749 0.0
|
||||
27 10 22 0.0727 0.1499 0.0
|
||||
28 21 22 0.0116 0.0236 0.0
|
||||
29 15 23 0.1000 0.2020 0.0
|
||||
30 22 24 0.1150 0.1790 0.0
|
||||
31 23 24 0.1320 0.2700 0.0
|
||||
32 24 25 0.1885 0.3292 0.0
|
||||
33 25 26 0.2554 0.3800 0.0
|
||||
34 25 27 0.1093 0.2087 0.0
|
||||
36 27 29 0.2198 0.4153 0.0
|
||||
37 27 30 0.3202 0.6027 0.0
|
||||
38 29 30 0.2399 0.4533 0.0
|
||||
39 8 28 0.0636 0.2000 0.0214
|
||||
40 6 28 0.0169 0.0599 0.0065
|
||||
41 9 10 0.0 0.1100 0.0
|
||||
0
|
||||
10 0.19
|
||||
24 0.043
|
||||
0
|
||||
1 9 6 0.0 0.2080 0.978 0.9 1.1
|
||||
2 6 10 0.0 0.5560 0.969 0.9 1.1
|
||||
3 12 4 0.0 0.2560 0.932 0.9 1.1
|
||||
4 28 27 0.0 0.3960 0.968 0.9 1.1
|
||||
0
|
||||
1 20. 0. 0. 0.
|
||||
2 57.56 2.43 21.7 12.7
|
||||
3 0. 0. 2.4 1.2
|
||||
4 0. 0. 7.6 1.6
|
||||
5 24.56 22.25 94.2 19.
|
||||
6 0. 0. 0. 0.
|
||||
7 0. 0. 22.8 10.9
|
||||
8 35 37.27 30. 30.
|
||||
9 0. 0. 0. 0.
|
||||
10 0. 0. 5.8 2.
|
||||
11 17.93 17.61 0. 0.
|
||||
12 0. 0. 11.2 7.5
|
||||
13 16.91 24.69 0. 0.
|
||||
14 0. 0. 6.2 1.6
|
||||
15 0. 0. 8.2 2.5
|
||||
16 0. 0. 3.5 1.8
|
||||
17 0. 0. 9. 5.8
|
||||
18 0. 0. 3.2 .9
|
||||
19 0. 0. 9.5 3.4
|
||||
20 0. 0. 2.2 .7
|
||||
21 0. 0. 17.5 11.2
|
||||
22 0. 0. 0. 0.
|
||||
23 0. 0. 3.2 1.6
|
||||
24 0. 0. 8.7 6.7
|
||||
25 0. 0. 0. 0.
|
||||
26 0. 0. 3.5 2.3
|
||||
27 0. 0. 0. 0.
|
||||
28 0. 0. 0. 0.
|
||||
29 0. 0. 2.4 .9
|
||||
30 0. 0. 10.6 1.9
|
||||
0
|
||||
1 1.060 -50 50.
|
||||
2 1.045 -40. 60.
|
||||
5 1.010 -40. 40.
|
||||
8 1.010 -10. 40.
|
||||
11 1.082 -6. 24.
|
||||
13 1.071 -6. 24.
|
||||
0
|
||||
1 10. 2.0 2.0 10. 60.
|
||||
2 10. 1.5 2.4 10. 60.
|
||||
5 20. 1.8 0.8 10. 150.
|
||||
8 10. 1.0 1.2 10. 120.
|
||||
11 20. 1.8 0.8 10. 150.
|
||||
13 10. 1.5 2.0 10. 60.
|
||||
0
|
||||
0
|
||||
824
IEEE300.dat
Normal file
824
IEEE300.dat
Normal file
@@ -0,0 +1,824 @@
|
||||
300 409 100. 28 0.1
|
||||
1.e-5 4
|
||||
1 38
|
||||
0
|
||||
1 269 291 0.00080 0.00348 0.00000
|
||||
2 226 271 0.05558 0.24666 0.00000
|
||||
3 226 300 0.05559 0.24666 0.00000
|
||||
4 227 225 0.03811 0.21648 0.00000
|
||||
5 225 228 0.05370 0.07026 0.00000
|
||||
6 228 229 1.10680 0.95278 0.00000
|
||||
7 271 300 0.05580 0.24666 0.00000
|
||||
8 300 144 0.07378 0.06352 0.00000
|
||||
9 144 270 0.03832 0.02894 0.00000
|
||||
10 227 68 0.23552 0.99036 0.00000
|
||||
11 146 147 0.00100 0.00600 0.00000
|
||||
12 230 71 0.00100 0.00900 0.00000
|
||||
13 230 148 0.00600 0.02700 0.05400
|
||||
14 292 272 0.00000 0.00300 0.00000
|
||||
15 292 150 0.00800 0.06900 0.13900
|
||||
16 292 104 0.00100 0.00700 0.00000
|
||||
17 70 149 0.00200 0.01900 1.12700
|
||||
18 147 72 0.00600 0.02900 0.01800
|
||||
19 272 231 0.00100 0.00900 0.07000
|
||||
20 272 98 0.00100 0.00700 0.01400
|
||||
21 148 273 0.01300 0.05950 0.03300
|
||||
22 148 75 0.01300 0.04200 0.08100
|
||||
23 72 273 0.00600 0.02700 0.01300
|
||||
24 273 74 0.00800 0.03400 0.01800
|
||||
25 231 233 0.00200 0.01500 0.11800
|
||||
26 74 232 0.00600 0.03400 0.01600
|
||||
27 75 286 0.01400 0.04200 0.09700
|
||||
28 286 297 0.06500 0.24800 0.12100
|
||||
29 286 165 0.09900 0.24800 0.03500
|
||||
30 286 166 0.09600 0.36300 0.04800
|
||||
31 149 274 0.00200 0.02200 1.28000
|
||||
32 150 233 0.00200 0.01800 0.03600
|
||||
33 150 163 0.01300 0.08000 0.15100
|
||||
34 232 77 0.01600 0.03300 0.01500
|
||||
35 232 79 0.06900 0.18600 0.09800
|
||||
36 233 235 0.00400 0.03400 0.28000
|
||||
37 77 234 0.05200 0.11100 0.05000
|
||||
38 234 78 0.01900 0.03900 0.01800
|
||||
39 235 14 0.00700 0.06800 0.13400
|
||||
40 78 151 0.03600 0.07100 0.03400
|
||||
41 151 79 0.04500 0.12000 0.06500
|
||||
42 151 15 0.04300 0.13000 0.01400
|
||||
43 236 80 0.00000 0.06300 0.00000
|
||||
44 236 238 0.00250 0.01200 0.01300
|
||||
45 236 152 0.00600 0.02900 0.02000
|
||||
46 236 287 0.00700 0.04300 0.02600
|
||||
47 80 274 0.00100 0.00800 0.04200
|
||||
48 237 245 0.01200 0.06000 0.00800
|
||||
49 237 161 0.00600 0.01400 0.00200
|
||||
50 237 293 0.01000 0.02900 0.00300
|
||||
51 81 164 0.00400 0.02700 0.04300
|
||||
52 297 238 0.00800 0.04700 0.00800
|
||||
53 297 152 0.02200 0.06400 0.00700
|
||||
54 297 287 0.01000 0.03600 0.02000
|
||||
55 297 241 0.01700 0.08100 0.04800
|
||||
56 297 165 0.10200 0.25400 0.03300
|
||||
57 297 166 0.04700 0.12700 0.01600
|
||||
58 238 287 0.00800 0.03700 0.02000
|
||||
59 238 239 0.03200 0.08700 0.04000
|
||||
60 82 274 0.00060 0.00640 0.40400
|
||||
61 152 155 0.02600 0.15400 0.02200
|
||||
62 287 274 0.00000 0.02900 0.00000
|
||||
63 287 241 0.06500 0.19100 0.02000
|
||||
64 287 156 0.03100 0.08900 0.03600
|
||||
65 274 153 0.00200 0.01400 0.80600
|
||||
66 239 275 0.02600 0.07200 0.03500
|
||||
67 239 155 0.09500 0.26200 0.03200
|
||||
68 239 84 0.01300 0.03900 0.01600
|
||||
69 275 154 0.02700 0.08400 0.03900
|
||||
70 275 157 0.02800 0.08400 0.03700
|
||||
71 240 87 0.00700 0.04100 0.31200
|
||||
72 240 246 0.00900 0.05400 0.41100
|
||||
73 153 248 0.00500 0.04200 0.69000
|
||||
74 154 277 0.05200 0.14500 0.07300
|
||||
75 154 94 0.04300 0.11800 0.01300
|
||||
76 155 173 0.02500 0.06200 0.00700
|
||||
77 241 156 0.03100 0.09400 0.04300
|
||||
78 156 83 0.03700 0.10900 0.04900
|
||||
79 83 242 0.02700 0.08000 0.03600
|
||||
80 84 157 0.02500 0.07300 0.03500
|
||||
81 157 242 0.03500 0.10300 0.04700
|
||||
82 242 243 0.06500 0.16900 0.08200
|
||||
83 243 85 0.04600 0.08000 0.03600
|
||||
84 243 159 0.15900 0.53700 0.07100
|
||||
85 85 86 0.00900 0.02600 0.00500
|
||||
86 86 158 0.00200 0.01300 0.01500
|
||||
87 87 276 0.00900 0.06500 0.48500
|
||||
88 276 88 0.01600 0.10500 0.20300
|
||||
89 276 101 0.00100 0.00700 0.01300
|
||||
90 159 19 0.02650 0.17200 0.02600
|
||||
91 160 298 0.05100 0.23200 0.02800
|
||||
92 160 247 0.05100 0.15700 0.02300
|
||||
93 89 244 0.03200 0.10000 0.06200
|
||||
94 89 20 0.02000 0.12340 0.02800
|
||||
95 244 245 0.03600 0.13100 0.06800
|
||||
96 244 277 0.03400 0.09900 0.04700
|
||||
97 245 293 0.01800 0.08700 0.01100
|
||||
98 245 21 0.02560 0.19300 0.00000
|
||||
99 277 161 0.02100 0.05700 0.03000
|
||||
100 277 247 0.01800 0.05200 0.01800
|
||||
101 246 164 0.00400 0.02700 0.05000
|
||||
102 246 23 0.02860 0.20130 0.37900
|
||||
103 161 293 0.01600 0.04300 0.00400
|
||||
104 293 162 0.00100 0.00600 0.00700
|
||||
105 293 90 0.01400 0.07000 0.03800
|
||||
106 293 22 0.08910 0.26760 0.02900
|
||||
107 293 24 0.07820 0.21270 0.02200
|
||||
108 162 247 0.00600 0.02200 0.01100
|
||||
109 162 1 0.00000 0.03600 0.00000
|
||||
110 247 298 0.09900 0.37500 0.05100
|
||||
111 90 298 0.02200 0.10700 0.05800
|
||||
112 248 205 0.00350 0.03300 0.53000
|
||||
113 248 206 0.00350 0.03300 0.53000
|
||||
114 91 249 0.00800 0.06400 0.12800
|
||||
115 249 163 0.01200 0.09300 0.18300
|
||||
116 249 17 0.00600 0.04800 0.09200
|
||||
117 165 167 0.04700 0.11900 0.01400
|
||||
118 166 168 0.03200 0.17400 0.02400
|
||||
119 167 169 0.10000 0.25300 0.03100
|
||||
120 167 278 0.02200 0.07700 0.03900
|
||||
121 168 171 0.01900 0.14400 0.01700
|
||||
122 168 250 0.01700 0.09200 0.01200
|
||||
123 169 278 0.27800 0.42700 0.04300
|
||||
124 278 170 0.02200 0.05300 0.00700
|
||||
125 278 280 0.03800 0.09200 0.01200
|
||||
126 278 171 0.04800 0.12200 0.01500
|
||||
127 92 170 0.02400 0.06400 0.00700
|
||||
128 92 280 0.03400 0.12100 0.01500
|
||||
129 279 173 0.05300 0.13500 0.01700
|
||||
130 279 174 0.00200 0.00400 0.00200
|
||||
131 279 251 0.04500 0.35400 0.04400
|
||||
132 279 252 0.05000 0.17400 0.02200
|
||||
133 170 280 0.01600 0.03800 0.00400
|
||||
134 280 172 0.04300 0.06400 0.02700
|
||||
135 171 250 0.01900 0.06200 0.00800
|
||||
136 172 174 0.07600 0.13000 0.04400
|
||||
137 172 16 0.04400 0.12400 0.01500
|
||||
138 250 173 0.01200 0.08800 0.01100
|
||||
139 250 252 0.15700 0.40000 0.04700
|
||||
140 174 18 0.07400 0.20800 0.02600
|
||||
141 251 252 0.07000 0.18400 0.02100
|
||||
142 251 94 0.10000 0.27400 0.03100
|
||||
143 251 175 0.10900 0.39300 0.03600
|
||||
144 252 93 0.14200 0.40400 0.05000
|
||||
145 93 175 0.01700 0.04200 0.00600
|
||||
146 95 256 0.00360 0.01990 0.00400
|
||||
147 96 255 0.00200 0.10490 0.00100
|
||||
148 97 253 0.00010 0.00180 0.01700
|
||||
149 253 254 0.00000 0.02710 0.00000
|
||||
150 253 142 0.00000 0.61630 0.00000
|
||||
151 142 255 0.00000 -0.36970 0.00000
|
||||
152 253 176 0.00220 0.29150 0.00000
|
||||
153 254 255 0.00000 0.03390 0.00000
|
||||
154 254 176 0.00000 0.05820 0.00000
|
||||
155 256 177 0.08080 0.23440 0.02900
|
||||
156 256 179 0.09650 0.36690 0.05400
|
||||
157 177 178 0.03600 0.10760 0.11700
|
||||
158 177 179 0.04760 0.14140 0.14900
|
||||
159 179 294 0.00060 0.01970 0.00000
|
||||
160 294 257 0.00590 0.04050 0.25000
|
||||
161 294 181 0.01150 0.11060 0.18500
|
||||
162 294 182 0.01980 0.16880 0.32100
|
||||
163 294 191 0.00500 0.05000 0.33000
|
||||
164 294 192 0.00770 0.05380 0.33500
|
||||
165 294 196 0.01650 0.11570 0.17100
|
||||
166 257 180 0.00590 0.05770 0.09500
|
||||
167 257 183 0.00490 0.03360 0.20800
|
||||
168 257 195 0.00590 0.05770 0.09500
|
||||
169 180 299 0.00780 0.07730 0.12600
|
||||
170 180 288 0.00260 0.01930 0.03000
|
||||
171 181 299 0.00760 0.07520 0.12200
|
||||
172 181 288 0.00210 0.01860 0.03000
|
||||
173 299 182 0.00160 0.01640 0.02600
|
||||
174 299 105 0.00170 0.01650 0.02600
|
||||
175 299 115 0.00790 0.07930 0.12700
|
||||
176 299 195 0.00780 0.07840 0.12500
|
||||
177 288 295 0.00170 0.01170 0.28900
|
||||
178 288 195 0.00260 0.01930 0.03000
|
||||
179 288 196 0.00210 0.01860 0.03000
|
||||
180 288 2 0.00020 0.01010 0.00000
|
||||
181 183 99 0.00430 0.02930 0.18000
|
||||
182 183 121 0.00390 0.03810 0.25800
|
||||
183 99 184 0.00910 0.06230 0.38500
|
||||
184 184 295 0.01250 0.08900 0.54000
|
||||
185 184 106 0.00560 0.03900 0.95300
|
||||
186 295 296 0.00150 0.01140 0.28400
|
||||
187 295 201 0.00050 0.00340 0.02100
|
||||
188 295 122 0.00070 0.01510 0.12600
|
||||
189 295 262 0.00050 0.00340 0.02100
|
||||
190 185 197 0.05620 0.22480 0.08100
|
||||
191 296 186 0.01200 0.08360 0.12300
|
||||
192 296 187 0.01520 0.11320 0.68400
|
||||
193 296 282 0.04680 0.33690 0.51900
|
||||
194 296 258 0.04300 0.30310 0.46300
|
||||
195 296 102 0.04890 0.34920 0.53800
|
||||
196 296 119 0.00130 0.00890 0.11900
|
||||
197 186 258 0.02910 0.22670 0.34200
|
||||
198 187 281 0.00600 0.05700 0.76700
|
||||
199 281 282 0.00750 0.07730 0.11900
|
||||
200 281 103 0.01270 0.09090 0.13500
|
||||
201 282 258 0.00850 0.05880 0.08700
|
||||
202 282 103 0.02180 0.15110 0.22300
|
||||
203 258 102 0.00730 0.05040 0.07400
|
||||
204 188 261 0.05230 0.15260 0.07400
|
||||
205 188 200 0.13710 0.39190 0.07600
|
||||
206 106 189 0.01370 0.09570 0.14100
|
||||
207 189 110 0.00550 0.02880 0.19000
|
||||
208 107 108 0.17460 0.31610 0.04000
|
||||
209 107 120 0.08040 0.30540 0.04500
|
||||
210 190 110 0.01100 0.05680 0.38800
|
||||
211 191 193 0.00080 0.00980 0.06900
|
||||
212 192 193 0.00290 0.02850 0.19000
|
||||
213 192 109 0.00660 0.04480 0.27700
|
||||
214 111 194 0.00240 0.03260 0.23600
|
||||
215 111 113 0.00180 0.02450 1.66200
|
||||
216 112 194 0.00440 0.05140 3.59700
|
||||
217 113 114 0.00020 0.01230 0.00000
|
||||
218 115 196 0.00180 0.01780 0.02900
|
||||
219 197 259 0.06690 0.48430 0.06300
|
||||
220 197 198 0.05580 0.22100 0.03100
|
||||
221 259 198 0.08070 0.33310 0.04900
|
||||
222 259 260 0.07390 0.30710 0.04300
|
||||
223 259 199 0.17990 0.50170 0.06900
|
||||
224 260 199 0.09040 0.36260 0.04800
|
||||
225 260 200 0.07700 0.30920 0.05400
|
||||
226 199 117 0.02510 0.08290 0.04700
|
||||
227 117 261 0.02220 0.08470 0.05000
|
||||
228 261 200 0.04980 0.18550 0.02900
|
||||
229 261 118 0.00610 0.02900 0.08400
|
||||
230 201 100 0.00040 0.02020 0.00000
|
||||
231 201 123 0.00040 0.00830 0.11500
|
||||
232 121 3 0.00250 0.02450 0.16400
|
||||
233 122 262 0.00070 0.00860 0.11500
|
||||
234 123 262 0.00070 0.00860 0.11500
|
||||
235 262 100 0.00040 0.02020 0.00000
|
||||
236 202 212 0.03300 0.09500 0.00000
|
||||
237 202 131 0.04600 0.06900 0.00000
|
||||
238 203 290 0.00040 0.00220 6.20000
|
||||
239 203 138 0.00000 0.02750 0.00000
|
||||
240 124 125 0.00300 0.04800 0.00000
|
||||
241 125 218 0.00200 0.00900 0.00000
|
||||
242 204 210 0.04500 0.06300 0.00000
|
||||
243 204 212 0.04800 0.12700 0.00000
|
||||
244 205 284 0.00310 0.02860 0.50000
|
||||
245 205 25 0.00240 0.03550 0.36000
|
||||
246 206 284 0.00310 0.02860 0.50000
|
||||
247 263 207 0.01400 0.04000 0.00400
|
||||
248 263 283 0.03000 0.08100 0.01000
|
||||
249 207 289 0.01000 0.06000 0.00900
|
||||
250 207 298 0.01500 0.04000 0.00600
|
||||
251 289 128 0.33200 0.68800 0.00000
|
||||
252 289 129 0.00900 0.04600 0.02500
|
||||
253 289 283 0.02000 0.07300 0.00800
|
||||
254 289 298 0.03400 0.10900 0.03200
|
||||
255 126 208 0.07600 0.13500 0.00900
|
||||
256 126 283 0.04000 0.10200 0.00500
|
||||
257 208 283 0.08100 0.12800 0.01400
|
||||
258 127 209 0.12400 0.18300 0.00000
|
||||
259 129 298 0.01000 0.05900 0.00800
|
||||
260 209 210 0.04600 0.06800 0.00000
|
||||
261 210 211 0.30200 0.44600 0.00000
|
||||
262 211 130 0.07300 0.09300 0.00000
|
||||
263 211 212 0.24000 0.42100 0.00000
|
||||
264 213 215 0.01390 0.07780 0.08600
|
||||
265 214 215 0.00170 0.01850 0.02000
|
||||
266 214 222 0.00150 0.01080 0.00200
|
||||
267 215 132 0.00450 0.02490 0.02600
|
||||
268 132 264 0.00400 0.04970 0.01800
|
||||
269 264 216 0.00000 0.04560 0.00000
|
||||
270 264 284 0.00050 0.01770 0.02000
|
||||
271 264 265 0.00270 0.03950 0.83200
|
||||
272 284 285 0.00030 0.00180 5.20000
|
||||
273 265 216 0.00370 0.04840 0.43000
|
||||
274 265 133 0.00100 0.02950 0.50300
|
||||
275 265 221 0.00160 0.00460 0.40200
|
||||
276 133 134 0.00030 0.00130 1.00000
|
||||
277 217 218 0.01000 0.06400 0.48000
|
||||
278 217 135 0.00190 0.00810 0.86000
|
||||
279 218 124 0.00100 0.06100 0.00000
|
||||
280 135 290 0.00050 0.02120 0.00000
|
||||
281 219 220 0.00190 0.00870 1.28000
|
||||
282 219 290 0.00260 0.09170 0.00000
|
||||
283 219 266 0.00130 0.02880 0.81000
|
||||
284 220 203 0.00000 0.06260 0.00000
|
||||
285 290 136 0.00020 0.00690 1.36400
|
||||
286 290 285 0.00010 0.00060 3.57000
|
||||
287 136 8 0.00170 0.04850 0.00000
|
||||
288 266 137 0.00020 0.02590 0.14400
|
||||
289 266 285 0.00060 0.02720 0.00000
|
||||
290 137 221 0.00020 0.00060 0.80000
|
||||
291 138 13 0.00030 0.00430 0.00900
|
||||
292 222 267 0.00820 0.08510 0.00000
|
||||
293 222 268 0.01120 0.07230 0.00000
|
||||
294 139 140 0.01270 0.03550 0.00000
|
||||
295 139 267 0.03260 0.18040 0.00000
|
||||
296 140 223 0.01950 0.05510 0.00000
|
||||
297 267 223 0.01570 0.07320 0.00000
|
||||
298 267 268 0.03600 0.21190 0.00000
|
||||
299 223 268 0.02680 0.12850 0.00000
|
||||
300 268 224 0.04280 0.12150 0.00000
|
||||
301 224 141 0.03510 0.10040 0.00000
|
||||
302 141 12 0.06160 0.18570 0.00000
|
||||
0
|
||||
97 3.250
|
||||
255 0.550
|
||||
107 0.345
|
||||
194 -2.120
|
||||
114 -1.030
|
||||
259 0.530
|
||||
200 0.450
|
||||
203 -1.500
|
||||
290 -3.000
|
||||
221 -1.500
|
||||
138 -1.400
|
||||
224 0.456
|
||||
300 0.024
|
||||
54 0.017
|
||||
0
|
||||
1 297 269 0.0001 0.0005 1.0082 0.9043 1.1043
|
||||
2 269 226 0.0244 0.4368 0.9668 0.9391 1.1478
|
||||
3 269 227 0.0362 0.6490 0.9796 0.9391 1.1478
|
||||
4 291 62 0.0158 0.3749 1.0435 0.9391 1.1478
|
||||
5 291 63 0.0158 0.3749 0.9391 0.9391 1.1478
|
||||
6 291 145 0.0160 0.3805 1.0435 0.9391 1.1478
|
||||
7 291 64 0.0000 0.1520 1.0435 0.9391 1.1000
|
||||
8 291 65 0.0000 0.8000 1.0435 0.9391 1.1000
|
||||
9 228 47 0.4436 2.8152 1.0000 0.9391 1.1000
|
||||
10 225 48 0.5075 3.2202 1.0000 0.9391 1.1000
|
||||
11 229 49 0.6669 3.9440 1.0000 0.9391 1.1000
|
||||
12 229 50 0.6113 3.6152 1.0000 0.9391 1.1000
|
||||
13 271 66 0.4412 2.9668 1.0000 0.9391 1.1000
|
||||
14 271 67 0.3079 2.0570 1.0000 0.9391 1.1000
|
||||
15 300 51 0.7363 4.6724 1.0000 0.9391 1.1000
|
||||
16 300 52 0.7698 4.8846 1.0000 0.9391 1.1000
|
||||
17 300 53 0.7573 4.8056 1.0000 0.9391 1.1000
|
||||
18 270 59 0.3661 2.4560 1.0000 0.9391 1.1000
|
||||
19 270 60 1.0593 5.4536 1.0000 0.9391 1.1000
|
||||
20 270 61 0.1567 1.6994 1.0000 0.9000 1.1000
|
||||
21 300 54 0.1301 1.3912 1.0000 0.9391 1.1000
|
||||
22 300 55 0.5448 3.4572 1.0000 0.9391 1.1000
|
||||
23 300 56 0.1543 1.6729 1.0000 0.9391 1.1000
|
||||
24 300 57 0.3849 2.5712 1.0000 0.9391 1.1000
|
||||
25 300 58 0.4412 2.9668 1.0000 0.9391 1.1000
|
||||
26 145 69 0.0000 0.7500 0.9583 0.9391 1.1000
|
||||
27 4 214 0.0025 0.0380 1.0000 0.9391 1.1000
|
||||
28 5 285 0.0014 0.0514 1.0000 0.9391 1.1000
|
||||
29 6 290 0.0009 0.0472 1.0000 0.9391 1.1000
|
||||
30 11 285 0.0005 0.0154 1.0000 0.9391 1.1000
|
||||
31 292 146 0.0000 0.0520 0.9470 0.9000 1.1000
|
||||
32 292 230 0.0000 0.0520 0.9560 0.9000 1.1000
|
||||
33 292 70 0.0000 0.0050 0.9710 0.9000 1.1000
|
||||
34 272 147 0.0000 0.0390 0.9480 0.9000 1.1000
|
||||
35 272 71 0.0000 0.0390 0.9590 0.9000 1.1000
|
||||
36 73 273 0.0000 0.0890 1.0460 0.9000 1.1000
|
||||
37 231 73 0.0000 0.0530 0.9850 0.9000 1.1000
|
||||
38 286 76 0.0194 0.0311 0.9561 0.9000 1.1000
|
||||
39 149 286 0.0010 0.0380 0.9710 0.9000 1.1000
|
||||
40 233 232 0.0000 0.0140 0.9520 0.9000 1.1000
|
||||
41 235 234 0.0000 0.0640 0.9430 0.9000 1.1000
|
||||
42 81 237 0.0000 0.0470 1.0100 0.9000 1.1000
|
||||
43 240 275 0.0000 0.0200 1.0080 0.9000 1.1000
|
||||
44 240 153 0.0000 0.0210 1.0000 0.9000 1.1000
|
||||
45 276 158 0.0000 0.0590 0.9750 0.9000 1.1000
|
||||
46 159 88 0.0000 0.0380 1.0170 0.9000 1.1000
|
||||
47 277 246 0.0000 0.0244 1.0000 0.9000 1.1000
|
||||
48 248 164 0.0000 0.0200 1.0000 0.9000 1.1000
|
||||
49 91 279 0.0000 0.0480 1.0000 0.9000 1.1000
|
||||
50 249 280 0.0000 0.0480 1.0000 0.9000 1.1000
|
||||
51 163 169 0.0000 0.0460 1.0150 0.9000 1.1000
|
||||
52 175 130 0.0000 0.1490 0.9670 0.9000 1.1000
|
||||
53 96 178 0.0052 0.0174 1.0100 0.9000 1.1000
|
||||
54 176 95 0.0000 0.0280 1.0500 0.9000 1.1000
|
||||
55 256 191 0.0005 0.0195 1.0000 0.9000 1.1000
|
||||
56 299 98 0.0000 0.0180 1.0522 0.9000 1.1000
|
||||
57 299 104 0.0000 0.0140 1.0522 0.9000 1.1000
|
||||
58 182 116 0.0010 0.0402 1.0500 0.9000 1.1000
|
||||
59 186 198 0.0024 0.0603 0.9750 0.9000 1.1000
|
||||
60 187 260 0.0024 0.0498 1.0000 0.9000 1.1000
|
||||
61 281 101 0.0000 0.0833 1.0350 0.9000 1.1000
|
||||
62 281 188 0.0013 0.0371 0.9565 0.9000 1.1000
|
||||
63 282 118 0.0005 0.0182 1.0000 0.9000 1.1000
|
||||
64 105 116 0.0010 0.0392 1.0500 0.9000 1.1000
|
||||
65 189 120 0.0027 0.0639 1.0730 0.9000 1.1000
|
||||
66 190 108 0.0008 0.0256 1.0500 0.9000 1.1000
|
||||
67 193 97 0.0000 0.0160 1.0506 0.9000 1.1000
|
||||
68 109 178 0.0012 0.0396 0.9750 0.9000 1.1000
|
||||
69 112 295 0.0013 0.0384 0.9800 0.9000 1.1000
|
||||
70 194 190 0.0009 0.0231 0.9560 0.9000 1.1000
|
||||
71 119 185 0.0003 0.0131 1.0500 0.9000 1.1000
|
||||
72 202 283 0.0000 0.2520 1.0300 0.9000 1.1000
|
||||
73 204 263 0.0000 0.2370 1.0300 0.9000 1.1000
|
||||
74 206 213 0.0008 0.0366 0.9850 0.9000 1.1000
|
||||
75 208 224 0.0000 0.2200 1.0000 0.9000 1.1000
|
||||
76 127 160 0.0000 0.0980 1.0300 0.9000 1.1000
|
||||
77 128 298 0.0000 0.1280 1.0100 0.9000 1.1000
|
||||
78 209 143 0.0200 0.2040 1.0500 0.9000 1.1000
|
||||
79 131 289 0.0260 0.2110 1.0300 0.9000 1.1000
|
||||
80 298 213 0.0030 0.0122 1.0000 0.9000 1.1000
|
||||
81 216 284 0.0030 0.0122 0.9700 0.9000 1.1000
|
||||
82 134 217 0.0012 0.0195 1.0000 0.9000 1.1000
|
||||
83 220 7 0.0010 0.0332 1.0200 0.9000 1.1000
|
||||
84 266 9 0.0005 0.0160 1.0700 0.9000 1.1000
|
||||
85 221 10 0.0005 0.0160 1.0200 0.9000 1.1000
|
||||
86 263 143 0.0001 0.0200 1.0000 0.9000 1.1000
|
||||
87 254 26 0.0010 0.0230 1.0223 0.9000 1.1000
|
||||
88 255 27 0.0000 0.0230 0.9284 0.9000 1.1000
|
||||
89 29 230 0.0010 0.0146 1.0000 0.9000 1.1000
|
||||
90 30 292 0.0000 0.0105 1.0000 0.9000 1.1000
|
||||
91 41 158 0.0000 0.0238 1.0000 0.9000 1.1000
|
||||
92 42 276 0.0000 0.0321 0.9500 0.9000 1.1000
|
||||
93 46 114 0.0000 0.0154 1.0000 0.9000 1.1000
|
||||
94 35 235 0.0000 0.0289 1.0000 0.9000 1.1000
|
||||
95 28 146 0.0000 0.0195 1.0000 0.9000 1.1000
|
||||
96 44 299 0.0000 0.0193 1.0000 0.9000 1.1000
|
||||
97 31 273 0.0000 0.0192 1.0000 0.9000 1.1000
|
||||
98 34 234 0.0000 0.0230 1.0000 0.9000 1.1000
|
||||
99 38 241 0.0000 0.0124 1.0000 0.9000 1.1000
|
||||
100 45 185 0.0000 0.0167 1.0000 0.9000 1.1000
|
||||
101 32 231 0.0000 0.0312 1.0000 0.9000 1.1000
|
||||
102 33 76 0.0000 0.0165 0.9420 0.9000 1.1000
|
||||
103 36 82 0.0000 0.0316 0.9650 0.9000 1.1000
|
||||
104 40 243 0.0000 0.0535 0.9500 0.9000 1.1000
|
||||
105 37 275 0.0000 0.1818 0.9420 0.9000 1.1000
|
||||
106 39 242 0.0000 0.1961 0.9420 0.9000 1.1000
|
||||
107 43 244 0.0000 0.0690 0.9565 0.9000 1.1000
|
||||
0
|
||||
146 0.00 0.00 90.00 49.00
|
||||
230 0.00 0.00 56.00 15.00
|
||||
292 0.00 0.00 20.00 0.00
|
||||
70 0.00 0.00 0.00 0.00
|
||||
147 0.00 0.00 353.00 130.00
|
||||
71 0.00 0.00 120.00 41.00
|
||||
272 0.00 0.00 0.00 0.00
|
||||
148 -5.00 0.00 58.00 14.00
|
||||
72 0.00 0.00 96.00 43.00
|
||||
73 -5.00 0.00 148.00 33.00
|
||||
273 0.00 0.00 83.00 21.00
|
||||
231 0.00 0.00 0.00 0.00
|
||||
74 0.00 0.00 58.00 10.00
|
||||
75 0.00 0.00 160.00 60.00
|
||||
286 0.00 0.00 126.70 23.00
|
||||
149 0.00 0.00 0.00 0.00
|
||||
76 0.00 0.00 561.00 220.00
|
||||
150 0.00 0.00 0.00 0.00
|
||||
232 -10.00 0.00 595.00 120.00
|
||||
233 0.00 0.00 77.00 1.00
|
||||
77 0.00 0.00 81.00 23.00
|
||||
234 0.00 0.00 21.00 7.00
|
||||
235 0.00 0.00 0.00 0.00
|
||||
78 0.00 0.00 45.00 12.00
|
||||
151 0.00 0.00 28.00 9.00
|
||||
79 0.00 0.00 69.00 13.00
|
||||
236 0.00 0.00 55.00 6.00
|
||||
80 0.00 0.00 0.00 0.00
|
||||
237 0.00 0.00 0.00 0.00
|
||||
81 0.00 0.00 0.00 0.00
|
||||
297 0.00 0.00 85.00 32.00
|
||||
238 0.00 0.00 155.00 18.00
|
||||
82 0.00 0.00 0.00 0.00
|
||||
152 0.00 0.00 46.00 -21.00
|
||||
287 0.00 0.00 86.00 0.00
|
||||
274 0.00 0.00 0.00 0.00
|
||||
239 0.00 0.00 39.00 9.00
|
||||
275 0.00 0.00 195.00 29.00
|
||||
240 0.00 0.00 0.00 0.00
|
||||
153 0.00 0.00 0.00 0.00
|
||||
154 0.00 0.00 58.00 11.80
|
||||
155 0.00 0.00 41.00 19.00
|
||||
241 0.00 0.00 92.00 26.00
|
||||
156 0.00 0.00 -5.00 5.00
|
||||
83 0.00 0.00 61.00 28.00
|
||||
84 0.00 0.00 69.00 3.00
|
||||
157 0.00 0.00 10.00 1.00
|
||||
242 0.00 0.00 22.00 10.00
|
||||
243 0.00 0.00 98.00 20.00
|
||||
85 0.00 0.00 14.00 1.00
|
||||
86 0.00 0.00 218.00 106.00
|
||||
87 0.00 0.00 0.00 0.00
|
||||
158 0.00 0.00 227.00 110.00
|
||||
276 0.00 0.00 0.00 0.00
|
||||
159 0.00 0.00 70.00 30.00
|
||||
88 0.00 0.00 0.00 0.00
|
||||
160 0.00 0.00 0.00 0.00
|
||||
89 0.00 0.00 56.00 20.00
|
||||
244 0.00 0.00 116.00 38.00
|
||||
245 0.00 0.00 57.00 19.00
|
||||
277 0.00 0.00 224.00 71.00
|
||||
246 0.00 0.00 0.00 0.00
|
||||
161 0.00 0.00 208.00 107.00
|
||||
293 0.00 0.00 74.00 28.00
|
||||
162 0.00 0.00 0.00 0.00
|
||||
247 0.00 0.00 48.00 14.00
|
||||
90 0.00 0.00 28.00 7.00
|
||||
248 0.00 0.00 0.00 0.00
|
||||
1 375.00 0.00 37.00 13.00
|
||||
91 0.00 0.00 0.00 0.00
|
||||
249 0.00 0.00 0.00 0.00
|
||||
163 0.00 0.00 0.00 0.00
|
||||
164 0.00 0.00 0.00 0.00
|
||||
165 0.00 0.00 44.20 0.00
|
||||
166 0.00 0.00 66.00 0.00
|
||||
167 155.00 0.00 17.40 0.00
|
||||
168 290.00 0.00 15.80 0.00
|
||||
169 0.00 0.00 60.30 0.00
|
||||
278 0.00 0.00 39.90 0.00
|
||||
92 68.00 0.00 66.70 0.00
|
||||
279 0.00 0.00 83.50 0.00
|
||||
170 0.00 0.00 0.00 0.00
|
||||
280 0.00 0.00 77.80 0.00
|
||||
171 0.00 0.00 32.00 0.00
|
||||
172 0.00 0.00 8.60 0.00
|
||||
250 0.00 0.00 49.60 0.00
|
||||
173 0.00 0.00 4.60 0.00
|
||||
174 117.00 0.00 112.10 0.00
|
||||
251 0.00 0.00 30.70 0.00
|
||||
252 0.00 0.00 63.00 0.00
|
||||
93 0.00 0.00 19.60 0.00
|
||||
94 0.00 0.00 26.20 0.00
|
||||
175 0.00 0.00 18.20 0.00
|
||||
95 0.00 0.00 0.00 0.00
|
||||
96 0.00 0.00 0.00 0.00
|
||||
97 0.00 0.00 0.00 0.00
|
||||
253 0.00 0.00 14.10 650.00
|
||||
254 1930.00 0.00 0.00 0.00
|
||||
255 0.00 0.00 777.00 215.00
|
||||
176 0.00 0.00 535.00 55.00
|
||||
256 0.00 0.00 229.10 11.80
|
||||
177 0.00 0.00 78.00 1.40
|
||||
178 240.00 0.00 276.40 59.30
|
||||
179 0.00 0.00 514.80 82.70
|
||||
294 0.00 0.00 57.90 5.10
|
||||
257 0.00 0.00 380.80 37.00
|
||||
180 0.00 0.00 0.00 0.00
|
||||
181 0.00 0.00 0.00 0.00
|
||||
299 0.00 0.00 0.00 0.00
|
||||
98 0.00 0.00 0.00 0.00
|
||||
182 0.00 0.00 0.00 0.00
|
||||
288 0.00 0.00 0.00 0.00
|
||||
183 0.00 0.00 0.00 0.00
|
||||
99 0.00 0.00 169.20 41.60
|
||||
184 0.00 0.00 55.20 18.20
|
||||
295 0.00 0.00 273.60 99.80
|
||||
100 -192.50 0.00 826.70 135.20
|
||||
185 0.00 0.00 595.00 83.30
|
||||
296 0.00 0.00 387.70 114.70
|
||||
186 281.00 0.00 145.00 58.00
|
||||
187 0.00 0.00 56.50 24.50
|
||||
281 696.00 0.00 89.50 35.50
|
||||
101 0.00 0.00 0.00 0.00
|
||||
282 0.00 0.00 24.00 14.00
|
||||
258 84.00 0.00 0.00 0.00
|
||||
102 217.00 0.00 0.00 0.00
|
||||
188 0.00 0.00 63.00 25.00
|
||||
103 103.00 0.00 0.00 0.00
|
||||
104 0.00 0.00 0.00 0.00
|
||||
105 0.00 0.00 0.00 0.00
|
||||
106 372.00 0.00 17.00 9.00
|
||||
189 216.00 0.00 0.00 0.00
|
||||
107 0.00 0.00 70.00 5.00
|
||||
190 0.00 0.00 200.00 50.00
|
||||
108 0.00 0.00 75.00 50.00
|
||||
191 0.00 0.00 123.50 -24.30
|
||||
192 0.00 0.00 0.00 0.00
|
||||
193 0.00 0.00 33.00 16.50
|
||||
109 0.00 0.00 0.00 0.00
|
||||
110 0.00 0.00 35.00 15.00
|
||||
111 0.00 0.00 85.00 24.00
|
||||
112 0.00 0.00 0.00 0.40
|
||||
194 0.00 0.00 0.00 0.00
|
||||
113 0.00 0.00 0.00 0.00
|
||||
114 0.00 0.00 0.00 0.00
|
||||
115 0.00 0.00 299.90 95.70
|
||||
195 0.00 0.00 0.00 0.00
|
||||
196 0.00 0.00 0.00 0.00
|
||||
116 205.00 0.00 481.80 205.00
|
||||
2 0.00 0.00 763.60 291.10
|
||||
197 0.00 0.00 26.50 0.00
|
||||
259 0.00 0.00 163.50 43.00
|
||||
198 0.00 0.00 0.00 0.00
|
||||
260 0.00 0.00 176.00 83.00
|
||||
199 228.00 0.00 5.00 4.00
|
||||
117 84.00 0.00 28.00 12.00
|
||||
261 0.00 0.00 427.40 173.60
|
||||
200 0.00 0.00 74.00 29.00
|
||||
118 0.00 0.00 69.50 49.30
|
||||
201 0.00 0.00 73.40 0.00
|
||||
119 0.00 0.00 240.70 89.00
|
||||
120 0.00 0.00 40.00 4.00
|
||||
121 0.00 0.00 136.80 16.60
|
||||
3 200.00 0.00 0.00 0.00
|
||||
122 1200.00 0.00 59.80 24.30
|
||||
123 1200.00 0.00 59.80 24.30
|
||||
262 0.00 0.00 182.60 43.60
|
||||
202 0.00 0.00 7.00 2.00
|
||||
203 475.00 0.00 0.00 0.00
|
||||
124 1973.00 0.00 489.00 53.00
|
||||
125 0.00 0.00 800.00 72.00
|
||||
204 0.00 0.00 0.00 0.00
|
||||
205 0.00 0.00 0.00 0.00
|
||||
206 0.00 0.00 0.00 0.00
|
||||
263 0.00 0.00 10.00 3.00
|
||||
207 0.00 0.00 43.00 14.00
|
||||
289 424.00 0.00 64.00 21.00
|
||||
126 0.00 0.00 35.00 12.00
|
||||
208 0.00 0.00 27.00 12.00
|
||||
127 0.00 0.00 41.00 14.00
|
||||
128 0.00 0.00 38.00 13.00
|
||||
129 0.00 0.00 42.00 14.00
|
||||
209 0.00 0.00 72.00 24.00
|
||||
210 0.00 0.00 0.00 -5.00
|
||||
211 0.00 0.00 12.00 2.00
|
||||
130 0.00 0.00 -21.00 -14.20
|
||||
212 0.00 0.00 7.00 2.00
|
||||
131 0.00 0.00 38.00 13.00
|
||||
283 0.00 0.00 0.00 0.00
|
||||
298 0.00 0.00 96.00 7.00
|
||||
213 0.00 0.00 0.00 0.00
|
||||
4 272.00 0.00 0.00 0.00
|
||||
214 0.00 0.00 22.00 16.00
|
||||
215 0.00 0.00 47.00 26.00
|
||||
132 0.00 0.00 176.00 105.00
|
||||
264 0.00 0.00 100.00 75.00
|
||||
216 0.00 0.00 131.00 96.00
|
||||
284 0.00 0.00 0.00 0.00
|
||||
265 100.00 0.00 285.00 100.00
|
||||
133 450.00 0.00 171.00 70.00
|
||||
5 250.00 0.00 328.00 188.00
|
||||
134 0.00 0.00 428.00 232.00
|
||||
217 0.00 0.00 173.00 99.00
|
||||
218 0.00 0.00 410.00 40.00
|
||||
135 0.00 0.00 0.00 0.00
|
||||
6 303.00 0.00 538.00 369.00
|
||||
219 0.00 0.00 223.00 148.00
|
||||
220 0.00 0.00 96.00 46.00
|
||||
7 345.00 0.00 0.00 0.00
|
||||
290 0.00 0.00 159.00 107.00
|
||||
136 0.00 0.00 448.00 143.00
|
||||
8 300.00 0.00 404.00 212.00
|
||||
266 0.00 0.00 572.00 244.00
|
||||
137 0.00 0.00 269.00 157.00
|
||||
9 600.00 0.00 0.00 0.00
|
||||
285 0.00 0.00 0.00 0.00
|
||||
221 250.00 0.00 255.00 149.00
|
||||
10 550.00 0.00 0.00 0.00
|
||||
138 0.00 0.00 0.00 0.00
|
||||
11 575.43 0.00 0.00 0.00
|
||||
222 170.00 0.00 0.00 0.00
|
||||
139 84.00 0.00 8.00 3.00
|
||||
140 0.00 0.00 0.00 0.00
|
||||
267 0.00 0.00 61.00 30.00
|
||||
223 0.00 0.00 77.00 33.00
|
||||
268 0.00 0.00 61.00 30.00
|
||||
224 0.00 0.00 29.00 14.00
|
||||
141 0.00 0.00 29.00 14.00
|
||||
12 0.00 0.00 -23.00 -17.00
|
||||
13 0.00 0.00 -33.10 -29.40
|
||||
14 0.00 0.00 115.80 -24.00
|
||||
15 0.00 0.00 2.40 -12.60
|
||||
16 0.00 0.00 2.40 -3.90
|
||||
17 0.00 0.00 -14.90 26.50
|
||||
18 0.00 0.00 24.70 -1.20
|
||||
19 0.00 0.00 145.30 -34.90
|
||||
20 0.00 0.00 28.10 -20.50
|
||||
21 0.00 0.00 14.00 2.50
|
||||
22 0.00 0.00 -11.10 -1.40
|
||||
23 0.00 0.00 50.50 17.40
|
||||
24 0.00 0.00 29.60 0.60
|
||||
25 0.00 0.00 -113.70 76.70
|
||||
26 0.00 0.00 100.31 29.17
|
||||
27 0.00 0.00 -100.00 34.17
|
||||
142 0.00 0.00 0.00 0.00
|
||||
143 0.00 0.00 0.00 0.00
|
||||
28 467.00 0.00 0.00 0.00
|
||||
29 623.00 0.00 0.00 0.00
|
||||
30 1210.00 0.00 0.00 0.00
|
||||
31 234.00 0.00 0.00 0.00
|
||||
32 372.00 0.00 0.00 0.00
|
||||
33 330.00 0.00 0.00 0.00
|
||||
34 185.00 0.00 0.00 0.00
|
||||
35 410.00 0.00 0.00 0.00
|
||||
36 500.00 0.00 0.00 0.00
|
||||
37 37.00 0.00 0.00 0.00
|
||||
38 0.00 0.00 0.00 0.00
|
||||
39 45.00 0.00 0.00 0.00
|
||||
40 165.00 0.00 0.00 0.00
|
||||
41 400.00 0.00 0.00 0.00
|
||||
42 400.00 0.00 0.00 0.00
|
||||
43 116.00 0.00 0.00 0.00
|
||||
44 1292.00 0.00 0.00 0.00
|
||||
45 700.00 0.00 0.00 0.00
|
||||
46 553.00 0.00 0.00 0.00
|
||||
269 0.00 0.00 0.00 0.00
|
||||
225 -4.20 0.00 0.00 0.00
|
||||
300 0.00 0.00 2.71 0.94
|
||||
270 0.00 0.00 0.86 0.28
|
||||
291 0.00 0.00 0.00 0.00
|
||||
226 0.00 0.00 0.00 0.00
|
||||
271 0.00 0.00 0.00 0.00
|
||||
227 0.00 0.00 0.00 0.00
|
||||
228 0.00 0.00 4.75 1.56
|
||||
47 0.00 0.00 1.53 0.53
|
||||
229 0.00 0.00 0.00 0.00
|
||||
48 0.00 0.00 1.35 0.47
|
||||
49 0.00 0.00 0.45 0.16
|
||||
50 0.00 0.00 0.45 0.16
|
||||
51 0.00 0.00 1.84 0.64
|
||||
52 0.00 0.00 1.39 0.48
|
||||
53 0.00 0.00 1.89 0.65
|
||||
54 0.00 0.00 1.55 0.54
|
||||
55 0.00 0.00 1.66 0.58
|
||||
56 0.00 0.00 3.03 1.00
|
||||
57 0.00 0.00 1.86 0.64
|
||||
58 0.00 0.00 2.58 0.89
|
||||
59 0.00 0.00 1.01 0.35
|
||||
60 0.00 0.00 0.81 0.28
|
||||
61 0.00 0.00 1.60 0.52
|
||||
144 0.00 0.00 0.00 0.00
|
||||
62 -35.81 0.00 0.00 0.00
|
||||
63 0.00 0.00 30.00 23.00
|
||||
145 -26.48 0.00 0.00 0.00
|
||||
64 50.00 0.00 0.00 0.00
|
||||
65 8.00 0.00 0.00 0.00
|
||||
66 0.00 0.00 1.02 0.35
|
||||
67 0.00 0.00 1.02 0.35
|
||||
68 0.00 0.00 3.80 1.25
|
||||
69 0.00 0.00 1.19 0.41
|
||||
0
|
||||
148 1.0153 -10.00 10.00
|
||||
73 1.0205 -20.00 20.00
|
||||
232 1.0010 -20.00 20.00
|
||||
159 0.9583 -25.00 25.00
|
||||
161 0.9632 12.00 35.00
|
||||
1 1.0250 -240.00 240.00
|
||||
167 1.0520 -11.00 96.00
|
||||
168 1.0520 -153.00 153.00
|
||||
92 1.0000 -30.00 56.00
|
||||
174 0.9900 -24.00 77.00
|
||||
254 1.0435 -500.00 1500.00
|
||||
178 1.0233 -60.00 120.00
|
||||
179 1.0103 -25.00 200.00
|
||||
100 1.0550 -125.00 350.00
|
||||
186 1.0510 -50.00 75.00
|
||||
281 1.0435 -100.00 300.00
|
||||
258 1.0528 -15.00 35.00
|
||||
102 1.0528 -50.00 100.00
|
||||
103 1.0735 -25.00 50.00
|
||||
106 1.0535 -50.00 175.00
|
||||
189 1.0435 -50.00 90.00
|
||||
108 0.9630 -10.00 15.00
|
||||
116 0.9290 -40.00 90.00
|
||||
2 0.9829 -50.00 150.00
|
||||
199 1.0522 -45.00 90.00
|
||||
117 1.0077 -15.00 35.00
|
||||
3 1.0522 -50.00 80.00
|
||||
122 1.0650 -100.00 400.00
|
||||
123 1.0650 -100.00 400.00
|
||||
203 1.0551 -300.00 300.00
|
||||
124 1.0435 -1000.00 1000.00
|
||||
289 1.0150 -260.00 260.00
|
||||
4 1.0100 -150.00 150.00
|
||||
265 1.0080 -60.00 60.00
|
||||
133 1.0000 -320.00 320.00
|
||||
5 1.0500 -300.00 300.00
|
||||
6 1.0000 -300.00 300.00
|
||||
7 1.0400 -250.00 250.00
|
||||
8 1.0000 -500.00 500.00
|
||||
9 1.0165 -300.00 300.00
|
||||
221 1.0100 -200.00 200.00
|
||||
10 1.0000 -400.00 400.00
|
||||
11 1.0500 -600.00 600.00
|
||||
222 0.9930 40.00 100.00
|
||||
139 1.0100 40.00 80.00
|
||||
28 1.0507 -210.00 210.00
|
||||
29 1.0507 -280.00 280.00
|
||||
30 1.0323 -420.00 420.00
|
||||
31 1.0145 -100.00 100.00
|
||||
32 1.0145 -224.00 224.00
|
||||
33 1.0507 0.00 350.00
|
||||
34 1.0507 0.00 120.00
|
||||
35 1.0290 -224.00 224.00
|
||||
36 1.0500 -200.00 200.00
|
||||
37 1.0145 0.00 42.00
|
||||
38 1.0507 -500.00 500.00
|
||||
39 0.9967 0.00 25.00
|
||||
40 1.0212 -90.00 90.00
|
||||
41 1.0145 -150.00 150.00
|
||||
42 1.0017 0.00 150.00
|
||||
43 0.9893 0.00 87.00
|
||||
44 1.0507 -100.00 600.00
|
||||
45 1.0507 -125.00 325.00
|
||||
46 1.0145 -200.00 300.00
|
||||
225 0.9945 -2.00 2.00
|
||||
62 1.0000 -17.35 17.35
|
||||
145 1.0000 -12.80 12.83
|
||||
64 1.0000 -38.00 38.00
|
||||
65 1.0000 -6.00 6.00
|
||||
0
|
||||
5 0.2000 0.2000 0.1375 210.0000 600.0000
|
||||
4 0.3000 0.1750 0.1750 200.0000 580.0000
|
||||
9 0.3000 0.1250 0.1000 200.0000 800.0000
|
||||
11 0.3500 0.2250 0.1283 300.0000 800.0000
|
||||
28 0.2200 0.1430 0.2500 300.0000 600.0000
|
||||
29 0.7500 0.1250 0.2500 300.0000 800.0000
|
||||
30 0.5400 0.1950 0.2520 600.0000 1600.0000
|
||||
31 0.3800 0.2200 0.4390 200.0000 400.0000
|
||||
32 0.3600 0.1250 0.6350 200.0000 500.0000
|
||||
33 0.9000 0.1300 0.0250 200.0000 500.0000
|
||||
34 0.8300 0.2300 0.0730 100.0000 300.0000
|
||||
35 0.4400 0.1430 0.3120 320.0000 600.0000
|
||||
36 0.1200 0.1400 0.6650 400.0000 800.0000
|
||||
38 0.5400 0.1150 0.1020 600.0000 1600.0000
|
||||
40 0.6600 0.1550 0.2650 100.0000 350.0000
|
||||
41 0.8200 0.1600 0.7000 250.0000 600.0000
|
||||
42 0.4400 0.1450 0.1050 250.0000 600.0000
|
||||
43 0.3500 0.1270 0.4500 80.0000 300.0000
|
||||
44 0.5400 0.1250 0.1220 600.0000 1600.0000
|
||||
45 0.3800 0.2000 0.1390 500.0000 900.0000
|
||||
46 0.3600 0.1250 0.2350 400.0000 800.0000
|
||||
0
|
||||
0
|
||||
824
IEEE3001.dat
Normal file
824
IEEE3001.dat
Normal file
@@ -0,0 +1,824 @@
|
||||
300 409 100 28 0.100000000000000 0 0 0
|
||||
1.00000000000000e-05 4 0 0 0 0 0 0
|
||||
1 38 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
1 269 291 0.000800000000000000 0.00348000000000000 0 0 0
|
||||
2 226 271 0.0555800000000000 0.246660000000000 0 0 0
|
||||
3 226 300 0.0555900000000000 0.246660000000000 0 0 0
|
||||
4 227 225 0.0381100000000000 0.216480000000000 0 0 0
|
||||
5 225 228 0.0537000000000000 0.0702600000000000 0 0 0
|
||||
6 228 229 1.10680000000000 0.952780000000000 0 0 0
|
||||
7 271 300 0.0558000000000000 0.246660000000000 0 0 0
|
||||
8 300 144 0.0737800000000000 0.0635200000000000 0 0 0
|
||||
9 144 270 0.0383200000000000 0.0289400000000000 0 0 0
|
||||
10 227 68 0.235520000000000 0.990360000000000 0 0 0
|
||||
11 146 147 0.00100000000000000 0.00600000000000000 0 0 0
|
||||
12 230 71 0.00100000000000000 0.00900000000000000 0 0 0
|
||||
13 230 148 0.00600000000000000 0.0270000000000000 0.0540000000000000 0 0
|
||||
14 292 272 0 0.00300000000000000 0 0 0
|
||||
15 292 150 0.00800000000000000 0.0690000000000000 0.139000000000000 0 0
|
||||
16 292 104 0.00100000000000000 0.00700000000000000 0 0 0
|
||||
17 70 149 0.00200000000000000 0.0190000000000000 1.12700000000000 0 0
|
||||
18 147 72 0.00600000000000000 0.0290000000000000 0.0180000000000000 0 0
|
||||
19 272 231 0.00100000000000000 0.00900000000000000 0.0700000000000000 0 0
|
||||
20 272 98 0.00100000000000000 0.00700000000000000 0.0140000000000000 0 0
|
||||
21 148 273 0.0130000000000000 0.0595000000000000 0.0330000000000000 0 0
|
||||
22 148 75 0.0130000000000000 0.0420000000000000 0.0810000000000000 0 0
|
||||
23 72 273 0.00600000000000000 0.0270000000000000 0.0130000000000000 0 0
|
||||
24 273 74 0.00800000000000000 0.0340000000000000 0.0180000000000000 0 0
|
||||
25 231 233 0.00200000000000000 0.0150000000000000 0.118000000000000 0 0
|
||||
26 74 232 0.00600000000000000 0.0340000000000000 0.0160000000000000 0 0
|
||||
27 75 286 0.0140000000000000 0.0420000000000000 0.0970000000000000 0 0
|
||||
28 286 297 0.0650000000000000 0.248000000000000 0.121000000000000 0 0
|
||||
29 286 165 0.0990000000000000 0.248000000000000 0.0350000000000000 0 0
|
||||
30 286 166 0.0960000000000000 0.363000000000000 0.0480000000000000 0 0
|
||||
31 149 274 0.00200000000000000 0.0220000000000000 1.28000000000000 0 0
|
||||
32 150 233 0.00200000000000000 0.0180000000000000 0.0360000000000000 0 0
|
||||
33 150 163 0.0130000000000000 0.0800000000000000 0.151000000000000 0 0
|
||||
34 232 77 0.0160000000000000 0.0330000000000000 0.0150000000000000 0 0
|
||||
35 232 79 0.0690000000000000 0.186000000000000 0.0980000000000000 0 0
|
||||
36 233 235 0.00400000000000000 0.0340000000000000 0.280000000000000 0 0
|
||||
37 77 234 0.0520000000000000 0.111000000000000 0.0500000000000000 0 0
|
||||
38 234 78 0.0190000000000000 0.0390000000000000 0.0180000000000000 0 0
|
||||
39 235 14 0.00700000000000000 0.0680000000000000 0.134000000000000 0 0
|
||||
40 78 151 0.0360000000000000 0.0710000000000000 0.0340000000000000 0 0
|
||||
41 151 79 0.0450000000000000 0.120000000000000 0.0650000000000000 0 0
|
||||
42 151 15 0.0430000000000000 0.130000000000000 0.0140000000000000 0 0
|
||||
43 236 80 0 0.0630000000000000 0 0 0
|
||||
44 236 238 0.00250000000000000 0.0120000000000000 0.0130000000000000 0 0
|
||||
45 236 152 0.00600000000000000 0.0290000000000000 0.0200000000000000 0 0
|
||||
46 236 287 0.00700000000000000 0.0430000000000000 0.0260000000000000 0 0
|
||||
47 80 274 0.00100000000000000 0.00800000000000000 0.0420000000000000 0 0
|
||||
48 237 245 0.0120000000000000 0.0600000000000000 0.00800000000000000 0 0
|
||||
49 237 161 0.00600000000000000 0.0140000000000000 0.00200000000000000 0 0
|
||||
50 237 293 0.0100000000000000 0.0290000000000000 0.00300000000000000 0 0
|
||||
51 81 164 0.00400000000000000 0.0270000000000000 0.0430000000000000 0 0
|
||||
52 297 238 0.00800000000000000 0.0470000000000000 0.00800000000000000 0 0
|
||||
53 297 152 0.0220000000000000 0.0640000000000000 0.00700000000000000 0 0
|
||||
54 297 287 0.0100000000000000 0.0360000000000000 0.0200000000000000 0 0
|
||||
55 297 241 0.0170000000000000 0.0810000000000000 0.0480000000000000 0 0
|
||||
56 297 165 0.102000000000000 0.254000000000000 0.0330000000000000 0 0
|
||||
57 297 166 0.0470000000000000 0.127000000000000 0.0160000000000000 0 0
|
||||
58 238 287 0.00800000000000000 0.0370000000000000 0.0200000000000000 0 0
|
||||
59 238 239 0.0320000000000000 0.0870000000000000 0.0400000000000000 0 0
|
||||
60 82 274 0.000600000000000000 0.00640000000000000 0.404000000000000 0 0
|
||||
61 152 155 0.0260000000000000 0.154000000000000 0.0220000000000000 0 0
|
||||
62 287 274 0 0.0290000000000000 0 0 0
|
||||
63 287 241 0.0650000000000000 0.191000000000000 0.0200000000000000 0 0
|
||||
64 287 156 0.0310000000000000 0.0890000000000000 0.0360000000000000 0 0
|
||||
65 274 153 0.00200000000000000 0.0140000000000000 0.806000000000000 0 0
|
||||
66 239 275 0.0260000000000000 0.0720000000000000 0.0350000000000000 0 0
|
||||
67 239 155 0.0950000000000000 0.262000000000000 0.0320000000000000 0 0
|
||||
68 239 84 0.0130000000000000 0.0390000000000000 0.0160000000000000 0 0
|
||||
69 275 154 0.0270000000000000 0.0840000000000000 0.0390000000000000 0 0
|
||||
70 275 157 0.0280000000000000 0.0840000000000000 0.0370000000000000 0 0
|
||||
71 240 87 0.00700000000000000 0.0410000000000000 0.312000000000000 0 0
|
||||
72 240 246 0.00900000000000000 0.0540000000000000 0.411000000000000 0 0
|
||||
73 153 248 0.00500000000000000 0.0420000000000000 0.690000000000000 0 0
|
||||
74 154 277 0.0520000000000000 0.145000000000000 0.0730000000000000 0 0
|
||||
75 154 94 0.0430000000000000 0.118000000000000 0.0130000000000000 0 0
|
||||
76 155 173 0.0250000000000000 0.0620000000000000 0.00700000000000000 0 0
|
||||
77 241 156 0.0310000000000000 0.0940000000000000 0.0430000000000000 0 0
|
||||
78 156 83 0.0370000000000000 0.109000000000000 0.0490000000000000 0 0
|
||||
79 83 242 0.0270000000000000 0.0800000000000000 0.0360000000000000 0 0
|
||||
80 84 157 0.0250000000000000 0.0730000000000000 0.0350000000000000 0 0
|
||||
81 157 242 0.0350000000000000 0.103000000000000 0.0470000000000000 0 0
|
||||
82 242 243 0.0650000000000000 0.169000000000000 0.0820000000000000 0 0
|
||||
83 243 85 0.0460000000000000 0.0800000000000000 0.0360000000000000 0 0
|
||||
84 243 159 0.159000000000000 0.537000000000000 0.0710000000000000 0 0
|
||||
85 85 86 0.00900000000000000 0.0260000000000000 0.00500000000000000 0 0
|
||||
86 86 158 0.00200000000000000 0.0130000000000000 0.0150000000000000 0 0
|
||||
87 87 276 0.00900000000000000 0.0650000000000000 0.485000000000000 0 0
|
||||
88 276 88 0.0160000000000000 0.105000000000000 0.203000000000000 0 0
|
||||
89 276 101 0.00100000000000000 0.00700000000000000 0.0130000000000000 0 0
|
||||
90 159 19 0.0265000000000000 0.172000000000000 0.0260000000000000 0 0
|
||||
91 160 298 0.0510000000000000 0.232000000000000 0.0280000000000000 0 0
|
||||
92 160 247 0.0510000000000000 0.157000000000000 0.0230000000000000 0 0
|
||||
93 89 244 0.0320000000000000 0.100000000000000 0.0620000000000000 0 0
|
||||
94 89 20 0.0200000000000000 0.123400000000000 0.0280000000000000 0 0
|
||||
95 244 245 0.0360000000000000 0.131000000000000 0.0680000000000000 0 0
|
||||
96 244 277 0.0340000000000000 0.0990000000000000 0.0470000000000000 0 0
|
||||
97 245 293 0.0180000000000000 0.0870000000000000 0.0110000000000000 0 0
|
||||
98 245 21 0.0256000000000000 0.193000000000000 0 0 0
|
||||
99 277 161 0.0210000000000000 0.0570000000000000 0.0300000000000000 0 0
|
||||
100 277 247 0.0180000000000000 0.0520000000000000 0.0180000000000000 0 0
|
||||
101 246 164 0.00400000000000000 0.0270000000000000 0.0500000000000000 0 0
|
||||
102 246 23 0.0286000000000000 0.201300000000000 0.379000000000000 0 0
|
||||
103 161 293 0.0160000000000000 0.0430000000000000 0.00400000000000000 0 0
|
||||
104 293 162 0.00100000000000000 0.00600000000000000 0.00700000000000000 0 0
|
||||
105 293 90 0.0140000000000000 0.0700000000000000 0.0380000000000000 0 0
|
||||
106 293 22 0.0891000000000000 0.267600000000000 0.0290000000000000 0 0
|
||||
107 293 24 0.0782000000000000 0.212700000000000 0.0220000000000000 0 0
|
||||
108 162 247 0.00600000000000000 0.0220000000000000 0.0110000000000000 0 0
|
||||
109 162 1 0 0.0360000000000000 0 0 0
|
||||
110 247 298 0.0990000000000000 0.375000000000000 0.0510000000000000 0 0
|
||||
111 90 298 0.0220000000000000 0.107000000000000 0.0580000000000000 0 0
|
||||
112 248 205 0.00350000000000000 0.0330000000000000 0.530000000000000 0 0
|
||||
113 248 206 0.00350000000000000 0.0330000000000000 0.530000000000000 0 0
|
||||
114 91 249 0.00800000000000000 0.0640000000000000 0.128000000000000 0 0
|
||||
115 249 163 0.0120000000000000 0.0930000000000000 0.183000000000000 0 0
|
||||
116 249 17 0.00600000000000000 0.0480000000000000 0.0920000000000000 0 0
|
||||
117 165 167 0.0470000000000000 0.119000000000000 0.0140000000000000 0 0
|
||||
118 166 168 0.0320000000000000 0.174000000000000 0.0240000000000000 0 0
|
||||
119 167 169 0.100000000000000 0.253000000000000 0.0310000000000000 0 0
|
||||
120 167 278 0.0220000000000000 0.0770000000000000 0.0390000000000000 0 0
|
||||
121 168 171 0.0190000000000000 0.144000000000000 0.0170000000000000 0 0
|
||||
122 168 250 0.0170000000000000 0.0920000000000000 0.0120000000000000 0 0
|
||||
123 169 278 0.278000000000000 0.427000000000000 0.0430000000000000 0 0
|
||||
124 278 170 0.0220000000000000 0.0530000000000000 0.00700000000000000 0 0
|
||||
125 278 280 0.0380000000000000 0.0920000000000000 0.0120000000000000 0 0
|
||||
126 278 171 0.0480000000000000 0.122000000000000 0.0150000000000000 0 0
|
||||
127 92 170 0.0240000000000000 0.0640000000000000 0.00700000000000000 0 0
|
||||
128 92 280 0.0340000000000000 0.121000000000000 0.0150000000000000 0 0
|
||||
129 279 173 0.0530000000000000 0.135000000000000 0.0170000000000000 0 0
|
||||
130 279 174 0.00200000000000000 0.00400000000000000 0.00200000000000000 0 0
|
||||
131 279 251 0.0450000000000000 0.354000000000000 0.0440000000000000 0 0
|
||||
132 279 252 0.0500000000000000 0.174000000000000 0.0220000000000000 0 0
|
||||
133 170 280 0.0160000000000000 0.0380000000000000 0.00400000000000000 0 0
|
||||
134 280 172 0.0430000000000000 0.0640000000000000 0.0270000000000000 0 0
|
||||
135 171 250 0.0190000000000000 0.0620000000000000 0.00800000000000000 0 0
|
||||
136 172 174 0.0760000000000000 0.130000000000000 0.0440000000000000 0 0
|
||||
137 172 16 0.0440000000000000 0.124000000000000 0.0150000000000000 0 0
|
||||
138 250 173 0.0120000000000000 0.0880000000000000 0.0110000000000000 0 0
|
||||
139 250 252 0.157000000000000 0.400000000000000 0.0470000000000000 0 0
|
||||
140 174 18 0.0740000000000000 0.208000000000000 0.0260000000000000 0 0
|
||||
141 251 252 0.0700000000000000 0.184000000000000 0.0210000000000000 0 0
|
||||
142 251 94 0.100000000000000 0.274000000000000 0.0310000000000000 0 0
|
||||
143 251 175 0.109000000000000 0.393000000000000 0.0360000000000000 0 0
|
||||
144 252 93 0.142000000000000 0.404000000000000 0.0500000000000000 0 0
|
||||
145 93 175 0.0170000000000000 0.0420000000000000 0.00600000000000000 0 0
|
||||
146 95 256 0.00360000000000000 0.0199000000000000 0.00400000000000000 0 0
|
||||
147 96 255 0.00200000000000000 0.104900000000000 0.00100000000000000 0 0
|
||||
148 97 253 0.000100000000000000 0.00180000000000000 0.0170000000000000 0 0
|
||||
149 253 254 0 0.0271000000000000 0 0 0
|
||||
150 253 142 0 0.616300000000000 0 0 0
|
||||
151 142 255 0 -0.369700000000000 0 0 0
|
||||
152 253 176 0.00220000000000000 0.291500000000000 0 0 0
|
||||
153 254 255 0 0.0339000000000000 0 0 0
|
||||
154 254 176 0 0.0582000000000000 0 0 0
|
||||
155 256 177 0.0808000000000000 0.234400000000000 0.0290000000000000 0 0
|
||||
156 256 179 0.0965000000000000 0.366900000000000 0.0540000000000000 0 0
|
||||
157 177 178 0.0360000000000000 0.107600000000000 0.117000000000000 0 0
|
||||
158 177 179 0.0476000000000000 0.141400000000000 0.149000000000000 0 0
|
||||
159 179 294 0.000600000000000000 0.0197000000000000 0 0 0
|
||||
160 294 257 0.00590000000000000 0.0405000000000000 0.250000000000000 0 0
|
||||
161 294 181 0.0115000000000000 0.110600000000000 0.185000000000000 0 0
|
||||
162 294 182 0.0198000000000000 0.168800000000000 0.321000000000000 0 0
|
||||
163 294 191 0.00500000000000000 0.0500000000000000 0.330000000000000 0 0
|
||||
164 294 192 0.00770000000000000 0.0538000000000000 0.335000000000000 0 0
|
||||
165 294 196 0.0165000000000000 0.115700000000000 0.171000000000000 0 0
|
||||
166 257 180 0.00590000000000000 0.0577000000000000 0.0950000000000000 0 0
|
||||
167 257 183 0.00490000000000000 0.0336000000000000 0.208000000000000 0 0
|
||||
168 257 195 0.00590000000000000 0.0577000000000000 0.0950000000000000 0 0
|
||||
169 180 299 0.00780000000000000 0.0773000000000000 0.126000000000000 0 0
|
||||
170 180 288 0.00260000000000000 0.0193000000000000 0.0300000000000000 0 0
|
||||
171 181 299 0.00760000000000000 0.0752000000000000 0.122000000000000 0 0
|
||||
172 181 288 0.00210000000000000 0.0186000000000000 0.0300000000000000 0 0
|
||||
173 299 182 0.00160000000000000 0.0164000000000000 0.0260000000000000 0 0
|
||||
174 299 105 0.00170000000000000 0.0165000000000000 0.0260000000000000 0 0
|
||||
175 299 115 0.00790000000000000 0.0793000000000000 0.127000000000000 0 0
|
||||
176 299 195 0.00780000000000000 0.0784000000000000 0.125000000000000 0 0
|
||||
177 288 295 0.00170000000000000 0.0117000000000000 0.289000000000000 0 0
|
||||
178 288 195 0.00260000000000000 0.0193000000000000 0.0300000000000000 0 0
|
||||
179 288 196 0.00210000000000000 0.0186000000000000 0.0300000000000000 0 0
|
||||
180 288 2 0.000200000000000000 0.0101000000000000 0 0 0
|
||||
181 183 99 0.00430000000000000 0.0293000000000000 0.180000000000000 0 0
|
||||
182 183 121 0.00390000000000000 0.0381000000000000 0.258000000000000 0 0
|
||||
183 99 184 0.00910000000000000 0.0623000000000000 0.385000000000000 0 0
|
||||
184 184 295 0.0125000000000000 0.0890000000000000 0.540000000000000 0 0
|
||||
185 184 106 0.00560000000000000 0.0390000000000000 0.953000000000000 0 0
|
||||
186 295 296 0.00150000000000000 0.0114000000000000 0.284000000000000 0 0
|
||||
187 295 201 0.000500000000000000 0.00340000000000000 0.0210000000000000 0 0
|
||||
188 295 122 0.000700000000000000 0.0151000000000000 0.126000000000000 0 0
|
||||
189 295 262 0.000500000000000000 0.00340000000000000 0.0210000000000000 0 0
|
||||
190 185 197 0.0562000000000000 0.224800000000000 0.0810000000000000 0 0
|
||||
191 296 186 0.0120000000000000 0.0836000000000000 0.123000000000000 0 0
|
||||
192 296 187 0.0152000000000000 0.113200000000000 0.684000000000000 0 0
|
||||
193 296 282 0.0468000000000000 0.336900000000000 0.519000000000000 0 0
|
||||
194 296 258 0.0430000000000000 0.303100000000000 0.463000000000000 0 0
|
||||
195 296 102 0.0489000000000000 0.349200000000000 0.538000000000000 0 0
|
||||
196 296 119 0.00130000000000000 0.00890000000000000 0.119000000000000 0 0
|
||||
197 186 258 0.0291000000000000 0.226700000000000 0.342000000000000 0 0
|
||||
198 187 281 0.00600000000000000 0.0570000000000000 0.767000000000000 0 0
|
||||
199 281 282 0.00750000000000000 0.0773000000000000 0.119000000000000 0 0
|
||||
200 281 103 0.0127000000000000 0.0909000000000000 0.135000000000000 0 0
|
||||
201 282 258 0.00850000000000000 0.0588000000000000 0.0870000000000000 0 0
|
||||
202 282 103 0.0218000000000000 0.151100000000000 0.223000000000000 0 0
|
||||
203 258 102 0.00730000000000000 0.0504000000000000 0.0740000000000000 0 0
|
||||
204 188 261 0.0523000000000000 0.152600000000000 0.0740000000000000 0 0
|
||||
205 188 200 0.137100000000000 0.391900000000000 0.0760000000000000 0 0
|
||||
206 106 189 0.0137000000000000 0.0957000000000000 0.141000000000000 0 0
|
||||
207 189 110 0.00550000000000000 0.0288000000000000 0.190000000000000 0 0
|
||||
208 107 108 0.174600000000000 0.316100000000000 0.0400000000000000 0 0
|
||||
209 107 120 0.0804000000000000 0.305400000000000 0.0450000000000000 0 0
|
||||
210 190 110 0.0110000000000000 0.0568000000000000 0.388000000000000 0 0
|
||||
211 191 193 0.000800000000000000 0.00980000000000000 0.0690000000000000 0 0
|
||||
212 192 193 0.00290000000000000 0.0285000000000000 0.190000000000000 0 0
|
||||
213 192 109 0.00660000000000000 0.0448000000000000 0.277000000000000 0 0
|
||||
214 111 194 0.00240000000000000 0.0326000000000000 0.236000000000000 0 0
|
||||
215 111 113 0.00180000000000000 0.0245000000000000 1.66200000000000 0 0
|
||||
216 112 194 0.00440000000000000 0.0514000000000000 3.59700000000000 0 0
|
||||
217 113 114 0.000200000000000000 0.0123000000000000 0 0 0
|
||||
218 115 196 0.00180000000000000 0.0178000000000000 0.0290000000000000 0 0
|
||||
219 197 259 0.0669000000000000 0.484300000000000 0.0630000000000000 0 0
|
||||
220 197 198 0.0558000000000000 0.221000000000000 0.0310000000000000 0 0
|
||||
221 259 198 0.0807000000000000 0.333100000000000 0.0490000000000000 0 0
|
||||
222 259 260 0.0739000000000000 0.307100000000000 0.0430000000000000 0 0
|
||||
223 259 199 0.179900000000000 0.501700000000000 0.0690000000000000 0 0
|
||||
224 260 199 0.0904000000000000 0.362600000000000 0.0480000000000000 0 0
|
||||
225 260 200 0.0770000000000000 0.309200000000000 0.0540000000000000 0 0
|
||||
226 199 117 0.0251000000000000 0.0829000000000000 0.0470000000000000 0 0
|
||||
227 117 261 0.0222000000000000 0.0847000000000000 0.0500000000000000 0 0
|
||||
228 261 200 0.0498000000000000 0.185500000000000 0.0290000000000000 0 0
|
||||
229 261 118 0.00610000000000000 0.0290000000000000 0.0840000000000000 0 0
|
||||
230 201 100 0.000400000000000000 0.0202000000000000 0 0 0
|
||||
231 201 123 0.000400000000000000 0.00830000000000000 0.115000000000000 0 0
|
||||
232 121 3 0.00250000000000000 0.0245000000000000 0.164000000000000 0 0
|
||||
233 122 262 0.000700000000000000 0.00860000000000000 0.115000000000000 0 0
|
||||
234 123 262 0.000700000000000000 0.00860000000000000 0.115000000000000 0 0
|
||||
235 262 100 0.000400000000000000 0.0202000000000000 0 0 0
|
||||
236 202 212 0.0330000000000000 0.0950000000000000 0 0 0
|
||||
237 202 131 0.0460000000000000 0.0690000000000000 0 0 0
|
||||
238 203 290 0.000400000000000000 0.00220000000000000 6.20000000000000 0 0
|
||||
239 203 138 0 0.0275000000000000 0 0 0
|
||||
240 124 125 0.00300000000000000 0.0480000000000000 0 0 0
|
||||
241 125 218 0.00200000000000000 0.00900000000000000 0 0 0
|
||||
242 204 210 0.0450000000000000 0.0630000000000000 0 0 0
|
||||
243 204 212 0.0480000000000000 0.127000000000000 0 0 0
|
||||
244 205 284 0.00310000000000000 0.0286000000000000 0.500000000000000 0 0
|
||||
245 205 25 0.00240000000000000 0.0355000000000000 0.360000000000000 0 0
|
||||
246 206 284 0.00310000000000000 0.0286000000000000 0.500000000000000 0 0
|
||||
247 263 207 0.0140000000000000 0.0400000000000000 0.00400000000000000 0 0
|
||||
248 263 283 0.0300000000000000 0.0810000000000000 0.0100000000000000 0 0
|
||||
249 207 289 0.0100000000000000 0.0600000000000000 0.00900000000000000 0 0
|
||||
250 207 298 0.0150000000000000 0.0400000000000000 0.00600000000000000 0 0
|
||||
251 289 128 0.332000000000000 0.688000000000000 0 0 0
|
||||
252 289 129 0.00900000000000000 0.0460000000000000 0.0250000000000000 0 0
|
||||
253 289 283 0.0200000000000000 0.0730000000000000 0.00800000000000000 0 0
|
||||
254 289 298 0.0340000000000000 0.109000000000000 0.0320000000000000 0 0
|
||||
255 126 208 0.0760000000000000 0.135000000000000 0.00900000000000000 0 0
|
||||
256 126 283 0.0400000000000000 0.102000000000000 0.00500000000000000 0 0
|
||||
257 208 283 0.0810000000000000 0.128000000000000 0.0140000000000000 0 0
|
||||
258 127 209 0.124000000000000 0.183000000000000 0 0 0
|
||||
259 129 298 0.0100000000000000 0.0590000000000000 0.00800000000000000 0 0
|
||||
260 209 210 0.0460000000000000 0.0680000000000000 0 0 0
|
||||
261 210 211 0.302000000000000 0.446000000000000 0 0 0
|
||||
262 211 130 0.0730000000000000 0.0930000000000000 0 0 0
|
||||
263 211 212 0.240000000000000 0.421000000000000 0 0 0
|
||||
264 213 215 0.0139000000000000 0.0778000000000000 0.0860000000000000 0 0
|
||||
265 214 215 0.00170000000000000 0.0185000000000000 0.0200000000000000 0 0
|
||||
266 214 222 0.00150000000000000 0.0108000000000000 0.00200000000000000 0 0
|
||||
267 215 132 0.00450000000000000 0.0249000000000000 0.0260000000000000 0 0
|
||||
268 132 264 0.00400000000000000 0.0497000000000000 0.0180000000000000 0 0
|
||||
269 264 216 0 0.0456000000000000 0 0 0
|
||||
270 264 284 0.000500000000000000 0.0177000000000000 0.0200000000000000 0 0
|
||||
271 264 265 0.00270000000000000 0.0395000000000000 0.832000000000000 0 0
|
||||
272 284 285 0.000300000000000000 0.00180000000000000 5.20000000000000 0 0
|
||||
273 265 216 0.00370000000000000 0.0484000000000000 0.430000000000000 0 0
|
||||
274 265 133 0.00100000000000000 0.0295000000000000 0.503000000000000 0 0
|
||||
275 265 221 0.00160000000000000 0.00460000000000000 0.402000000000000 0 0
|
||||
276 133 134 0.000300000000000000 0.00130000000000000 1 0 0
|
||||
277 217 218 0.0100000000000000 0.0640000000000000 0.480000000000000 0 0
|
||||
278 217 135 0.00190000000000000 0.00810000000000000 0.860000000000000 0 0
|
||||
279 218 124 0.00100000000000000 0.0610000000000000 0 0 0
|
||||
280 135 290 0.000500000000000000 0.0212000000000000 0 0 0
|
||||
281 219 220 0.00190000000000000 0.00870000000000000 1.28000000000000 0 0
|
||||
282 219 290 0.00260000000000000 0.0917000000000000 0 0 0
|
||||
283 219 266 0.00130000000000000 0.0288000000000000 0.810000000000000 0 0
|
||||
284 220 203 0 0.0626000000000000 0 0 0
|
||||
285 290 136 0.000200000000000000 0.00690000000000000 1.36400000000000 0 0
|
||||
286 290 285 0.000100000000000000 0.000600000000000000 3.57000000000000 0 0
|
||||
287 136 8 0.00170000000000000 0.0485000000000000 0 0 0
|
||||
288 266 137 0.000200000000000000 0.0259000000000000 0.144000000000000 0 0
|
||||
289 266 285 0.000600000000000000 0.0272000000000000 0 0 0
|
||||
290 137 221 0.000200000000000000 0.000600000000000000 0.800000000000000 0 0
|
||||
291 138 13 0.000300000000000000 0.00430000000000000 0.00900000000000000 0 0
|
||||
292 222 267 0.00820000000000000 0.0851000000000000 0 0 0
|
||||
293 222 268 0.0112000000000000 0.0723000000000000 0 0 0
|
||||
294 139 140 0.0127000000000000 0.0355000000000000 0 0 0
|
||||
295 139 267 0.0326000000000000 0.180400000000000 0 0 0
|
||||
296 140 223 0.0195000000000000 0.0551000000000000 0 0 0
|
||||
297 267 223 0.0157000000000000 0.0732000000000000 0 0 0
|
||||
298 267 268 0.0360000000000000 0.211900000000000 0 0 0
|
||||
299 223 268 0.0268000000000000 0.128500000000000 0 0 0
|
||||
300 268 224 0.0428000000000000 0.121500000000000 0 0 0
|
||||
301 224 141 0.0351000000000000 0.100400000000000 0 0 0
|
||||
302 141 12 0.0616000000000000 0.185700000000000 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
97 3.25000000000000 0 0 0 0 0 0
|
||||
255 0.550000000000000 0 0 0 0 0 0
|
||||
107 0.345000000000000 0 0 0 0 0 0
|
||||
194 -2.12000000000000 0 0 0 0 0 0
|
||||
114 -1.03000000000000 0 0 0 0 0 0
|
||||
259 0.530000000000000 0 0 0 0 0 0
|
||||
200 0.450000000000000 0 0 0 0 0 0
|
||||
203 -1.50000000000000 0 0 0 0 0 0
|
||||
290 -3 0 0 0 0 0 0
|
||||
221 -1.50000000000000 0 0 0 0 0 0
|
||||
138 -1.40000000000000 0 0 0 0 0 0
|
||||
224 0.456000000000000 0 0 0 0 0 0
|
||||
300 0.0240000000000000 0 0 0 0 0 0
|
||||
54 0.0170000000000000 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
1 297 269 0.000100000000000000 0.000500000000000000 1.00820000000000 0.904300000000000 1.10430000000000
|
||||
2 269 226 0.0244000000000000 0.436800000000000 0.966800000000000 0.939100000000000 1.14780000000000
|
||||
3 269 227 0.0362000000000000 0.649000000000000 0.979600000000000 0.939100000000000 1.14780000000000
|
||||
4 291 62 0.0158000000000000 0.374900000000000 1.04350000000000 0.939100000000000 1.14780000000000
|
||||
5 291 63 0.0158000000000000 0.374900000000000 0.939100000000000 0.939100000000000 1.14780000000000
|
||||
6 291 145 0.0160000000000000 0.380500000000000 1.04350000000000 0.939100000000000 1.14780000000000
|
||||
7 291 64 0 0.152000000000000 1.04350000000000 0.939100000000000 1.10000000000000
|
||||
8 291 65 0 0.800000000000000 1.04350000000000 0.939100000000000 1.10000000000000
|
||||
9 228 47 0.443600000000000 2.81520000000000 1 0.939100000000000 1.10000000000000
|
||||
10 225 48 0.507500000000000 3.22020000000000 1 0.939100000000000 1.10000000000000
|
||||
11 229 49 0.666900000000000 3.94400000000000 1 0.939100000000000 1.10000000000000
|
||||
12 229 50 0.611300000000000 3.61520000000000 1 0.939100000000000 1.10000000000000
|
||||
13 271 66 0.441200000000000 2.96680000000000 1 0.939100000000000 1.10000000000000
|
||||
14 271 67 0.307900000000000 2.05700000000000 1 0.939100000000000 1.10000000000000
|
||||
15 300 51 0.736300000000000 4.67240000000000 1 0.939100000000000 1.10000000000000
|
||||
16 300 52 0.769800000000000 4.88460000000000 1 0.939100000000000 1.10000000000000
|
||||
17 300 53 0.757300000000000 4.80560000000000 1 0.939100000000000 1.10000000000000
|
||||
18 270 59 0.366100000000000 2.45600000000000 1 0.939100000000000 1.10000000000000
|
||||
19 270 60 1.05930000000000 5.45360000000000 1 0.939100000000000 1.10000000000000
|
||||
20 270 61 0.156700000000000 1.69940000000000 1 0.900000000000000 1.10000000000000
|
||||
21 300 54 0.130100000000000 1.39120000000000 1 0.939100000000000 1.10000000000000
|
||||
22 300 55 0.544800000000000 3.45720000000000 1 0.939100000000000 1.10000000000000
|
||||
23 300 56 0.154300000000000 1.67290000000000 1 0.939100000000000 1.10000000000000
|
||||
24 300 57 0.384900000000000 2.57120000000000 1 0.939100000000000 1.10000000000000
|
||||
25 300 58 0.441200000000000 2.96680000000000 1 0.939100000000000 1.10000000000000
|
||||
26 145 69 0 0.750000000000000 0.958300000000000 0.939100000000000 1.10000000000000
|
||||
27 4 214 0.00250000000000000 0.0380000000000000 1 0.939100000000000 1.10000000000000
|
||||
28 5 285 0.00140000000000000 0.0514000000000000 1 0.939100000000000 1.10000000000000
|
||||
29 6 290 0.000900000000000000 0.0472000000000000 1 0.939100000000000 1.10000000000000
|
||||
30 11 285 0.000500000000000000 0.0154000000000000 1 0.939100000000000 1.10000000000000
|
||||
31 292 146 0 0.0520000000000000 0.947000000000000 0.900000000000000 1.10000000000000
|
||||
32 292 230 0 0.0520000000000000 0.956000000000000 0.900000000000000 1.10000000000000
|
||||
33 292 70 0 0.00500000000000000 0.971000000000000 0.900000000000000 1.10000000000000
|
||||
34 272 147 0 0.0390000000000000 0.948000000000000 0.900000000000000 1.10000000000000
|
||||
35 272 71 0 0.0390000000000000 0.959000000000000 0.900000000000000 1.10000000000000
|
||||
36 73 273 0 0.0890000000000000 1.04600000000000 0.900000000000000 1.10000000000000
|
||||
37 231 73 0 0.0530000000000000 0.985000000000000 0.900000000000000 1.10000000000000
|
||||
38 286 76 0.0194000000000000 0.0311000000000000 0.956100000000000 0.900000000000000 1.10000000000000
|
||||
39 149 286 0.00100000000000000 0.0380000000000000 0.971000000000000 0.900000000000000 1.10000000000000
|
||||
40 233 232 0 0.0140000000000000 0.952000000000000 0.900000000000000 1.10000000000000
|
||||
41 235 234 0 0.0640000000000000 0.943000000000000 0.900000000000000 1.10000000000000
|
||||
42 81 237 0 0.0470000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
||||
43 240 275 0 0.0200000000000000 1.00800000000000 0.900000000000000 1.10000000000000
|
||||
44 240 153 0 0.0210000000000000 1 0.900000000000000 1.10000000000000
|
||||
45 276 158 0 0.0590000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
||||
46 159 88 0 0.0380000000000000 1.01700000000000 0.900000000000000 1.10000000000000
|
||||
47 277 246 0 0.0244000000000000 1 0.900000000000000 1.10000000000000
|
||||
48 248 164 0 0.0200000000000000 1 0.900000000000000 1.10000000000000
|
||||
49 91 279 0 0.0480000000000000 1 0.900000000000000 1.10000000000000
|
||||
50 249 280 0 0.0480000000000000 1 0.900000000000000 1.10000000000000
|
||||
51 163 169 0 0.0460000000000000 1.01500000000000 0.900000000000000 1.10000000000000
|
||||
52 175 130 0 0.149000000000000 0.967000000000000 0.900000000000000 1.10000000000000
|
||||
53 96 178 0.00520000000000000 0.0174000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
||||
54 176 95 0 0.0280000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
55 256 191 0.000500000000000000 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
||||
56 299 98 0 0.0180000000000000 1.05220000000000 0.900000000000000 1.10000000000000
|
||||
57 299 104 0 0.0140000000000000 1.05220000000000 0.900000000000000 1.10000000000000
|
||||
58 182 116 0.00100000000000000 0.0402000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
59 186 198 0.00240000000000000 0.0603000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
||||
60 187 260 0.00240000000000000 0.0498000000000000 1 0.900000000000000 1.10000000000000
|
||||
61 281 101 0 0.0833000000000000 1.03500000000000 0.900000000000000 1.10000000000000
|
||||
62 281 188 0.00130000000000000 0.0371000000000000 0.956500000000000 0.900000000000000 1.10000000000000
|
||||
63 282 118 0.000500000000000000 0.0182000000000000 1 0.900000000000000 1.10000000000000
|
||||
64 105 116 0.00100000000000000 0.0392000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
65 189 120 0.00270000000000000 0.0639000000000000 1.07300000000000 0.900000000000000 1.10000000000000
|
||||
66 190 108 0.000800000000000000 0.0256000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
67 193 97 0 0.0160000000000000 1.05060000000000 0.900000000000000 1.10000000000000
|
||||
68 109 178 0.00120000000000000 0.0396000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
||||
69 112 295 0.00130000000000000 0.0384000000000000 0.980000000000000 0.900000000000000 1.10000000000000
|
||||
70 194 190 0.000900000000000000 0.0231000000000000 0.956000000000000 0.900000000000000 1.10000000000000
|
||||
71 119 185 0.000300000000000000 0.0131000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
72 202 283 0 0.252000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
73 204 263 0 0.237000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
74 206 213 0.000800000000000000 0.0366000000000000 0.985000000000000 0.900000000000000 1.10000000000000
|
||||
75 208 224 0 0.220000000000000 1 0.900000000000000 1.10000000000000
|
||||
76 127 160 0 0.0980000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
77 128 298 0 0.128000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
||||
78 209 143 0.0200000000000000 0.204000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
79 131 289 0.0260000000000000 0.211000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
80 298 213 0.00300000000000000 0.0122000000000000 1 0.900000000000000 1.10000000000000
|
||||
81 216 284 0.00300000000000000 0.0122000000000000 0.970000000000000 0.900000000000000 1.10000000000000
|
||||
82 134 217 0.00120000000000000 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
||||
83 220 7 0.00100000000000000 0.0332000000000000 1.02000000000000 0.900000000000000 1.10000000000000
|
||||
84 266 9 0.000500000000000000 0.0160000000000000 1.07000000000000 0.900000000000000 1.10000000000000
|
||||
85 221 10 0.000500000000000000 0.0160000000000000 1.02000000000000 0.900000000000000 1.10000000000000
|
||||
86 263 143 0.000100000000000000 0.0200000000000000 1 0.900000000000000 1.10000000000000
|
||||
87 254 26 0.00100000000000000 0.0230000000000000 1.02230000000000 0.900000000000000 1.10000000000000
|
||||
88 255 27 0 0.0230000000000000 0.928400000000000 0.900000000000000 1.10000000000000
|
||||
89 29 230 0.00100000000000000 0.0146000000000000 1 0.900000000000000 1.10000000000000
|
||||
90 30 292 0 0.0105000000000000 1 0.900000000000000 1.10000000000000
|
||||
91 41 158 0 0.0238000000000000 1 0.900000000000000 1.10000000000000
|
||||
92 42 276 0 0.0321000000000000 0.950000000000000 0.900000000000000 1.10000000000000
|
||||
93 46 114 0 0.0154000000000000 1 0.900000000000000 1.10000000000000
|
||||
94 35 235 0 0.0289000000000000 1 0.900000000000000 1.10000000000000
|
||||
95 28 146 0 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
||||
96 44 299 0 0.0193000000000000 1 0.900000000000000 1.10000000000000
|
||||
97 31 273 0 0.0192000000000000 1 0.900000000000000 1.10000000000000
|
||||
98 34 234 0 0.0230000000000000 1 0.900000000000000 1.10000000000000
|
||||
99 38 241 0 0.0124000000000000 1 0.900000000000000 1.10000000000000
|
||||
100 45 185 0 0.0167000000000000 1 0.900000000000000 1.10000000000000
|
||||
101 32 231 0 0.0312000000000000 1 0.900000000000000 1.10000000000000
|
||||
102 33 76 0 0.0165000000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
||||
103 36 82 0 0.0316000000000000 0.965000000000000 0.900000000000000 1.10000000000000
|
||||
104 40 243 0 0.0535000000000000 0.950000000000000 0.900000000000000 1.10000000000000
|
||||
105 37 275 0 0.181800000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
||||
106 39 242 0 0.196100000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
||||
107 43 244 0 0.0690000000000000 0.956500000000000 0.900000000000000 1.10000000000000
|
||||
0 0 0 0 0 0 0 0
|
||||
1 375 0 37 13 0 0 0
|
||||
2 0 0 763.600000000000 291.100000000000 0 0 0
|
||||
3 200 0 0 0 0 0 0
|
||||
4 272 0 0 0 0 0 0
|
||||
5 250 0 328 188 0 0 0
|
||||
6 303 0 538 369 0 0 0
|
||||
7 345 0 0 0 0 0 0
|
||||
8 300 0 404 212 0 0 0
|
||||
9 600 0 0 0 0 0 0
|
||||
10 550 0 0 0 0 0 0
|
||||
11 575.430000000000 0 0 0 0 0 0
|
||||
12 0 0 -23 -17 0 0 0
|
||||
13 0 0 -33.1000000000000 -29.4000000000000 0 0 0
|
||||
14 0 0 115.800000000000 -24 0 0 0
|
||||
15 0 0 2.40000000000000 -12.6000000000000 0 0 0
|
||||
16 0 0 2.40000000000000 -3.90000000000000 0 0 0
|
||||
17 0 0 -14.9000000000000 26.5000000000000 0 0 0
|
||||
18 0 0 24.7000000000000 -1.20000000000000 0 0 0
|
||||
19 0 0 145.300000000000 -34.9000000000000 0 0 0
|
||||
20 0 0 28.1000000000000 -20.5000000000000 0 0 0
|
||||
21 0 0 14 2.50000000000000 0 0 0
|
||||
22 0 0 -11.1000000000000 -1.40000000000000 0 0 0
|
||||
23 0 0 50.5000000000000 17.4000000000000 0 0 0
|
||||
24 0 0 29.6000000000000 0.600000000000000 0 0 0
|
||||
25 0 0 -113.700000000000 76.7000000000000 0 0 0
|
||||
26 0 0 100.310000000000 29.1700000000000 0 0 0
|
||||
27 0 0 -100 34.1700000000000 0 0 0
|
||||
28 467 0 0 0 0 0 0
|
||||
29 623 0 0 0 0 0 0
|
||||
30 1210 0 0 0 0 0 0
|
||||
31 234 0 0 0 0 0 0
|
||||
32 372 0 0 0 0 0 0
|
||||
33 330 0 0 0 0 0 0
|
||||
34 185 0 0 0 0 0 0
|
||||
35 410 0 0 0 0 0 0
|
||||
36 500 0 0 0 0 0 0
|
||||
37 37 0 0 0 0 0 0
|
||||
38 0 0 0 0 0 0 0
|
||||
39 45 0 0 0 0 0 0
|
||||
40 165 0 0 0 0 0 0
|
||||
41 400 0 0 0 0 0 0
|
||||
42 400 0 0 0 0 0 0
|
||||
43 116 0 0 0 0 0 0
|
||||
44 1292 0 0 0 0 0 0
|
||||
45 700 0 0 0 0 0 0
|
||||
46 553 0 0 0 0 0 0
|
||||
47 0 0 1.53000000000000 0.530000000000000 0 0 0
|
||||
48 0 0 1.35000000000000 0.470000000000000 0 0 0
|
||||
49 0 0 0.450000000000000 0.160000000000000 0 0 0
|
||||
50 0 0 0.450000000000000 0.160000000000000 0 0 0
|
||||
51 0 0 1.84000000000000 0.640000000000000 0 0 0
|
||||
52 0 0 1.39000000000000 0.480000000000000 0 0 0
|
||||
53 0 0 1.89000000000000 0.650000000000000 0 0 0
|
||||
54 0 0 1.55000000000000 0.540000000000000 0 0 0
|
||||
55 0 0 1.66000000000000 0.580000000000000 0 0 0
|
||||
56 0 0 3.03000000000000 1 0 0 0
|
||||
57 0 0 1.86000000000000 0.640000000000000 0 0 0
|
||||
58 0 0 2.58000000000000 0.890000000000000 0 0 0
|
||||
59 0 0 1.01000000000000 0.350000000000000 0 0 0
|
||||
60 0 0 0.810000000000000 0.280000000000000 0 0 0
|
||||
61 0 0 1.60000000000000 0.520000000000000 0 0 0
|
||||
62 -35.8100000000000 0 0 0 0 0 0
|
||||
63 0 0 30 23 0 0 0
|
||||
64 50 0 0 0 0 0 0
|
||||
65 8 0 0 0 0 0 0
|
||||
66 0 0 1.02000000000000 0.350000000000000 0 0 0
|
||||
67 0 0 1.02000000000000 0.350000000000000 0 0 0
|
||||
68 0 0 3.80000000000000 1.25000000000000 0 0 0
|
||||
69 0 0 1.19000000000000 0.410000000000000 0 0 0
|
||||
70 0 0 0 0 0 0 0
|
||||
71 0 0 120 41 0 0 0
|
||||
72 0 0 96 43 0 0 0
|
||||
73 -5 0 148 33 0 0 0
|
||||
74 0 0 58 10 0 0 0
|
||||
75 0 0 160 60 0 0 0
|
||||
76 0 0 561 220 0 0 0
|
||||
77 0 0 81 23 0 0 0
|
||||
78 0 0 45 12 0 0 0
|
||||
79 0 0 69 13 0 0 0
|
||||
80 0 0 0 0 0 0 0
|
||||
81 0 0 0 0 0 0 0
|
||||
82 0 0 0 0 0 0 0
|
||||
83 0 0 61 28 0 0 0
|
||||
84 0 0 69 3 0 0 0
|
||||
85 0 0 14 1 0 0 0
|
||||
86 0 0 218 106 0 0 0
|
||||
87 0 0 0 0 0 0 0
|
||||
88 0 0 0 0 0 0 0
|
||||
89 0 0 56 20 0 0 0
|
||||
90 0 0 28 7 0 0 0
|
||||
91 0 0 0 0 0 0 0
|
||||
92 68 0 66.7000000000000 0 0 0 0
|
||||
93 0 0 19.6000000000000 0 0 0 0
|
||||
94 0 0 26.2000000000000 0 0 0 0
|
||||
95 0 0 0 0 0 0 0
|
||||
96 0 0 0 0 0 0 0
|
||||
97 0 0 0 0 0 0 0
|
||||
98 0 0 0 0 0 0 0
|
||||
99 0 0 169.200000000000 41.6000000000000 0 0 0
|
||||
100 -192.500000000000 0 826.700000000000 135.200000000000 0 0 0
|
||||
101 0 0 0 0 0 0 0
|
||||
102 217 0 0 0 0 0 0
|
||||
103 103 0 0 0 0 0 0
|
||||
104 0 0 0 0 0 0 0
|
||||
105 0 0 0 0 0 0 0
|
||||
106 372 0 17 9 0 0 0
|
||||
107 0 0 70 5 0 0 0
|
||||
108 0 0 75 50 0 0 0
|
||||
109 0 0 0 0 0 0 0
|
||||
110 0 0 35 15 0 0 0
|
||||
111 0 0 85 24 0 0 0
|
||||
112 0 0 0 0.400000000000000 0 0 0
|
||||
113 0 0 0 0 0 0 0
|
||||
114 0 0 0 0 0 0 0
|
||||
115 0 0 299.900000000000 95.7000000000000 0 0 0
|
||||
116 205 0 481.800000000000 205 0 0 0
|
||||
117 84 0 28 12 0 0 0
|
||||
118 0 0 69.5000000000000 49.3000000000000 0 0 0
|
||||
119 0 0 240.700000000000 89 0 0 0
|
||||
120 0 0 40 4 0 0 0
|
||||
121 0 0 136.800000000000 16.6000000000000 0 0 0
|
||||
122 1200 0 59.8000000000000 24.3000000000000 0 0 0
|
||||
123 1200 0 59.8000000000000 24.3000000000000 0 0 0
|
||||
124 1973 0 489 53 0 0 0
|
||||
125 0 0 800 72 0 0 0
|
||||
126 0 0 35 12 0 0 0
|
||||
127 0 0 41 14 0 0 0
|
||||
128 0 0 38 13 0 0 0
|
||||
129 0 0 42 14 0 0 0
|
||||
130 0 0 -21 -14.2000000000000 0 0 0
|
||||
131 0 0 38 13 0 0 0
|
||||
132 0 0 176 105 0 0 0
|
||||
133 450 0 171 70 0 0 0
|
||||
134 0 0 428 232 0 0 0
|
||||
135 0 0 0 0 0 0 0
|
||||
136 0 0 448 143 0 0 0
|
||||
137 0 0 269 157 0 0 0
|
||||
138 0 0 0 0 0 0 0
|
||||
139 84 0 8 3 0 0 0
|
||||
140 0 0 0 0 0 0 0
|
||||
141 0 0 29 14 0 0 0
|
||||
142 0 0 0 0 0 0 0
|
||||
143 0 0 0 0 0 0 0
|
||||
144 0 0 0 0 0 0 0
|
||||
145 -26.4800000000000 0 0 0 0 0 0
|
||||
146 0 0 90 49 0 0 0
|
||||
147 0 0 353 130 0 0 0
|
||||
148 -5 0 58 14 0 0 0
|
||||
149 0 0 0 0 0 0 0
|
||||
150 0 0 0 0 0 0 0
|
||||
151 0 0 28 9 0 0 0
|
||||
152 0 0 46 -21 0 0 0
|
||||
153 0 0 0 0 0 0 0
|
||||
154 0 0 58 11.8000000000000 0 0 0
|
||||
155 0 0 41 19 0 0 0
|
||||
156 0 0 -5 5 0 0 0
|
||||
157 0 0 10 1 0 0 0
|
||||
158 0 0 227 110 0 0 0
|
||||
159 0 0 70 30 0 0 0
|
||||
160 0 0 0 0 0 0 0
|
||||
161 0 0 208 107 0 0 0
|
||||
162 0 0 0 0 0 0 0
|
||||
163 0 0 0 0 0 0 0
|
||||
164 0 0 0 0 0 0 0
|
||||
165 0 0 44.2000000000000 0 0 0 0
|
||||
166 0 0 66 0 0 0 0
|
||||
167 155 0 17.4000000000000 0 0 0 0
|
||||
168 290 0 15.8000000000000 0 0 0 0
|
||||
169 0 0 60.3000000000000 0 0 0 0
|
||||
170 0 0 0 0 0 0 0
|
||||
171 0 0 32 0 0 0 0
|
||||
172 0 0 8.60000000000000 0 0 0 0
|
||||
173 0 0 4.60000000000000 0 0 0 0
|
||||
174 117 0 112.100000000000 0 0 0 0
|
||||
175 0 0 18.2000000000000 0 0 0 0
|
||||
176 0 0 535 55 0 0 0
|
||||
177 0 0 78 1.40000000000000 0 0 0
|
||||
178 240 0 276.400000000000 59.3000000000000 0 0 0
|
||||
179 0 0 514.800000000000 82.7000000000000 0 0 0
|
||||
180 0 0 0 0 0 0 0
|
||||
181 0 0 0 0 0 0 0
|
||||
182 0 0 0 0 0 0 0
|
||||
183 0 0 0 0 0 0 0
|
||||
184 0 0 55.2000000000000 18.2000000000000 0 0 0
|
||||
185 0 0 595 83.3000000000000 0 0 0
|
||||
186 281 0 145 58 0 0 0
|
||||
187 0 0 56.5000000000000 24.5000000000000 0 0 0
|
||||
188 0 0 63 25 0 0 0
|
||||
189 216 0 0 0 0 0 0
|
||||
190 0 0 200 50 0 0 0
|
||||
191 0 0 123.500000000000 -24.3000000000000 0 0 0
|
||||
192 0 0 0 0 0 0 0
|
||||
193 0 0 33 16.5000000000000 0 0 0
|
||||
194 0 0 0 0 0 0 0
|
||||
195 0 0 0 0 0 0 0
|
||||
196 0 0 0 0 0 0 0
|
||||
197 0 0 26.5000000000000 0 0 0 0
|
||||
198 0 0 0 0 0 0 0
|
||||
199 228 0 5 4 0 0 0
|
||||
200 0 0 74 29 0 0 0
|
||||
201 0 0 73.4000000000000 0 0 0 0
|
||||
202 0 0 7 2 0 0 0
|
||||
203 475 0 0 0 0 0 0
|
||||
204 0 0 0 0 0 0 0
|
||||
205 0 0 0 0 0 0 0
|
||||
206 0 0 0 0 0 0 0
|
||||
207 0 0 43 14 0 0 0
|
||||
208 0 0 27 12 0 0 0
|
||||
209 0 0 72 24 0 0 0
|
||||
210 0 0 0 -5 0 0 0
|
||||
211 0 0 12 2 0 0 0
|
||||
212 0 0 7 2 0 0 0
|
||||
213 0 0 0 0 0 0 0
|
||||
214 0 0 22 16 0 0 0
|
||||
215 0 0 47 26 0 0 0
|
||||
216 0 0 131 96 0 0 0
|
||||
217 0 0 173 99 0 0 0
|
||||
218 0 0 410 40 0 0 0
|
||||
219 0 0 223 148 0 0 0
|
||||
220 0 0 96 46 0 0 0
|
||||
221 250 0 255 149 0 0 0
|
||||
222 170 0 0 0 0 0 0
|
||||
223 0 0 77 33 0 0 0
|
||||
224 0 0 29 14 0 0 0
|
||||
225 -4.20000000000000 0 0 0 0 0 0
|
||||
226 0 0 0 0 0 0 0
|
||||
227 0 0 0 0 0 0 0
|
||||
228 0 0 4.75000000000000 1.56000000000000 0 0 0
|
||||
229 0 0 0 0 0 0 0
|
||||
230 0 0 56 15 0 0 0
|
||||
231 0 0 0 0 0 0 0
|
||||
232 -10 0 595 120 0 0 0
|
||||
233 0 0 77 1 0 0 0
|
||||
234 0 0 21 7 0 0 0
|
||||
235 0 0 0 0 0 0 0
|
||||
236 0 0 55 6 0 0 0
|
||||
237 0 0 0 0 0 0 0
|
||||
238 0 0 155 18 0 0 0
|
||||
239 0 0 39 9 0 0 0
|
||||
240 0 0 0 0 0 0 0
|
||||
241 0 0 92 26 0 0 0
|
||||
242 0 0 22 10 0 0 0
|
||||
243 0 0 98 20 0 0 0
|
||||
244 0 0 116 38 0 0 0
|
||||
245 0 0 57 19 0 0 0
|
||||
246 0 0 0 0 0 0 0
|
||||
247 0 0 48 14 0 0 0
|
||||
248 0 0 0 0 0 0 0
|
||||
249 0 0 0 0 0 0 0
|
||||
250 0 0 49.6000000000000 0 0 0 0
|
||||
251 0 0 30.7000000000000 0 0 0 0
|
||||
252 0 0 63 0 0 0 0
|
||||
253 0 0 14.1000000000000 650 0 0 0
|
||||
254 1930 0 0 0 0 0 0
|
||||
255 0 0 777 215 0 0 0
|
||||
256 0 0 229.100000000000 11.8000000000000 0 0 0
|
||||
257 0 0 380.800000000000 37 0 0 0
|
||||
258 84 0 0 0 0 0 0
|
||||
259 0 0 163.500000000000 43 0 0 0
|
||||
260 0 0 176 83 0 0 0
|
||||
261 0 0 427.400000000000 173.600000000000 0 0 0
|
||||
262 0 0 182.600000000000 43.6000000000000 0 0 0
|
||||
263 0 0 10 3 0 0 0
|
||||
264 0 0 100 75 0 0 0
|
||||
265 100 0 285 100 0 0 0
|
||||
266 0 0 572 244 0 0 0
|
||||
267 0 0 61 30 0 0 0
|
||||
268 0 0 61 30 0 0 0
|
||||
269 0 0 0 0 0 0 0
|
||||
270 0 0 0.860000000000000 0.280000000000000 0 0 0
|
||||
271 0 0 0 0 0 0 0
|
||||
272 0 0 0 0 0 0 0
|
||||
273 0 0 83 21 0 0 0
|
||||
274 0 0 0 0 0 0 0
|
||||
275 0 0 195 29 0 0 0
|
||||
276 0 0 0 0 0 0 0
|
||||
277 0 0 224 71 0 0 0
|
||||
278 0 0 39.9000000000000 0 0 0 0
|
||||
279 0 0 83.5000000000000 0 0 0 0
|
||||
280 0 0 77.8000000000000 0 0 0 0
|
||||
281 696 0 89.5000000000000 35.5000000000000 0 0 0
|
||||
282 0 0 24 14 0 0 0
|
||||
283 0 0 0 0 0 0 0
|
||||
284 0 0 0 0 0 0 0
|
||||
285 0 0 0 0 0 0 0
|
||||
286 0 0 126.700000000000 23 0 0 0
|
||||
287 0 0 86 0 0 0 0
|
||||
288 0 0 0 0 0 0 0
|
||||
289 424 0 64 21 0 0 0
|
||||
290 0 0 159 107 0 0 0
|
||||
291 0 0 0 0 0 0 0
|
||||
292 0 0 20 0 0 0 0
|
||||
293 0 0 74 28 0 0 0
|
||||
294 0 0 57.9000000000000 5.10000000000000 0 0 0
|
||||
295 0 0 273.600000000000 99.8000000000000 0 0 0
|
||||
296 0 0 387.700000000000 114.700000000000 0 0 0
|
||||
297 0 0 85 32 0 0 0
|
||||
298 0 0 96 7 0 0 0
|
||||
299 0 0 0 0 0 0 0
|
||||
300 0 0 2.71000000000000 0.940000000000000 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
148 1.01530000000000 -10 10 0 0 0 0
|
||||
73 1.02050000000000 -20 20 0 0 0 0
|
||||
232 1.00100000000000 -20 20 0 0 0 0
|
||||
159 0.958300000000000 -25 25 0 0 0 0
|
||||
161 0.963200000000000 12 35 0 0 0 0
|
||||
1 1.02500000000000 -240 240 0 0 0 0
|
||||
167 1.05200000000000 -11 96 0 0 0 0
|
||||
168 1.05200000000000 -153 153 0 0 0 0
|
||||
92 1 -30 56 0 0 0 0
|
||||
174 0.990000000000000 -24 77 0 0 0 0
|
||||
254 1.04350000000000 -500 1500 0 0 0 0
|
||||
178 1.02330000000000 -60 120 0 0 0 0
|
||||
179 1.01030000000000 -25 200 0 0 0 0
|
||||
100 1.05500000000000 -125 350 0 0 0 0
|
||||
186 1.05100000000000 -50 75 0 0 0 0
|
||||
281 1.04350000000000 -100 300 0 0 0 0
|
||||
258 1.05280000000000 -15 35 0 0 0 0
|
||||
102 1.05280000000000 -50 100 0 0 0 0
|
||||
103 1.07350000000000 -25 50 0 0 0 0
|
||||
106 1.05350000000000 -50 175 0 0 0 0
|
||||
189 1.04350000000000 -50 90 0 0 0 0
|
||||
108 0.963000000000000 -10 15 0 0 0 0
|
||||
116 0.929000000000000 -40 90 0 0 0 0
|
||||
2 0.982900000000000 -50 150 0 0 0 0
|
||||
199 1.05220000000000 -45 90 0 0 0 0
|
||||
117 1.00770000000000 -15 35 0 0 0 0
|
||||
3 1.05220000000000 -50 80 0 0 0 0
|
||||
122 1.06500000000000 -100 400 0 0 0 0
|
||||
123 1.06500000000000 -100 400 0 0 0 0
|
||||
203 1.05510000000000 -300 300 0 0 0 0
|
||||
124 1.04350000000000 -1000 1000 0 0 0 0
|
||||
289 1.01500000000000 -260 260 0 0 0 0
|
||||
4 1.01000000000000 -150 150 0 0 0 0
|
||||
265 1.00800000000000 -60 60 0 0 0 0
|
||||
133 1 -320 320 0 0 0 0
|
||||
5 1.05000000000000 -300 300 0 0 0 0
|
||||
6 1 -300 300 0 0 0 0
|
||||
7 1.04000000000000 -250 250 0 0 0 0
|
||||
8 1 -500 500 0 0 0 0
|
||||
9 1.01650000000000 -300 300 0 0 0 0
|
||||
221 1.01000000000000 -200 200 0 0 0 0
|
||||
10 1 -400 400 0 0 0 0
|
||||
11 1.05000000000000 -600 600 0 0 0 0
|
||||
222 0.993000000000000 40 100 0 0 0 0
|
||||
139 1.01000000000000 40 80 0 0 0 0
|
||||
28 1.05070000000000 -210 210 0 0 0 0
|
||||
29 1.05070000000000 -280 280 0 0 0 0
|
||||
30 1.03230000000000 -420 420 0 0 0 0
|
||||
31 1.01450000000000 -100 100 0 0 0 0
|
||||
32 1.01450000000000 -224 224 0 0 0 0
|
||||
33 1.05070000000000 0 350 0 0 0 0
|
||||
34 1.05070000000000 0 120 0 0 0 0
|
||||
35 1.02900000000000 -224 224 0 0 0 0
|
||||
36 1.05000000000000 -200 200 0 0 0 0
|
||||
37 1.01450000000000 0 42 0 0 0 0
|
||||
38 1.05070000000000 -500 500 0 0 0 0
|
||||
39 0.996700000000000 0 25 0 0 0 0
|
||||
40 1.02120000000000 -90 90 0 0 0 0
|
||||
41 1.01450000000000 -150 150 0 0 0 0
|
||||
42 1.00170000000000 0 150 0 0 0 0
|
||||
43 0.989300000000000 0 87 0 0 0 0
|
||||
44 1.05070000000000 -100 600 0 0 0 0
|
||||
45 1.05070000000000 -125 325 0 0 0 0
|
||||
46 1.01450000000000 -200 300 0 0 0 0
|
||||
225 0.994500000000000 -2 2 0 0 0 0
|
||||
62 1 -17.3500000000000 17.3500000000000 0 0 0 0
|
||||
145 1 -12.8000000000000 12.8300000000000 0 0 0 0
|
||||
64 1 -38 38 0 0 0 0
|
||||
65 1 -6 6 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
5 0.200000000000000 0.200000000000000 0.137500000000000 210 600 0 0
|
||||
4 0.300000000000000 0.175000000000000 0.175000000000000 200 580 0 0
|
||||
9 0.300000000000000 0.125000000000000 0.100000000000000 200 800 0 0
|
||||
11 0.350000000000000 0.225000000000000 0.128300000000000 300 800 0 0
|
||||
28 0.220000000000000 0.143000000000000 0.250000000000000 300 600 0 0
|
||||
29 0.750000000000000 0.125000000000000 0.250000000000000 300 800 0 0
|
||||
30 0.540000000000000 0.195000000000000 0.252000000000000 600 1600 0 0
|
||||
31 0.380000000000000 0.220000000000000 0.439000000000000 200 400 0 0
|
||||
32 0.360000000000000 0.125000000000000 0.635000000000000 200 500 0 0
|
||||
33 0.900000000000000 0.130000000000000 0.0250000000000000 200 500 0 0
|
||||
34 0.830000000000000 0.230000000000000 0.0730000000000000 100 300 0 0
|
||||
35 0.440000000000000 0.143000000000000 0.312000000000000 320 600 0 0
|
||||
36 0.120000000000000 0.140000000000000 0.665000000000000 400 800 0 0
|
||||
38 0.540000000000000 0.115000000000000 0.102000000000000 600 1600 0 0
|
||||
40 0.660000000000000 0.155000000000000 0.265000000000000 100 350 0 0
|
||||
41 0.820000000000000 0.160000000000000 0.700000000000000 250 600 0 0
|
||||
42 0.440000000000000 0.145000000000000 0.105000000000000 250 600 0 0
|
||||
43 0.350000000000000 0.127000000000000 0.450000000000000 80 300 0 0
|
||||
44 0.540000000000000 0.125000000000000 0.122000000000000 600 1600 0 0
|
||||
45 0.380000000000000 0.200000000000000 0.139000000000000 500 900 0 0
|
||||
46 0.360000000000000 0.125000000000000 0.235000000000000 400 800 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
23
IEEE4.dat
Normal file
23
IEEE4.dat
Normal file
@@ -0,0 +1,23 @@
|
||||
4 4 1. 18 .1
|
||||
1.e-5 2
|
||||
1 4
|
||||
0
|
||||
1 1 2 .1 .4 0.01528
|
||||
2 1 4 .12 .5 0.0192
|
||||
3 2 4 .08 .4 0.01413
|
||||
0
|
||||
0
|
||||
1 1 3 .0 .3 0.90909 .9 1.15
|
||||
0
|
||||
1 0. 0. 0.3 0.18
|
||||
2 0. 0. 0.55 0.13
|
||||
3 0.5 0. 0. 0.
|
||||
4 0.36 0.26 0. 0.
|
||||
0
|
||||
3 1.1 -0.1 0.6
|
||||
4 1.05 -0.6 0.6
|
||||
0
|
||||
3 44.4 351. 50. 0.3 1.2
|
||||
4 40.6 389. 50. 0.3 1.2
|
||||
0
|
||||
0
|
||||
13
Initial.m
Normal file
13
Initial.m
Normal file
@@ -0,0 +1,13 @@
|
||||
function [P0,Q0,U,Uangle] = Initial(PG,PD,PQstandard,Pointpoweri,QG,QD,Busnum)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——计算功率不平衡分量等
|
||||
% 编 者:
|
||||
% 编制时间 :2010.12
|
||||
%**************************************************************************
|
||||
%% 计算功率的不平衡分量
|
||||
P0 = sparse(1, Pointpoweri,(PG-PD)/PQstandard); % 求取节点注入有功功率的标幺值
|
||||
Q0 = sparse(1, Pointpoweri,(QG-QD)/PQstandard); % 求取节点注入无功功率的标幺值
|
||||
%% 平启动赋电压初值
|
||||
U = ones(1,Busnum); % 按照平启动给电压幅值赋值
|
||||
Uangle = zeros(1,Busnum); % 按照平启动给电压相角赋值
|
||||
end
|
||||
22
Modification.m
Normal file
22
Modification.m
Normal file
@@ -0,0 +1,22 @@
|
||||
function [Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,Volt,UAngel]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,Volt,UAngel,PVi,ContrlCount,Balance,Busnum,PGi)
|
||||
AlphaP=FormAlphaP(Init_L,deltL,Init_U,deltU);
|
||||
fprintf('AlphaP %f\n',full(AlphaP));
|
||||
AlphaD=FormAlphaD(Init_Z,deltZ,Init_W,deltW);
|
||||
fprintf('AlphaD %f\n',full(AlphaD));
|
||||
|
||||
Init_Z=Init_Z+AlphaD*deltZ';
|
||||
Init_L=Init_L+AlphaP*deltL';
|
||||
Init_W=Init_W+AlphaD*deltW';
|
||||
Init_U=Init_U+AlphaP*deltU';
|
||||
Init_Y=Init_Y+AlphaD*deltY';
|
||||
%PG(PGi)=PG(PGi)+deltX(1:size(PGi,1));
|
||||
PG(PGi)=PG(PGi)+AlphaP*deltX(1:size(PGi,1));
|
||||
%QG(PVi)=QG(PVi)+deltX(size(PGi,1)+1:size(PVi,1)+size(PGi,1) );
|
||||
QG(PVi)=QG(PVi)+AlphaP*deltX(size(PGi,1)+1:size(PVi,1)+size(PGi,1) );
|
||||
t=deltX(size(PVi,1)+size(PGi,1)+1:ContrlCount)';
|
||||
t(Busnum+Balance)=0;
|
||||
%Volt=Volt+AlphaP*t(2:2:2*Busnum);ÔÝʱ¸ÄÒ»ÏÂ20111227
|
||||
%UAngel=UAngel+AlphaP*t(1:2:2*Busnum);ÔÝʱ¸ÄÒ»ÏÂ20111227
|
||||
Volt=Volt+AlphaP*t(1:Busnum);
|
||||
UAngel=UAngel+AlphaP*t(Busnum+1:2*Busnum);
|
||||
end
|
||||
76
OPF.m
Normal file
76
OPF.m
Normal file
@@ -0,0 +1,76 @@
|
||||
tic
|
||||
clear
|
||||
%[kmax,Precision,UAngel,Volt,Busnum,PVi,PVu,Balance,Y,Angle,P0,Q0,r,c,GB,Linei,Linej,Transfori,Transforj,GenU,GenL,GenC,LineLimti,LineLimtj,LinePLimt,PG,QG,PD,QD,CenterA,LineCount,PGi,PVQU,PVQL]=pf('5sj.txt');
|
||||
[kmax,Precision,UAngel,Volt,Busnum,PVi,PVu,Balance,Y,Angle,P0,Q0,r,c,GB,Linei,Linej,Transfori,Transforj,GenU,GenL,GenC,PG,QG,PD,QD,CenterA,PGi,PVQU,PVQL]=pf('C:\Users\dmy\Desktop\解南线_252750_2013-10-29_iPso_newFile.txt');
|
||||
|
||||
%PVi电压节点序号
|
||||
%PVu电压节点电压标幺值
|
||||
Volt;
|
||||
UAngel*180/3.1415926;
|
||||
%sprintf('%f\n',Volt);
|
||||
%sprintf('%f\n',Angel);
|
||||
%% 初值
|
||||
PG=sparse(PG);
|
||||
PD=sparse(PD);
|
||||
QG=sparse(QG);
|
||||
QD=sparse(QD);
|
||||
[Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL);
|
||||
Gap=(Init_L*Init_Z'-Init_U*Init_W');
|
||||
KK=0;
|
||||
plotGap=zeros(1,50);
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
while(abs(Gap)>Precision)
|
||||
if KK>kmax
|
||||
break;
|
||||
end
|
||||
plotGap(KK+1)=Gap;
|
||||
Init_u=Gap/2/RestraintCount*CenterA;
|
||||
AngleIJMat=repmat(UAngel',1,Busnum)-repmat(UAngel,Busnum,1);
|
||||
%% 开始计算OPF
|
||||
%% 形成等式约束的雅克比
|
||||
deltH=func_deltH(Busnum,Volt,PVi,AngleIJMat,Y,GB,PGi,UAngel,r,c,Angle);
|
||||
%% 形成不等式约束的雅克比
|
||||
deltG=func_deltG(Busnum,PVi,PGi);
|
||||
%%
|
||||
L_1Z=diag(Init_Z./Init_L);
|
||||
U_1W=diag(Init_W./Init_U);
|
||||
%% 形成海森阵
|
||||
deltdeltF=func_deltdeltF(Busnum,GenC,PVi,PGi);
|
||||
%% 形成ddHy
|
||||
ddh=func_ddh3(AngleIJMat,GB,Volt,Init_Y,Busnum,PVi,PGi,Y,UAngel,r,c,Angle);
|
||||
%% 开始构建ddg
|
||||
ddg=func_ddg(PGi,PVi,Busnum,RestraintCount);
|
||||
%% 开始构建deltF
|
||||
deltF=func_deltF(PG,PVi,GenC,ContrlCount,PGi);
|
||||
|
||||
%% 形成方程矩阵
|
||||
% Hcoma=-deltdeltF+ddh+ddg-deltG*(L_1Z-U_1W)*deltG';
|
||||
%AA=FormAA1(deltG,deltdeltF,ddh,ddg,deltH,Init_L,Init_U,Init_W,Init_Z,Busnum,PVi,PGi,RestraintCount,Balance);
|
||||
%AA=FormAA(L_1Z,deltG,U_1W,Hcoma,deltH);
|
||||
%%
|
||||
Luu=Init_U'.*Init_W'+Init_u*ones(RestraintCount,1);
|
||||
Lul=Init_L'.*Init_Z'-Init_u*ones(RestraintCount,1);
|
||||
Mat_G=FormG(Volt,PVi,PGi,PG,QG);
|
||||
Mat_H=FormH(Busnum,GB,AngleIJMat,Volt,PG,PD,QG,QD,Y,UAngel,r,c,Angle);
|
||||
Ly=Mat_H;
|
||||
Lz=FormLz(Mat_G,Init_L,GenL,Busnum,PVQL);
|
||||
Lw=FormLw(Mat_G,Init_U,GenU,Busnum,PVQU);
|
||||
Lx=FormLx(deltF,deltH,Init_Y,deltG,Init_Z,Init_W);
|
||||
%LxComa=FormLxComa(deltF,deltG,deltH,Init_L,Luu,Lul,Init_Z,Init_Y,Lz,Init_U,Init_W,Lw);
|
||||
YY=FormYY1(Lul,Lz,Ly,Luu,Lw,Lx);
|
||||
%YY=FormYY(Init_L,Lul,Lz,Ly,Init_U,Luu,Lw,LxComa);
|
||||
%% 开始解方程
|
||||
%XX=AA\YY;
|
||||
XX=SolveIt(deltF,deltG,Init_L,Init_Z,Init_U,Init_W,deltdeltF,ddh,ddg,deltH,Init_Y,Ly,Lz,ContrlCount,Lw,Lul,Luu,RestraintCount,Lx,Balance,PVi,PGi,Busnum);
|
||||
%%取各分量
|
||||
[deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX1(XX,ContrlCount,RestraintCount,Busnum);
|
||||
%[deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX(XX);
|
||||
[Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,Volt,UAngel]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,Volt,UAngel,PVi,ContrlCount,Balance,Busnum,PGi);
|
||||
Gap=(Init_L*Init_Z'-Init_U*Init_W')
|
||||
KK=KK+1;
|
||||
end
|
||||
fprintf('迭代次数%d\n',KK);
|
||||
CalCost(GenC,PG,PGi);
|
||||
DrawGap(plotGap);
|
||||
toc
|
||||
|
||||
19
OPF_Init.m
Normal file
19
OPF_Init.m
Normal file
@@ -0,0 +1,19 @@
|
||||
function [Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL)
|
||||
RestraintCount=size(PVi,1)+size(PGi,1)+Busnum; %约束条件数
|
||||
t_Bal_volt=Volt(Balance);
|
||||
Volt=sparse(ones(1,Busnum));
|
||||
%Volt(Balance)=t_Bal_volt;
|
||||
Volt(Balance)=1;
|
||||
UAngel=sparse(1,Busnum);
|
||||
Init_Z=sparse(ones(1,RestraintCount));
|
||||
Init_W=sparse(-1*ones(1,RestraintCount));
|
||||
Init_L=sparse(ones(1,RestraintCount));
|
||||
Init_U=sparse(ones(1,RestraintCount));
|
||||
Init_Y=sparse(1,2*Busnum);%与学姐一致
|
||||
tPU=sparse(GenU(:,2));% 发电机有功上限
|
||||
tQU=sparse(PVQU(:,1));% 无功上限
|
||||
tPL=sparse(GenL(:,2));% 发电机有功下限
|
||||
tQL=sparse(PVQL(:,1));% 无功下限
|
||||
PG(PGi)=(tPU+tPL)/2;
|
||||
QG(PVi)=(tQU+tQL)/2;
|
||||
end
|
||||
1
ReadMe.txt
Normal file
1
ReadMe.txt
Normal file
@@ -0,0 +1 @@
|
||||
对照学姐给的公式
|
||||
36
SolveIt.m
Normal file
36
SolveIt.m
Normal file
@@ -0,0 +1,36 @@
|
||||
function XX=SolveIt(deltF,deltG,Init_L,Init_Z,Init_U,Init_W,deltdeltF,ddh,ddg,deltH,Init_Y,Ly,Lz,ContrlCount,Lw,Lul,Luu,RestraintCount,Lx,Balance,PVi,PGi,Busnum)
|
||||
LxComa=FormLxComa(deltF,deltG,deltH,Init_L,Luu,Lul,Init_Z,Init_Y,Lz,Init_U,Init_W,Lw,Lx);
|
||||
H=-deltdeltF+ddh;%+ddg*(Init_Z'+Init_W');
|
||||
t1=diag(Init_L.\Init_Z-Init_U.\Init_W);
|
||||
t2=-deltG*( t1 )*deltG';
|
||||
aa=[
|
||||
(H+t2),deltH;
|
||||
deltH',zeros(size(Init_Y,2));
|
||||
];
|
||||
yy=[LxComa;-Ly];
|
||||
% t=size(PVi,1)+size(PGi,1);
|
||||
% aa(t+2*Balance-1,:)=0;
|
||||
% aa(:,t+2*Balance-1)=0;
|
||||
% aa(t+2*Balance-1,t+2*Balance-1)=1;
|
||||
%ÔÝʱ¸ÄÒ»ÏÂ
|
||||
t=size(PVi,1)+size(PGi,1)+Busnum;
|
||||
aa(t+Balance,:)=0;
|
||||
aa(:,t+Balance)=0;
|
||||
aa(t+Balance,t+Balance)=1;
|
||||
dxdy=aa\yy;
|
||||
dX=dxdy(1:ContrlCount);
|
||||
dY=dxdy(ContrlCount+1:ContrlCount+2*Busnum);
|
||||
dL=Lz+deltG'*dX;
|
||||
dU=-Lw-deltG'*dX;
|
||||
dZ=-diag(Init_L)\Lul-diag(Init_L)\diag(Init_Z)*dL;
|
||||
dW=-diag(Init_U)\Luu-diag(Init_U)\diag(Init_W)*dU;
|
||||
XX=[
|
||||
dX;
|
||||
dY;
|
||||
dZ;
|
||||
dW;
|
||||
dL;
|
||||
dU;
|
||||
|
||||
];
|
||||
end
|
||||
31
admmatrix.m
Normal file
31
admmatrix.m
Normal file
@@ -0,0 +1,31 @@
|
||||
function [G,B,GB,Y,r,c,Angle] = admmatrix(Busnum,Linei,Linej,Liner,Linex,Lineb,Transfori...
|
||||
,Transforj,Transforr,Transforx,Transfork0,Branchi,Branchb)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成节点导纳矩阵Y
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 支路导纳计算
|
||||
G = -sparse(Linei,Linej,Liner./(Liner.^2+Linex.^2),Busnum,Busnum) - sparse(Linej,Linei,Liner./(Liner.^2+Linex.^2),Busnum,Busnum);
|
||||
G = G - sparse(1:Busnum,1:Busnum,sum(G,2)'); % 计算各线路支路电导
|
||||
B = sparse(Linei,Linej,Linex./(Liner.^2+Linex.^2),Busnum,Busnum)+sparse(Linej,Linei,Linex./(Liner.^2+Linex.^2),Busnum,Busnum);
|
||||
B = B - sparse(1:Busnum,1:Busnum,sum(B,2)')+sparse(Linei,Linei,Lineb,Busnum,Busnum)+sparse(Linej,Linej,Lineb,Busnum,Busnum);
|
||||
%% 变压器支路计算
|
||||
if Transfori>0
|
||||
mr = Transforr./(Transforr.^2+Transforx.^2); % 计算变压器支路电导
|
||||
mx = -Transforx./(Transforr.^2+Transforx.^2); % 计算变压器支路电纳
|
||||
G = G-sparse(Transfori,Transforj,mr./Transfork0,Busnum,Busnum)-sparse(Transforj,Transfori,mr./Transfork0,Busnum,Busnum)...
|
||||
+sparse(Transfori,Transfori,mr./Transfork0./Transfork0,Busnum,Busnum)+sparse(Transforj,Transforj,mr,Busnum,Busnum);
|
||||
B = B-sparse(Transfori,Transforj,mx./Transfork0,Busnum,Busnum)-sparse(Transforj,Transfori,mx./Transfork0,Busnum,Busnum)...
|
||||
+sparse(Transfori,Transfori,mx./Transfork0./Transfork0,Busnum,Busnum)+sparse(Transforj,Transforj,mx,Busnum,Busnum);
|
||||
end
|
||||
%% 接地支路计算
|
||||
if Branchi>0 % 判断有无接地支路
|
||||
B = B+sparse(Branchi,Branchi,Branchb,Busnum,Busnum);
|
||||
end
|
||||
%% 化作极坐标形式
|
||||
GB = G+B.*1i; %将电导,电纳合并,写成复数形式
|
||||
Y = abs(GB); %求节点导纳幅值
|
||||
[r,c] = find(Y);
|
||||
Angle = angle(GB(GB~=0)); %求节点导纳角度
|
||||
%Angle=angle(GB);
|
||||
176
func_ddf.m
Normal file
176
func_ddf.m
Normal file
@@ -0,0 +1,176 @@
|
||||
function ddf=func_ddh(AngleIJMat,GB,Volt,Init_Y,Busnum)
|
||||
%% deltaPi/deltaThytai_deltaThytaj 非对角元素
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
dPdTidTj=t1.*t2; %%(保留了对角元素的)
|
||||
dPidTidTj_2=dPdTidTj-diag(diag(dPdTidTj));%去掉了对角元素的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
dPidTidTj_2=dPidTidTj_2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
dPjdTidTj=t3-diag(diag(t3));%去掉了对角元素的
|
||||
t3=repmat(Init_Y,size(Init_Y,2),1);
|
||||
dPjdTidTj=dPjdTidTj.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidTj=dPidTidTj_2+dPjdTidTj;%最终非对角元素 @@
|
||||
%% deltaP/deltaThyta_deltaThyta 对角元素
|
||||
t1=sum(-dPidTidTj_2,2);
|
||||
t2=diag(t1'.*Init_Y(1:2:size(Init_Y,2)));%乘y的系数
|
||||
t3=sum(-dPidTidTj_2,1);
|
||||
t4=diag(t3.*Init_Y(1:2:size(Init_Y,2)));%乘y的系数
|
||||
dPdTidTi=t2+t4;%%最终对角元素 @@
|
||||
%% deltaP/deltaThytai_dVi 对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t1-diag(t2);%去掉了对角元素的
|
||||
t4=sum(t3,2);
|
||||
t4=t4'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidVi=diag(t4);
|
||||
dPidTjdVj=-t3;
|
||||
t6=sum(dPidTjdVj,1);%乘y的系数
|
||||
t6=t6.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVi=dPidTidVi+diag(t6);%%最终对角元素 @@
|
||||
%% deltaP/deltaThytai_dVj 非对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidTidVj=t1-diag(diag(t1));%%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidTidVj=dPidTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=ones(Busnum,1)*Volt.*real(GB).*(sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdTidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=t2';
|
||||
dPjdTidVj=dPjdTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVj=dPidTidVj+dPjdTidVj;%最终非对角元素 @@
|
||||
%% deltaP/dVi_deltaThytaj 非对角元素
|
||||
t1=-ones(Busnum,1)*Volt.*real(GB).*(sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidVidTj=t1-diag(diag(t1));
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidTj=dPidVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdVidTj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidTj=dPidVidTj+dPjdVidTj;%最终非对角元素
|
||||
%% deltaPi/dVi_deltaThyta 对角元素
|
||||
dPdVidTi=dPdTidVi;%最终对角元素 @@
|
||||
%% deltaP/dVi_dVj 非对角元素
|
||||
t1=-(real(GB).*(cos(AngleIJMat)+imag(GB).*sin(AngleIJMat)));
|
||||
dPidVidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidVj=dPidVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-(real(GB).*(cos(AngleIJMat)-imag(GB).*sin(AngleIJMat)));
|
||||
dPjdVidVj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidVj=dPjdVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidVj=dPidVidVj+dPjdVidVj;%最终非对角元素 @@
|
||||
%% deltaP/dVi_dVi 对角元素
|
||||
t1=diag(real(GB));
|
||||
t2=t1'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidVidVi=-2*diag(t2);
|
||||
dPidVjdVj=0;
|
||||
dPdVidVi=dPidVidVi+dPidVjdVj;%最终对角元素 @@
|
||||
%% 生成APi
|
||||
APi=zeros(2*Busnum,2*Busnum);
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTj;%%非对角 TT
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVj;%%非对角 TV
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTj;%%非对角 VT
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVj;%%非对角 VV
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTi;%%对角
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVi;%%对角
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTi;%%对角
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVi;%%对角
|
||||
%% deltaQ/deltaThyta_deltaThyta 非对角元素
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*(sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dQidTidTj=t1.*t2;%不去掉对角元素了,反正最后是要修正的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidTj=dQidTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*(sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dQjdTidTj=t1.*t2;
|
||||
t3=t3';
|
||||
dQjdTidTj=dQjdTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidTj=dQidTidTj+dQjdTidTj;%最终非对角元素
|
||||
%% deltaQ/deltaThyta_deltaThyta 对角元素
|
||||
t1=dQidTidTj-diag(diag(dQidTidTj));
|
||||
t2=sum(t1,2);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidTidTi=diag(t3);
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*(sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=sum(t4,1);
|
||||
t6=t5.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdTidTi=diag(t6);
|
||||
dQdTidTi=dQjdTidTi+dQidTidTi;%最终对角元素
|
||||
%% deltaQ/deltaThyta_deltaV 非对角元素
|
||||
t1=-Volt;
|
||||
t2=real(GB).*(cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
t3=ones(Busnum,1)*t1.*t2;
|
||||
t4=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*(cos(AngleIJMat)-imag(GB).*sin(AngleIJMat));
|
||||
t3=Volt'*ones(1,Busnum).*t2;
|
||||
t4=t4';
|
||||
dQjdTidVj=t2.*t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidVj=dQidTidVj+dQjdTidVj;%最终非对角元素
|
||||
%% deltaQ/deltaThyta_deltaV 对角元素
|
||||
t1=sum(dQidTidVj,2)-diag(dQidTidVj);
|
||||
t2=t1'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidTidVi=diag(t2);
|
||||
t1=-Volt'*ones(1,Busnum).*(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
t2=t1-diag(diag(t1));
|
||||
t3=sum(t2,1);
|
||||
t4=t3.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdTidVi=diag(t4);
|
||||
dQdTidVi=dQidTidVi+dQjdTidVi;
|
||||
%% deltaQ/deltaV_deltaV 非对角元素
|
||||
t1=real(GB).*(sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVj=t3;
|
||||
t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=t2';
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidVj=t3;
|
||||
dQdVidVj=dQidVidVj+dQjdVidVj;
|
||||
%% deltaQ/deltaV_deltaV 对角元素
|
||||
t1=2*(real(GB).*(sin(AngleIJMat)-imag(GB).*cos(AngleIJMat)));
|
||||
t2=diag(t1);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVi=diag(t3);
|
||||
t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=diag(t1);
|
||||
t3=t1-diag(t2);
|
||||
t4=sum(t3,1);
|
||||
t5=t4.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidVi=diag(t5);
|
||||
dQdVidVi=dQidVidVi+dQjdVidVi;
|
||||
%% deltaQ/deltaV_deltaThyta 非对角元素
|
||||
t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2'.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidTj=t4;
|
||||
t1=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=t3';
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidTj=t4;
|
||||
dQdVidTj=dQidVidTj+dQjdVidTj;
|
||||
%% deltaQ/deltaV_deltaThyta 对角元素
|
||||
dQdVidTi=dQdTidVi;
|
||||
%% 生成AQi
|
||||
AQi=zeros(2*Busnum,2*Busnum);
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTj;%%非对角 TT
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVj;%%非对角 TV
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTj;%%非对角 VT
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVj;%%非对角 VV
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTi;%%对角
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVi;%%对角
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTi;%%对角
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVi;%%对角
|
||||
%% 生成ddf
|
||||
t=[zeros(2*14-2*5,2*14);
|
||||
zeros(2*5,2*14-2*5),AQi+APi;
|
||||
];
|
||||
ddf=t;
|
||||
end
|
||||
6
func_ddg.m
Normal file
6
func_ddg.m
Normal file
@@ -0,0 +1,6 @@
|
||||
function ddg=func_ddg(PGi,PVi,Busnum,RestraintCount)
|
||||
|
||||
t=sparse(size(PVi,1)+size(PGi,1)+2*Busnum,RestraintCount);
|
||||
|
||||
ddg=t;
|
||||
end
|
||||
187
func_ddh.m
Normal file
187
func_ddh.m
Normal file
@@ -0,0 +1,187 @@
|
||||
function ddh=func_ddh(AngleIJMat,GB,Volt,Init_Y,Busnum)
|
||||
%% deltaPi/deltaThytai_deltaThytaj 非对角元素
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
dPdTidTj=t1.*t2; %%(保留了对角元素的)
|
||||
dPidTidTj_2=dPdTidTj-diag(diag(dPdTidTj));%去掉了对角元素的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
dPidTidTj_2=dPidTidTj_2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
dPjdTidTj=t3-diag(diag(t3));%去掉了对角元素的
|
||||
t3=repmat(Init_Y,size(Init_Y,2),1);
|
||||
dPjdTidTj=dPjdTidTj.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidTj=dPidTidTj_2+dPjdTidTj;%最终非对角元素 @@@
|
||||
%% deltaP/deltaThyta_deltaThyta 对角元素
|
||||
t1=sum(-dPidTidTj_2,2);
|
||||
t2=diag(t1'.*Init_Y(1:2:size(Init_Y,2)));%乘y的系数
|
||||
t3=sum(-dPidTidTj_2,1);
|
||||
t4=diag(t3.*Init_Y(1:2:size(Init_Y,2)));%乘y的系数
|
||||
dPdTidTi=t2+t4;%%最终对角元素 @@@
|
||||
%% deltaP/deltaThytai_dVi 对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t1-diag(t2);%去掉了对角元素的
|
||||
t4=sum(t3,2);
|
||||
t4=t4'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidVi=diag(t4);
|
||||
dPidTjdVj=-t3;
|
||||
t6=sum(dPidTjdVj,1);
|
||||
t6=t6.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVi=dPidTidVi+diag(t6);%%最终对角元素 @@@
|
||||
%% deltaP/deltaThytai_dVj 非对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidTidVj=t1-diag(diag(t1));%%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidTidVj=dPidTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdTidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=t2';
|
||||
dPjdTidVj=dPjdTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVj=dPidTidVj+dPjdTidVj;%最终非对角元素 @@@
|
||||
%% deltaP/dVi_deltaThytaj 非对角元素
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidVidTj=t1-diag(diag(t1));
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidTj=dPidVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdVidTj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidTj=dPjdVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidTj=dPidVidTj+dPjdVidTj;%最终非对角元素 @@@
|
||||
%% deltaPi/dVi_deltaThyta 对角元素
|
||||
dPdVidTi=dPdTidVi;%最终对角元素 @@
|
||||
%% deltaP/dVi_dVj 非对角元素
|
||||
t1=-(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
dPidVidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidVj=dPidVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-(real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat));
|
||||
dPjdVidVj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidVj=dPjdVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidVj=dPidVidVj+dPjdVidVj;%最终非对角元素 @@@@
|
||||
%% deltaP/dVi_dVi 对角元素
|
||||
t0=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t1=diag(t0);
|
||||
t2=t1'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidVidVi=-2*diag(t2);
|
||||
dPidVjdVj=0;
|
||||
dPdVidVi=dPidVidVi+dPidVjdVj;%最终对角元素 @@@
|
||||
%% 生成APi
|
||||
APi=zeros(2*Busnum,2*Busnum);
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTj;%%非对角 TT
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVj;%%非对角 TV
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTj;%%非对角 VT
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVj;%%非对角 VV
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTi;%%对角
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVi;%%对角
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTi;%%对角
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVi;%%对角
|
||||
%% deltaQ/deltaThyta_deltaThyta 非对角元素
|
||||
%t1=-Volt'*Volt;
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
dQidTidTj=t1.*t2;%不去掉对角元素了,反正最后是要修正的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidTj=dQidTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
dQjdTidTj=-t1.*t2;
|
||||
t3=t3';
|
||||
dQjdTidTj=dQjdTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidTj=dQidTidTj+dQjdTidTj;%最终非对角元素 @@@
|
||||
%% deltaQ/deltaThyta_deltaThyta 对角元素
|
||||
t1=dQidTidTj-diag(diag(dQidTidTj));%去对角元素
|
||||
t2=sum(t1,2);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
%dQidTidTi=diag(t3);
|
||||
dQidTidTi=-diag(t3);
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
t6=t4.*t5(2:2:size(Init_Y,2),2:2:size(Init_Y,2));
|
||||
t7=sum(t6,1);
|
||||
dQjdTidTi=diag(t7);
|
||||
dQdTidTi=dQjdTidTi+dQidTidTi;%最终对角元素 @@@
|
||||
%% deltaQ/deltaThyta_deltaV 非对角元素
|
||||
%t1=-Volt;
|
||||
t1=Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t3=t1'*ones(1,Busnum).*t2;
|
||||
t4=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=-Volt'*ones(1,Busnum).*t2;
|
||||
t4=t4';
|
||||
dQjdTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidVj=dQidTidVj+dQjdTidVj;%最终非对角元素 @@@
|
||||
%% deltaQ/deltaThyta_deltaV 对角元素
|
||||
%t1=sum(dQidTidVj,2)-diag(dQidTidVj);%去掉对角元素
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=ones(Busnum,1)*Volt.*t1;
|
||||
t3=sum(t2,2);
|
||||
t4=t3'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidTidVi=diag(t4);
|
||||
t1=-Volt'*ones(1,Busnum).*(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
t2=t1-diag(diag(t1));
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t5=sum(t4,1);
|
||||
dQjdTidVi=diag(t5);
|
||||
dQdTidVi=dQidTidVi+dQjdTidVi;% @@
|
||||
%% deltaQ/deltaV_deltaV 非对角元素
|
||||
t1=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVj=t3;
|
||||
t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=t2';
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidVj=t3;
|
||||
dQdVidVj=dQidVidVj+dQjdVidVj;% @@@
|
||||
%% deltaQ/deltaV_deltaV 对角元素
|
||||
t1=2*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVi=diag(t3);
|
||||
% t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
% t2=diag(t1);
|
||||
% t3=t1-diag(t2);
|
||||
% t4=sum(t3,1);
|
||||
% t5=t4.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
% dQjdVidVi=diag(t5);
|
||||
dQjdVidVi=0;
|
||||
dQdVidVi=dQidVidVi+dQjdVidVi; % @@
|
||||
%% deltaQ/deltaV_deltaThyta 非对角元素
|
||||
%t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2'.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidTj=t4;
|
||||
t1=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=t3';
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidTj=t4;
|
||||
dQdVidTj=dQidVidTj+dQjdVidTj;% @
|
||||
%% deltaQ/deltaV_deltaThyta 对角元素
|
||||
dQdVidTi=dQdTidVi;% @
|
||||
%% 生成AQi
|
||||
AQi=zeros(2*Busnum,2*Busnum);
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTj;%%非对角 TT
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVj;%%非对角 TV
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTj;%%非对角 VT
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVj;%%非对角 VV
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTi;%%对角
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVi;%%对角
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTi;%%对角
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVi;%%对角
|
||||
%% 生成ddh
|
||||
t=[zeros(4,14);
|
||||
zeros(2*5,4),AQi+APi;
|
||||
];
|
||||
ddh=t;
|
||||
end
|
||||
204
func_ddh1.m
Normal file
204
func_ddh1.m
Normal file
@@ -0,0 +1,204 @@
|
||||
function ddh=func_ddh1(AngleIJMat,GB,Volt,Init_Y,Busnum,PVi)
|
||||
%% deltaPi/deltaThytai_deltaThytaj 非对角元素
|
||||
ContrlCount=size(PVi,1)*2+Busnum*2;
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
dPdTidTj=t1.*t2; %%(保留了对角元素的)
|
||||
dPidTidTj_2=dPdTidTj-diag(diag(dPdTidTj));%去掉了对角元素的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
dPidTidTj_2=dPidTidTj_2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
dPjdTidTj=t3-diag(diag(t3));%去掉了对角元素的
|
||||
t3=repmat(Init_Y,size(Init_Y,2),1);
|
||||
dPjdTidTj=dPjdTidTj.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidTj=dPidTidTj_2+dPjdTidTj;%最终非对角元素 @@@@@@
|
||||
%% deltaP/deltaThyta_deltaThyta 对角元素
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=sum(t4,2);
|
||||
t6=t5'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidTi=diag(t6);
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=t2-diag(diag(t2));
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
t4=t1.*t2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t5=sum(t4,1);
|
||||
dPidTjdTj=diag(t5);
|
||||
dPdTidTi=dPidTidTi+dPidTjdTj;%%最终对角元素 @@@@@@
|
||||
%% deltaP/deltaThytai_dVi 对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t1-diag(t2);%去掉了对角元素的
|
||||
t4=sum(t3,2);
|
||||
t4=t4'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidVi=diag(t4);
|
||||
t1=-Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t1=t1-diag(diag(t1));%去掉对角元素
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=t1.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t6=sum(t3,1);
|
||||
dPdTidVi=dPidTidVi+diag(t6);%%最终对角元素 @@@@@@
|
||||
%% deltaP/deltaThytai_dVj 非对角元素
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidTidVj=t1-diag(diag(t1));%%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidTidVj=dPidTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdTidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=t2';
|
||||
dPjdTidVj=dPjdTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVj=dPidTidVj+dPjdTidVj;%最终非对角元素 @@@@@
|
||||
%% deltaP/dVi_deltaThytaj 非对角元素
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidVidTj=t1-diag(diag(t1));
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidTj=dPidVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdVidTj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidTj=dPjdVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidTj=dPidVidTj+dPjdVidTj;%最终非对角元素 @@@@
|
||||
%% deltaPi/dVi_deltaThyta 对角元素
|
||||
dPdVidTi=dPdTidVi;%最终对角元素 @@
|
||||
%% deltaP/dVi_dVj 非对角元素
|
||||
t1=-(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
dPidVidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidVj=dPidVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-(real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat));
|
||||
dPjdVidVj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidVj=dPjdVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidVj=dPidVidVj+dPjdVidVj;%最终非对角元素 @@@@@
|
||||
%% deltaP/dVi_dVi 对角元素
|
||||
t0=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t1=diag(t0);
|
||||
t2=t1'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidVidVi=-2*diag(t2);
|
||||
dPidVjdVj=0;
|
||||
dPdVidVi=dPidVidVi+dPidVjdVj;%最终对角元素 @@@@
|
||||
%% 生成APi
|
||||
APi=zeros(2*Busnum,2*Busnum);
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTj;%%非对角 TT
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVj;%%非对角 TV
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTj;%%非对角 VT
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVj;%%非对角 VV
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTi;%%对角
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVi;%%对角
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTi;%%对角
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVi;%%对角
|
||||
%% deltaQ/deltaThyta_deltaThyta 非对角元素
|
||||
t1=-Volt'*Volt;
|
||||
%t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
dQidTidTj=t1.*t2;%不去掉对角元素了,反正最后是要修正的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidTj=dQidTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
dQjdTidTj=-t1.*t2;
|
||||
t3=t3';
|
||||
dQjdTidTj=dQjdTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidTj=dQidTidTj+dQjdTidTj;%最终非对角元素 @@@@
|
||||
%% deltaQ/deltaThyta_deltaThyta 对角元素
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t6=t4.*t5(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t7=sum(t6,2);
|
||||
dQidTidTi=diag(t7);
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
%t5=t5';
|
||||
t6=t4.*t5(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t7=sum(t6,1);
|
||||
dQjdTidTi=diag(t7);
|
||||
dQdTidTi=dQjdTidTi+dQidTidTi;%最终对角元素 @@@@
|
||||
%% deltaQ/deltaThyta_deltaV 非对角元素
|
||||
t1=-Volt;
|
||||
%t1=Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t3=t1'*ones(1,Busnum).*t2;
|
||||
t4=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=Volt'*ones(1,Busnum).*t2;
|
||||
t4=t4';
|
||||
dQjdTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidVj=dQidTidVj+dQjdTidVj;%最终非对角元素 @@@@@
|
||||
%% deltaQ/deltaThyta_deltaV 对角元素
|
||||
%t1=sum(dQidTidVj,2)-diag(dQidTidVj);%去掉对角元素
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*t1;
|
||||
t2=t2-diag(diag(t2));
|
||||
t3=sum(t2,2);
|
||||
t4=t3'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidTidVi=diag(t4);
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
t2=t1-diag(diag(t1));
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t5=sum(t4,1);
|
||||
dQjdTidVi=diag(t5);
|
||||
dQdTidVi=dQidTidVi+dQjdTidVi;% @@@@
|
||||
%% deltaQ/deltaV_deltaV 非对角元素
|
||||
t1=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=-t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVj=t3;
|
||||
t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t2=t2';
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidVj=t3;
|
||||
dQdVidVj=dQidVidVj+dQjdVidVj;% @@@@@
|
||||
%% deltaQ/deltaV_deltaV 对角元素
|
||||
t1=-2*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVi=diag(t3);
|
||||
% t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
% t2=diag(t1);
|
||||
% t3=t1-diag(t2);
|
||||
% t4=sum(t3,1);
|
||||
% t5=t4.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
% dQjdVidVi=diag(t5);
|
||||
dQjdVidVi=0;
|
||||
dQdVidVi=dQidVidVi+dQjdVidVi; % @@@@
|
||||
%% deltaQ/deltaV_deltaThyta 非对角元素
|
||||
%t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=ones(Busnum,1)*Volt.*(t1);
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2'.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidTj=t4;
|
||||
t1=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=t3';
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidTj=t4;
|
||||
dQdVidTj=dQidVidTj+dQjdVidTj;% @@@
|
||||
%% deltaQ/deltaV_deltaThyta 对角元素
|
||||
dQdVidTi=dQdTidVi;% @
|
||||
%% 生成AQi
|
||||
AQi=zeros(2*Busnum,2*Busnum);
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTj;%%非对角 TT
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVj;%%非对角 TV
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTj;%%非对角 VT
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVj;%%非对角 VV
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTi;%%对角
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVi;%%对角
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTi;%%对角
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVi;%%对角
|
||||
%% 生成ddh
|
||||
t=[zeros(2*size(PVi,1),ContrlCount);
|
||||
zeros(2*Busnum,2*size(PVi,1)),AQi+APi;
|
||||
];
|
||||
ddh=t;
|
||||
end
|
||||
206
func_ddh2.m
Normal file
206
func_ddh2.m
Normal file
@@ -0,0 +1,206 @@
|
||||
function ddh=func_ddh2(AngleIJMat,GB,Volt,Init_Y,Busnum,PVi,PGi)
|
||||
%% deltaPi/deltaThytai_deltaThytaj 非对角元素
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
dPdTidTj=t1.*t2; %%(保留了对角元素的)
|
||||
dPidTidTj_2=dPdTidTj-diag(diag(dPdTidTj));%去掉了对角元素的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
dPidTidTj_2=dPidTidTj_2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
dPjdTidTj=t3-diag(diag(t3));%去掉了对角元素的
|
||||
t3=repmat(Init_Y,size(Init_Y,2),1);
|
||||
dPjdTidTj=dPjdTidTj.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidTj=dPidTidTj_2+dPjdTidTj;%最终非对角元素 @@@@@@@
|
||||
%% deltaP/deltaThyta_deltaThyta 对角元素
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=sum(t4,2);
|
||||
t6=t5'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidTi=diag(t6);
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=t1.*t2;
|
||||
t2=t2-diag(diag(t2));
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
t4=t2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t5=sum(t4,1);
|
||||
dPidTjdTj=diag(t5);
|
||||
dPdTidTi=dPidTidTi+dPidTjdTj;%%最终对角元素 @@@@@@@
|
||||
%% deltaP/deltaThytai_dVi 对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t1-diag(t2);%去掉了对角元素的
|
||||
t4=sum(t3,2);
|
||||
t4=t4'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidVi=diag(t4);
|
||||
t1=-Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t1=t1-diag(diag(t1));%去掉对角元素
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=t1.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t6=sum(t3,1);
|
||||
dPdTidVi=dPidTidVi+diag(t6);%%最终对角元素 @@@@@@
|
||||
%% deltaP/deltaThytai_dVj 非对角元素
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidTidVj=t1-diag(diag(t1));%%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidTidVj=dPidTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdTidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=t2';
|
||||
dPjdTidVj=dPjdTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVj=dPidTidVj+dPjdTidVj;%最终非对角元素 @@@@@@
|
||||
%% deltaP/dVi_deltaThytaj 非对角元素
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidVidTj=t1-diag(diag(t1));
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidTj=dPidVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdVidTj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidTj=dPjdVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidTj=dPidVidTj+dPjdVidTj;%最终非对角元素 @@@@@
|
||||
%% deltaPi/dVi_deltaThyta 对角元素
|
||||
dPdVidTi=dPdTidVi;%最终对角元素 @@
|
||||
%% deltaP/dVi_dVj 非对角元素
|
||||
t1=-(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
dPidVidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidVj=dPidVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-(real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat));
|
||||
dPjdVidVj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidVj=dPjdVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidVj=dPidVidVj+dPjdVidVj;%最终非对角元素 @@@@@@
|
||||
%% deltaP/dVi_dVi 对角元素
|
||||
t0=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t1=diag(t0);
|
||||
t2=t1'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidVidVi=-2*diag(t2);
|
||||
dPidVjdVj=0;
|
||||
dPdVidVi=dPidVidVi+dPidVjdVj;%最终对角元素 @@@@@
|
||||
%% 生成APi
|
||||
APi=zeros(2*Busnum,2*Busnum);
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTj;%%非对角 TT
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVj;%%非对角 TV
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTj;%%非对角 VT
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVj;%%非对角 VV
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTi;%%对角
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVi;%%对角
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTi;%%对角
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVi;%%对角
|
||||
%% deltaQ/deltaThyta_deltaThyta 非对角元素
|
||||
t1=-Volt'*Volt;
|
||||
%t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
dQidTidTj=t1.*t2;%不去掉对角元素了,反正最后是要修正的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidTj=dQidTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
dQjdTidTj=-t1.*t2;
|
||||
t3=t3';
|
||||
dQjdTidTj=dQjdTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidTj=dQidTidTj+dQjdTidTj;%最终非对角元素 @@@@@
|
||||
%% deltaQ/deltaThyta_deltaThyta 对角元素
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t6=t4.*t5(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t7=sum(t6,2);
|
||||
dQidTidTi=diag(t7);
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
%t5=t5';
|
||||
t6=t4.*t5(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t7=sum(t6,1);
|
||||
dQjdTidTi=diag(t7);
|
||||
dQdTidTi=dQjdTidTi+dQidTidTi;%最终对角元素 @@@@@
|
||||
%% deltaQ/deltaThyta_deltaV 非对角元素
|
||||
t1=-Volt;
|
||||
%t1=Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t3=t1'*ones(1,Busnum).*t2;
|
||||
t4=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=Volt'*ones(1,Busnum).*t2;
|
||||
t4=t4';
|
||||
dQjdTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidVj=dQidTidVj+dQjdTidVj;%最终非对角元素 @@@@@@
|
||||
%% deltaQ/deltaThyta_deltaV 对角元素
|
||||
%t1=sum(dQidTidVj,2)-diag(dQidTidVj);%去掉对角元素
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*t1;
|
||||
t2=t2-diag(diag(t2));
|
||||
t3=sum(t2,2);
|
||||
t4=t3'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidTidVi=diag(t4);
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
t2=t1-diag(diag(t1));
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t5=sum(t4,1);
|
||||
dQjdTidVi=diag(t5);
|
||||
dQdTidVi=dQidTidVi+dQjdTidVi;% @@@@
|
||||
%% deltaQ/deltaV_deltaV 非对角元素
|
||||
t1=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=-t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVj=t3;
|
||||
t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t2=t2';
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidVj=t3;
|
||||
dQdVidVj=dQidVidVj+dQjdVidVj;% @@@@@@
|
||||
%% deltaQ/deltaV_deltaV 对角元素
|
||||
t1=-2*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVi=diag(t3);
|
||||
% t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
% t2=diag(t1);
|
||||
% t3=t1-diag(t2);
|
||||
% t4=sum(t3,1);
|
||||
% t5=t4.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
% dQjdVidVi=diag(t5);
|
||||
dQjdVidVi=0;
|
||||
dQdVidVi=dQidVidVi+dQjdVidVi; % @@@@@
|
||||
%% deltaQ/deltaV_deltaThyta 非对角元素
|
||||
%t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=ones(Busnum,1)*Volt.*(t1);
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
%t4=t2'.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidTj=t4;
|
||||
t1=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=t3';
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidTj=t4;
|
||||
dQdVidTj=dQidVidTj+dQjdVidTj;% @@@@
|
||||
%% deltaQ/deltaV_deltaThyta 对角元素
|
||||
dQdVidTi=dQdTidVi;% @
|
||||
%% 生成AQi
|
||||
AQi=zeros(2*Busnum,2*Busnum);
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTj;%%非对角 TT
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVj;%%非对角 TV
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTj;%%非对角 VT
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVj;%%非对角 VV
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTi;%%对角
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVi;%%对角
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTi;%%对角
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVi;%%对角
|
||||
%% 生成ddh
|
||||
t=[zeros(size(PGi,1)+size(PVi,1),ContrlCount);
|
||||
zeros(2*Busnum,size(PVi,1)+size(PGi,1)),AQi+APi;
|
||||
];
|
||||
ddh=t;
|
||||
end
|
||||
58
func_ddh3.m
Normal file
58
func_ddh3.m
Normal file
@@ -0,0 +1,58 @@
|
||||
function ddh=func_ddh3(AngleIJMat,GB,Volt,Init_Y,Busnum,PVi,PGi,Y,UAngel,r,c,Angle)
|
||||
%决定用循环重写
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
%% 以下是学姐给的公式
|
||||
AngleIJ=AngleIJMat-angle(GB);
|
||||
mat_AngleIJ=sparse(r,c,UAngel(r)-UAngel(c)-Angle',Busnum,Busnum);
|
||||
mat_INV_AngleIJ=mat_AngleIJ';
|
||||
yP=Init_Y(1:size(Init_Y,2)/2);%暂时改这里 20111227
|
||||
yQ=Init_Y(size(Init_Y,2)/2+1:size(Init_Y,2));%暂时改这里 20111227
|
||||
t1=-diag(Y.*cos(mat_INV_AngleIJ)*diag(Volt)*yP');
|
||||
t2=diag(diag(Volt)*yP')*Y.*cos(mat_AngleIJ);
|
||||
t3=(t1+t2)*diag(Volt);
|
||||
t4=-(diag(Y.*cos(mat_AngleIJ)*Volt') -diag(Volt)*Y.*cos(mat_INV_AngleIJ) )*diag(diag(Volt)*yP');
|
||||
ddPdTdT=t3+t4;%ok1
|
||||
t1=(-diag(Y.*sin(mat_AngleIJ)*Volt')+diag(Volt)*Y.*sin(mat_INV_AngleIJ) )*diag(yP);
|
||||
t2= -diag( diag(Volt)*yP' )*Y.*sin(mat_AngleIJ)+diag(Y.*sin(mat_INV_AngleIJ)*diag(Volt)*yP');
|
||||
ddPdVdT=t1+t2;%ok1
|
||||
t1=diag( Y.*sin(mat_INV_AngleIJ)*diag(Volt)*yP');
|
||||
t2=diag(yP)*Y.*sin(mat_AngleIJ)*diag(Volt);
|
||||
t3=-diag(yP)*diag(Y.*sin(mat_AngleIJ)*Volt');
|
||||
t4=-Y.*sin(mat_INV_AngleIJ)*diag( diag(Volt)*yP' );
|
||||
ddPdTdV=t1+t2+t3+t4;%存疑与我的不一样
|
||||
t1=Y.*cos(mat_INV_AngleIJ)*diag(yP);
|
||||
t2=diag(yP)*Y.*cos(mat_AngleIJ);
|
||||
ddPdVdV=t1+t2;
|
||||
t1=-diag(Y.*sin(mat_AngleIJ)*Volt');
|
||||
t2=diag(Volt)*Y.*sin(mat_INV_AngleIJ);
|
||||
t3=(t1+t2)*diag( diag(Volt)*yQ' );
|
||||
t4=-diag( diag(Volt)*yQ' )*Y.*sin(mat_AngleIJ);
|
||||
|
||||
t5=diag(Y.*sin(mat_INV_AngleIJ)*diag(Volt)*yQ');
|
||||
t6=-(t4+t5)*diag(Volt);
|
||||
ddQdTdT=t3+t6;%ok1
|
||||
t1=(diag(Y.*cos(mat_AngleIJ)*Volt')-diag(Volt)*Y.*cos(mat_INV_AngleIJ) )*diag(yQ);
|
||||
t2=+diag( diag(Volt)*yQ' )*Y.*cos(mat_AngleIJ)-diag(Y.*cos(mat_INV_AngleIJ)*diag(Volt)*yQ');
|
||||
ddQdVdT=t1+t2;
|
||||
t1=Y.*cos(mat_INV_AngleIJ)*diag(diag(Volt)*yQ');
|
||||
t2=diag(yQ)*diag(Y.*cos(mat_AngleIJ)*Volt');
|
||||
t3=-diag(Y.*cos(mat_INV_AngleIJ)*diag(Volt)*yQ');
|
||||
t4=-diag(yQ)*Y.*cos(mat_AngleIJ)*diag(Volt);
|
||||
ddQdTdV=t1+t2+t3+t4;
|
||||
t1=Y.*sin(mat_INV_AngleIJ)*diag(yQ);
|
||||
t2=diag(yQ)*Y.*sin(mat_AngleIJ);
|
||||
ddQdVdV=t1+t2;
|
||||
t=[ddPdVdV+ddQdVdV,ddPdTdV+ddQdTdV ;
|
||||
ddPdVdT+ddQdVdT,ddPdTdT+ddQdTdT;
|
||||
];
|
||||
sizePGi=size(PGi,1);
|
||||
sizePVi=size(PVi,1);
|
||||
% t=[zeros(size(PGi,1)+size(PVi,1),ContrlCount);
|
||||
% zeros(2*Busnum,size(PVi,1)+size(PGi,1)),-t;
|
||||
% ];
|
||||
t=[
|
||||
sparse(sizePGi+sizePVi,ContrlCount);
|
||||
sparse(2*Busnum,sizePVi+sizePGi),-t;
|
||||
];
|
||||
ddh=t;
|
||||
end
|
||||
18
func_deltF.m
Normal file
18
func_deltF.m
Normal file
@@ -0,0 +1,18 @@
|
||||
function deltF=func_deltF(PG,PVi,GenC,ContrlCount,PGi)
|
||||
%t1=PG(setdiff(PVi,Balance));
|
||||
% t2=Volt'*Volt;
|
||||
% t3=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
% t4=t2.*t3;
|
||||
% t5=sum(t4,2);
|
||||
% PBal=t5(Balance);
|
||||
% PPG=([PQ(1),PBal])';%暂时用土办法处理一下
|
||||
%%
|
||||
c2=GenC(:,2);
|
||||
c1=GenC(:,3);
|
||||
t1=2*PG(PGi).*c2+c1;
|
||||
deltF=[
|
||||
sparse(t1);
|
||||
sparse(ContrlCount-size(PGi,1),1);
|
||||
];
|
||||
|
||||
end
|
||||
35
func_deltG.m
Normal file
35
func_deltG.m
Normal file
@@ -0,0 +1,35 @@
|
||||
function deltG=func_deltG(Busnum,PVi,PGi)
|
||||
%dg1_dPg=eye(size(PGi,1));
|
||||
sizePGi=size(PGi,1);
|
||||
sizePVi=size(PVi,1);
|
||||
%%
|
||||
dg1_dPg=sparse(1:sizePGi,1:sizePGi,ones(sizePGi,1),sizePGi,sizePGi);
|
||||
%dg2_dPg=zeros(size(PGi,1),size(PVi,1));
|
||||
dg2_dPg=sparse(sizePGi,sizePVi);
|
||||
%dg3_dPg=zeros(size(PGi,1),Busnum);
|
||||
dg3_dPg=sparse(sizePGi,Busnum);
|
||||
%%
|
||||
% dg1_dQr=zeros(size(PVi,1),size(PGi,1));
|
||||
% dg2_dQr=eye(size(PVi,1));
|
||||
% dg3_dQr=zeros(size(PVi,1),Busnum);
|
||||
dg1_dQr=sparse(sizePVi,sizePGi);
|
||||
dg2_dQr=sparse(1:sizePVi,1:sizePVi,ones(sizePVi,1),sizePVi,sizePVi);
|
||||
dg3_dQr=sparse(sizePVi,Busnum);
|
||||
%%
|
||||
% dg1_dx=zeros(2*Busnum,size(PGi,1));
|
||||
% dg2_dx=zeros(2*Busnum,size(PVi,1));
|
||||
% dg3_dx=zeros(2*Busnum,Busnum);
|
||||
% for I=1:Busnum
|
||||
% %dg3_dx(2*I,I)=1;ÔÝĘą¸ÄŇťĎÂ
|
||||
% dg3_dx(I,I)=1;
|
||||
% end
|
||||
dg1_dx=sparse(2*Busnum,sizePGi);
|
||||
dg2_dx=sparse(2*Busnum,sizePVi);
|
||||
dg3_dx=[sparse(1:Busnum,1:Busnum,ones(Busnum,1),Busnum,Busnum);
|
||||
sparse(Busnum,Busnum);
|
||||
];
|
||||
%%
|
||||
deltG=[dg1_dPg,dg2_dPg,dg3_dPg;
|
||||
dg1_dQr,dg2_dQr,dg3_dQr;
|
||||
dg1_dx,dg2_dx,dg3_dx;
|
||||
];
|
||||
9
func_deltH.m
Normal file
9
func_deltH.m
Normal file
@@ -0,0 +1,9 @@
|
||||
function deltH=func_deltH(Busnum,Volt,PVi,AngleIJMat,Y,GB,PGi,UAngel,r,c,Angle)
|
||||
|
||||
dH_dPg=sparse(1:size(PGi,1),PGi,ones(size(PGi,1),1),size(PGi,1),2*Busnum);
|
||||
|
||||
dH_dQr=sparse(1:size(PVi,1),PVi+Busnum,ones(size(PVi,1),1),size(PVi,1),2*Busnum);
|
||||
dH_dx = jacobian_M3(Busnum,Volt,Y,Angle,AngleIJMat,UAngel,r,c); %形成雅克比矩阵
|
||||
%deltH=[dH_dPg;dH_dQr;dH_dx'];%dH_dx 需要使用一下转置 暂时改一下
|
||||
deltH=[dH_dPg;dH_dQr;dH_dx'];
|
||||
end
|
||||
14
func_deltdeltF.m
Normal file
14
func_deltdeltF.m
Normal file
@@ -0,0 +1,14 @@
|
||||
function deltdeltF=func_deltdeltF(Busnum,GenC,PVi,PGi)
|
||||
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2; %P,Q,Volt theta这些控制变量数
|
||||
deltdeltF=[diag(GenC(:,2))*2,zeros(size(GenC,1),ContrlCount-size(GenC,1));
|
||||
zeros(ContrlCount-size(GenC,1),ContrlCount);
|
||||
]; %#ok<NASGU>
|
||||
sizeGenC=size(GenC(:,2),1);
|
||||
diagC=sparse(1:sizeGenC,1:sizeGenC,GenC(:,2),sizeGenC,sizeGenC);
|
||||
deltdeltF=[
|
||||
diagC*2,sparse(sizeGenC,ContrlCount-sizeGenC);
|
||||
sparse(ContrlCount-sizeGenC,ContrlCount);
|
||||
];
|
||||
|
||||
end
|
||||
13
imbalance.m
Normal file
13
imbalance.m
Normal file
@@ -0,0 +1,13 @@
|
||||
function [P0,Q0,U,Uangle]=imbalance(PG,PD,PQstandard,Pointpoweri,QG,QD,Busnum)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——计算功率不平衡分量等
|
||||
% 编 者: 梁 捷
|
||||
% 编制时间 :2010.12
|
||||
%**************************************************************************
|
||||
%% 计算功率的不平衡分量
|
||||
P0=(PG-PD)/PQstandard; % 求取节点注入有功功率的标幺值
|
||||
Q0=(QG-QD)/PQstandard; % 求取节点注入无功功率的标幺值
|
||||
%% 平启动赋电压初值
|
||||
U=ones(1,Busnum); % 按照平启动给电压幅值赋值
|
||||
Uangle=zeros(1,Busnum); % 按照平启动给电压相角赋值
|
||||
end
|
||||
38
jacobian.m
Normal file
38
jacobian.m
Normal file
@@ -0,0 +1,38 @@
|
||||
function [Jacob,PQ,U,Uangle]=jacobian(Busnum,Balance,PVi,PVu,U,Uangle,Y,Angle,P0,Q0,r,c)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
||||
U(PVi) = PVu;
|
||||
temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % 计算雅克比矩阵可利用的中间变量
|
||||
temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
||||
temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
||||
temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
||||
temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
||||
H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
||||
L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
||||
N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
|
||||
Q = Q0+temp2'; %求有功分量P
|
||||
P = P0+temp3'; %求无功分量Q
|
||||
%% 处理平衡节点和pv节点
|
||||
H(:,Balance) = 0;
|
||||
H(Balance,:) = 0;
|
||||
H(Balance,Balance) = 100; % 平衡节点对应的对角元素置一个有限数
|
||||
L(:,PVi) = 0;
|
||||
L(PVi,:) = 0;
|
||||
L = L+sparse(PVi,PVi,ones(1,length(PVi)),Busnum,Busnum); % PV节点对应的对角元素置为1
|
||||
J(:,Balance) = 0;
|
||||
J(PVi,:) = 0;
|
||||
N(:,PVi) = 0;
|
||||
N(Balance,:) = 0;
|
||||
Q(PVi) = 0; % 将pv节点的无功不平衡分量置零
|
||||
P(Balance) = 0; % 平衡节点的有功功率不平衡分量置零
|
||||
%% 合成PQ和雅可比矩阵
|
||||
PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
end
|
||||
61
jacobian_M.m
Normal file
61
jacobian_M.m
Normal file
@@ -0,0 +1,61 @@
|
||||
function Jacob=jacobian_M(Busnum,Volt,Y,Angle,AngleIJMat)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
temp1=-Volt'*Volt.*Y;
|
||||
AngleIJ=AngleIJMat-Angle;
|
||||
temp11=Volt'*ones(1,Busnum).*Y;
|
||||
temp2=sum(temp1.*sin(AngleIJ),2);
|
||||
temp22 = sum(temp11.*sin(AngleIJ),2);
|
||||
temp3 = sum(temp1.*cos(AngleIJ),2);
|
||||
temp33 = sum(temp11.*cos(AngleIJ),2);
|
||||
temp4=diag(temp2);
|
||||
temp44=diag(temp22);
|
||||
temp5=diag(temp3);
|
||||
temp55=diag(temp33);
|
||||
%计算Lii的累加项
|
||||
t1=ones(Busnum,1)*Volt.*Y;
|
||||
t2=sum(t1.*sin(AngleIJ),2);
|
||||
t3=sum(t1.*cos(AngleIJ),2);
|
||||
t4=diag(t2);
|
||||
t5=diag(t3);
|
||||
H = temp1.*sin(AngleIJ)-temp4;%
|
||||
L = -temp11.*sin(AngleIJ);%
|
||||
%L(1:Busnum,1:Busnum)=-temp44+;
|
||||
L=L-t4;
|
||||
N=-temp11.*cos(AngleIJ);%
|
||||
%N(1:Busnum,1:Busnum)=-temp55-diag(diag(temp11.*cos(Angle) ) );
|
||||
N=N-t5;
|
||||
J = -temp1.*cos(AngleIJ)+temp5;%
|
||||
%%
|
||||
|
||||
|
||||
%Q = Q0+temp2'; %求有功分量P
|
||||
%P = P0+temp3'; %求无功分量Q
|
||||
%% 处理平衡节点和pv节点
|
||||
% H(:,Balance) = 0;
|
||||
% H(Balance,:) = 0;
|
||||
% H(Balance,Balance) = 100; % 平衡节点对应的对角元素置一个有限数
|
||||
% L(:,PVi) = 0;
|
||||
% L(PVi,:) = 0;
|
||||
% L = L+sparse(PVi,PVi,ones(1,length(PVi)),Busnum,Busnum); % PV节点对应的对角元素置为1
|
||||
% J(:,Balance) = 0;
|
||||
% J(PVi,:) = 0;
|
||||
% N(:,PVi) = 0;
|
||||
% N(Balance,:) = 0;
|
||||
% Q(PVi) = 0; % 将pv节点的无功不平衡分量置零
|
||||
% P(Balance) = 0; % 平衡节点的有功功率不平衡分量置零
|
||||
%% 合成PQ和雅可比矩阵
|
||||
t1=zeros(2*Busnum);
|
||||
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
% t1(1:)
|
||||
% PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
%Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
Jacob=t1;
|
||||
end
|
||||
84
jacobian_M1.m
Normal file
84
jacobian_M1.m
Normal file
@@ -0,0 +1,84 @@
|
||||
function [Jacob]=jacobian_M1(Busnum,Volt,Y,Angle,AngleIJMat)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
%Volt(PVi) = PVu;
|
||||
temp1=Volt'*Volt.*Y;
|
||||
AngleIJ=AngleIJMat-Angle;
|
||||
temp2=sum(temp1.*sin(AngleIJ),2);
|
||||
temp3 = sum(temp1.*cos(AngleIJ),2);
|
||||
temp4=diag(temp2);
|
||||
temp5=diag(temp3);
|
||||
%t1=Volt'*ones(1,Busnum).*Y;
|
||||
t1=ones(Busnum,1)*Volt.*Y;
|
||||
%t1=Volt'*Volt.*Y;
|
||||
t2=sum(t1.*sin(AngleIJ),2);
|
||||
t3=sum(t1.*cos(AngleIJ),2);
|
||||
t4=diag(t2);
|
||||
t5=diag(t3);
|
||||
H = -temp1.*sin(AngleIJ)+temp4;%
|
||||
L = -t1.*sin(AngleIJ);%
|
||||
%L(1:Busnum,1:Busnum)=-temp44+;
|
||||
L=L-t4;
|
||||
N=-t1.*cos(AngleIJ);%
|
||||
%N(1:Busnum,1:Busnum)=-temp55-diag(diag(temp11.*cos(Angle) ) );
|
||||
N=N-t5;
|
||||
J = temp1.*cos(AngleIJ)-temp5;%
|
||||
|
||||
|
||||
%%%%
|
||||
%t=diag(Volt);
|
||||
%N=t*N;%*t;
|
||||
%L=t*L;%*t;
|
||||
|
||||
|
||||
%%%%
|
||||
%%
|
||||
%求无功分量Q
|
||||
% 平衡节点的有功功率不平衡分量置零
|
||||
%% 合成PQ和雅可比矩阵
|
||||
|
||||
% t1(1:)
|
||||
% 形成功率不平衡分量列向量
|
||||
%Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
|
||||
|
||||
t1=zeros(2*Busnum);
|
||||
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
Jacob=t1;
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
% function Jacob=jacobian_M1(Busnum,PVi,PVu,U,Uangle,Y,Angle,r,c)
|
||||
% AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
||||
% U(PVi) = PVu;
|
||||
% temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % 计算雅克比矩阵可利用的中间变量
|
||||
% temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
||||
% temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
||||
% temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
||||
% temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
||||
% H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
||||
% L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
||||
% N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
% J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
%
|
||||
%
|
||||
% t1=zeros(2*Busnum);
|
||||
% t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
% t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
% t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
% t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
% % t1(1:)
|
||||
% % PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
% %Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
% Jacob=t1;
|
||||
%
|
||||
% end
|
||||
84
jacobian_M2.m
Normal file
84
jacobian_M2.m
Normal file
@@ -0,0 +1,84 @@
|
||||
function [Jacob]=jacobian_M2(Busnum,Volt,Y,Angle,AngleIJMat)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
temp1=Volt'*Volt.*Y;
|
||||
AngleIJ=AngleIJMat-Angle;
|
||||
temp2=sum(temp1.*sin(AngleIJ),2);
|
||||
temp3 = sum(temp1.*cos(AngleIJ),2);
|
||||
temp4=diag(temp2);
|
||||
temp5=diag(temp3);
|
||||
%t1=Volt'*ones(1,Busnum).*Y;
|
||||
t1=ones(Busnum,1)*Volt.*Y;
|
||||
t11=Volt'*ones(1,Busnum).*Y;
|
||||
%t1=Volt'*Volt.*Y;
|
||||
t2=sum(t1.*sin(AngleIJ),2);
|
||||
t3=sum(t1.*cos(AngleIJ),2);
|
||||
t4=diag(t2);
|
||||
t5=diag(t3);
|
||||
H = -temp1.*sin(AngleIJ)+temp4;%
|
||||
L = -t11.*sin(AngleIJ);%
|
||||
%L(1:Busnum,1:Busnum)=-temp44+;
|
||||
L=L-t4;
|
||||
N=-t11.*cos(AngleIJ);%
|
||||
%N(1:Busnum,1:Busnum)=-temp55-diag(diag(temp11.*cos(Angle) ) );
|
||||
N=N-t5;
|
||||
J = temp1.*cos(AngleIJ)-temp5;%
|
||||
|
||||
|
||||
%%%%
|
||||
%t=diag(Volt);
|
||||
%N=t*N;%*t;
|
||||
%L=t*L;%*t;
|
||||
|
||||
|
||||
%%%%
|
||||
%%
|
||||
%求无功分量Q
|
||||
% 平衡节点的有功功率不平衡分量置零
|
||||
%% 合成PQ和雅可比矩阵
|
||||
|
||||
% t1(1:)
|
||||
% 形成功率不平衡分量列向量
|
||||
%Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
|
||||
|
||||
t1=zeros(2*Busnum);
|
||||
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
Jacob=t1;
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
% function Jacob=jacobian_M1(Busnum,PVi,PVu,U,Uangle,Y,Angle,r,c)
|
||||
% AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
||||
% U(PVi) = PVu;
|
||||
% temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % 计算雅克比矩阵可利用的中间变量
|
||||
% temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
||||
% temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
||||
% temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
||||
% temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
||||
% H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
||||
% L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
||||
% N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
% J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
%
|
||||
%
|
||||
% t1=zeros(2*Busnum);
|
||||
% t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
% t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
% t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
% t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
% % t1(1:)
|
||||
% % PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
% %Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
% Jacob=t1;
|
||||
%
|
||||
% end
|
||||
49
jacobian_M3.m
Normal file
49
jacobian_M3.m
Normal file
@@ -0,0 +1,49 @@
|
||||
function [Jacob]=jacobian_M3(Busnum,Volt,Y,Angle,AngleIJMat,UAngel,r,c)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%%参照图书馆6楼的书编写
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
AngleIJ=UAngel(r)-UAngel(c)-Angle';
|
||||
mat_AngleIJ=sparse(r,c,AngleIJ,Busnum,Busnum);
|
||||
mat_IvAngleIJ=mat_AngleIJ';
|
||||
H=diag(Volt)*Y.*sin(mat_IvAngleIJ)*diag(Volt)-diag(Y.*sin(mat_AngleIJ)*Volt')*diag(Volt);
|
||||
N=-diag(Volt)*Y.*cos(mat_IvAngleIJ)*diag(Volt)+diag(Y.*cos(mat_AngleIJ)*Volt')*diag(Volt);
|
||||
J=diag(Y.*cos(mat_AngleIJ)*Volt')+Y.*cos(mat_IvAngleIJ)*diag(Volt);
|
||||
L=diag(Y.*sin(mat_AngleIJ)*Volt')+Y.*sin(mat_IvAngleIJ)*diag(Volt);
|
||||
t1=[J,L;
|
||||
H,N;
|
||||
]';
|
||||
Jacob=-t1;
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
% function Jacob=jacobian_M1(Busnum,PVi,PVu,U,Uangle,Y,Angle,r,c)
|
||||
% AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
||||
% U(PVi) = PVu;
|
||||
% temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % 计算雅克比矩阵可利用的中间变量
|
||||
% temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
||||
% temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
||||
% temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
||||
% temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
||||
% H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
||||
% L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
||||
% N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
% J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
%
|
||||
%
|
||||
% t1=zeros(2*Busnum);
|
||||
% t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
% t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
% t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
% t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
% % t1(1:)
|
||||
% % PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
% %Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
% Jacob=t1;
|
||||
%
|
||||
% end
|
||||
77
jacobian_M4.m
Normal file
77
jacobian_M4.m
Normal file
@@ -0,0 +1,77 @@
|
||||
function [Jacob]=jacobian_M4(Busnum,Volt,Y,Angle,AngleIJMat)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
temp1=Volt'*Volt.*Y;
|
||||
AngleIJ=AngleIJMat-Angle;
|
||||
tt1=temp1.*sin(AngleIJ);
|
||||
tt2=temp1.*cos(AngleIJ);
|
||||
tt3=diag(tt1);
|
||||
tt4=diag(tt2);
|
||||
tt5=tt1-diag(tt3);
|
||||
tt6=tt2-diag(tt4);
|
||||
temp2=sum(tt5,2);
|
||||
temp3 = sum(tt6,2);
|
||||
HH=temp2;
|
||||
JJ=-temp3;
|
||||
t1=ones(Busnum,1)*Volt.*Y;
|
||||
t11=Volt'*ones(1,Busnum).*Y;
|
||||
t2=sum(t1.*sin(AngleIJ),2);
|
||||
t3=sum(t1.*cos(AngleIJ),2);
|
||||
t4=diag(t1.*sin(AngleIJ));
|
||||
t5=diag(t1.*cos(AngleIJ));
|
||||
NN=-diag(t3)-diag(t5);
|
||||
LL=-diag(t2)+diag(t4);
|
||||
H = -temp1.*sin(AngleIJ);
|
||||
L = -t11.*sin(AngleIJ);%
|
||||
N=-t11.*cos(AngleIJ);%
|
||||
J = temp1.*cos(AngleIJ);%
|
||||
H=H-diag(diag(H));
|
||||
N=N-diag(diag(N));
|
||||
J=J-diag(diag(J));
|
||||
L=L-diag(diag(L));
|
||||
H=H+diag(HH);
|
||||
N=N+NN;
|
||||
J=J+diag(JJ);
|
||||
L=L+LL;
|
||||
|
||||
|
||||
t1=zeros(2*Busnum);
|
||||
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
Jacob=t1;
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
% function Jacob=jacobian_M1(Busnum,PVi,PVu,U,Uangle,Y,Angle,r,c)
|
||||
% AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
||||
% U(PVi) = PVu;
|
||||
% temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % 计算雅克比矩阵可利用的中间变量
|
||||
% temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
||||
% temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
||||
% temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
||||
% temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
||||
% H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
||||
% L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
||||
% N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
% J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
%
|
||||
%
|
||||
% t1=zeros(2*Busnum);
|
||||
% t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
% t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
% t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
% t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
% % t1(1:)
|
||||
% % PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
% %Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
% Jacob=t1;
|
||||
%
|
||||
% end
|
||||
23
modifyadmmatrix.m
Normal file
23
modifyadmmatrix.m
Normal file
@@ -0,0 +1,23 @@
|
||||
function [new_G,new_B,GB,Y,r,c,Angle] = modifyadmmatrix(ii,jj,G,B)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成节点导纳矩阵Y
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 支路导纳计算
|
||||
new_G=G;
|
||||
new_G(ii,jj)=new_G(ii,jj)-G(ii,jj);
|
||||
new_G(jj,ii)=new_G(jj,ii)-G(jj,ii);
|
||||
new_G(ii,ii)=new_G(ii,ii)+G(ii,jj);
|
||||
new_G(jj,jj)=new_G(jj,jj)+G(ii,jj);
|
||||
new_B=B;
|
||||
new_B(ii,jj)=new_B(ii,jj)-B(ii,jj);
|
||||
new_B(jj,ii)=new_B(jj,ii)-B(jj,ii);
|
||||
new_B(ii,ii)=new_B(ii,ii)+B(ii,jj);
|
||||
new_B(jj,jj)=new_B(jj,jj)+B(ii,jj);
|
||||
|
||||
%% 化作极坐标形式
|
||||
GB = new_G+new_B.*1i; %将电导,电纳合并,写成复数形式
|
||||
Y = abs(GB); %求节点导纳幅值
|
||||
[r,c] = find(Y);
|
||||
Angle = angle(GB(GB~=0)); %求节点导纳角度
|
||||
76
openfile.m
Normal file
76
openfile.m
Normal file
@@ -0,0 +1,76 @@
|
||||
function [Busnum,Balance,PQstandard,Precision,Linei,Linej,Liner,Linex,Lineb,kmax,Transfori ,...
|
||||
Transforj,Transforr,Transforx,Transfork0,Branchi,Branchb,Pointpoweri,PG,QG,PD,QD,PVi,PVu,Gen,GenU,GenL,GenC,CenterA,PGi,PVQU,PVQL] = openfile(FileName)
|
||||
%**************************************************************************
|
||||
% 程序简介 : 子函数——读取潮流计算所需数据
|
||||
% 编 者:
|
||||
% 编制时间 :2010.12
|
||||
%**************************************************************************
|
||||
data = dlmread(FileName); % 一次读入全部数据
|
||||
Busnum= data(1,1); % 节点数
|
||||
PQstandard = data(1,3); % 基准容量
|
||||
kmax = data(1,4); %最大迭代次数
|
||||
Precision = data(2,1); % 精度
|
||||
Balance = data(3,2); % 生成1到节点号的列向量
|
||||
CenterA=data(1,5); %中心参数
|
||||
LineNum=data(1,2); %支路数
|
||||
Base=data(1,3);
|
||||
%% 各参数矩阵分块
|
||||
zeroRow = find(data(:,1)==0); %查找第一列元素为零的行号
|
||||
line = data(zeroRow(1)+1:zeroRow(2)-1,:); % 形成线路参数矩阵
|
||||
ground = data(zeroRow(2)+1:zeroRow(3)-1,:); % 形成对地支路参数矩阵
|
||||
tran = data(zeroRow(3)+1:zeroRow(4)-1,:); % 形成变压器参数矩阵
|
||||
buspq = data(zeroRow(4)+1:zeroRow(5)-1,:); % 形成节点功率参数矩阵
|
||||
PV = data(zeroRow(5)+1:zeroRow(6)-1,:); % 形成pv节点功率参数矩阵
|
||||
Gen=data(zeroRow(6)+1:zeroRow(7)-1,:);
|
||||
%% 线路参数矩阵分块
|
||||
Linei = line(:,2); % 节点i
|
||||
Linej= line(:,3); % 节点j
|
||||
Liner = line(:,4); % 线路电阻
|
||||
Linex = line(:,5); % 线路电抗
|
||||
Lineb = line(:,6); % b/2
|
||||
%% 对地支路参数矩阵
|
||||
Branchi = ground(:,1); % 对地支路节点号
|
||||
Branchb = ground(:,2); % 对地支路的导纳
|
||||
%% 变压器参数矩阵
|
||||
Transfori = tran(:,2); % 节点i
|
||||
Transforj= tran(:,3); % 节点j
|
||||
Transforr = tran(:,4); % 变压器电阻
|
||||
Transforx= tran(:,5); % 变压器电抗
|
||||
Transfork0 = tran(:,6); % 变压器变比
|
||||
%% 节点功率参数矩阵
|
||||
Pointpoweri = buspq(:,1);
|
||||
PG=buspq(:,2); % 发电机有功
|
||||
QG=buspq(:,3); % 发电机无功
|
||||
PD=buspq(:,4); % 负荷有功
|
||||
QD=buspq(:,5); % 负荷无功
|
||||
%%除以基值
|
||||
PG=PG/Base;
|
||||
QG=QG/Base;
|
||||
PD=PD/Base;
|
||||
QD=QD/Base;
|
||||
%% pv节点功率参数矩阵
|
||||
PVi = PV(:,1); % PV节点的节点号
|
||||
PVu = PV(:,2); % PV节点电压
|
||||
PVQL=PV(:,3);%PV节点无功下限
|
||||
PVQL=PVQL/Base;
|
||||
PVQU=PV(:,4); %PV节点无功上限
|
||||
PVQU=PVQU/Base;
|
||||
%% 发电机参数
|
||||
%GenU=Gen(:,[1 5 6]);
|
||||
%GenL=Gen(:,[1 7 8]);
|
||||
GenC=Gen(:,[1 2:4]);
|
||||
t=GenC(:,2);
|
||||
GenC(:,2)=GenC(:,4);
|
||||
GenC(:,4)=t;
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%GenC(:,2:4)=100*GenC(:,2:4);
|
||||
t=Gen(:,[1 5]);
|
||||
%GenL=[t,PVQL(PVi)];
|
||||
GenL=t;%有功下界
|
||||
GenL(:,2)=GenL(:,2)/Base;
|
||||
t=Gen(:,[1 6]);
|
||||
%GenU=[t,PVQU(PVi)];
|
||||
GenU=t;%有功上届
|
||||
GenU(:,2)=GenU(:,2)/Base;
|
||||
PGi=Gen(:,1);%发电机节点号
|
||||
end
|
||||
35
pf.m
Normal file
35
pf.m
Normal file
@@ -0,0 +1,35 @@
|
||||
function [kmax,Precision,Uangle,U,Busnum,PVi,PVu,Balance,Y,Angle,P0,Q0,r,c,GB,Linei,Linej,Transfori,Transforj,GenU,GenL,GenC,PG,QG,PD,QD,CenterA,PGi,PVQU,PVQL]=pf(FileName)
|
||||
%**************************************************************************
|
||||
% 程序名称:电力系统潮流计算程序
|
||||
% 程序算法:极坐标下的牛顿-拉夫逊法
|
||||
% 程序功能:主函数
|
||||
% 程序编者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
clc;
|
||||
tic;
|
||||
%% 读取数据文件
|
||||
[Busnum,Balance,PQstandard,Precision,Linei,Linej,Liner,Linex,Lineb,kmax,Transfori ,...
|
||||
Transforj,Transforr,Transforx,Transfork0,Branchi,Branchb,Pointpoweri,PG,QG,PD,QD,PVi,PVu,Gen,GenU,GenL,GenC,CenterA,PGi,PVQU,PVQL]= openfile(FileName);
|
||||
%% 形成节点导纳矩阵
|
||||
[G,B,GB,Y,r,c,Angle] = admmatrix(Busnum,Linei,Linej,Liner,Linex,Lineb,Transfori,Transforj,Transforr,...
|
||||
Transforx,Transfork0,Branchi,Branchb);
|
||||
[P0,Q0,U,Uangle] = Initial(PG,PD,PQstandard,Pointpoweri,QG,QD,Busnum); %求功率不平衡量
|
||||
disp('迭代次数i 最大不平衡量');
|
||||
%% 循环体计算
|
||||
for i = 0:kmax
|
||||
[Jacob,PQ,U,Uangle] = jacobian(Busnum,Balance,PVi,PVu,U,Uangle,Y,Angle,P0,Q0,r,c); %形成雅克比矩阵
|
||||
% disp('第一次雅克比');
|
||||
%full(Jacob);
|
||||
m = max(abs(PQ));
|
||||
m = full(m);
|
||||
fprintf(' %u %.8f \n',i,m);
|
||||
if m > Precision %判断不平衡量是否满足精度要求
|
||||
[Uangle,U] = solvefun(Busnum,Jacob,PQ,Uangle,U); %求解修正方程,更新电压变量
|
||||
else
|
||||
disp(['收敛,迭代次数为',num2str(i),'次']);
|
||||
break %若满足精度要求,则计算收敛
|
||||
end
|
||||
end
|
||||
toc;
|
||||
end
|
||||
13
solvefun.m
Normal file
13
solvefun.m
Normal file
@@ -0,0 +1,13 @@
|
||||
function[Uangle,U] = solvefun(Busnum,Jacob,PQ,Uangle,U)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——求解修正方程
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 计算修正方程
|
||||
PQ = sparse(PQ);
|
||||
X = (Jacob\-PQ')';
|
||||
%% 更新电压变量
|
||||
Uangle = Uangle+X(1:Busnum); % 更新电压相角
|
||||
U = U+U.*X(Busnum+1:end); % 更新电压幅值
|
||||
end
|
||||
14
sy.m
Normal file
14
sy.m
Normal file
@@ -0,0 +1,14 @@
|
||||
clear
|
||||
clc
|
||||
syms T11 T12 T21 T22;
|
||||
syms V1 V2;
|
||||
syms Y11 Y12 Y21 Y22;
|
||||
yP=ones(1,2);
|
||||
AngleIJ=[T11,T12;T21,T22];
|
||||
Volt=[V1,V2];
|
||||
Y=[Y11,Y12;Y21,Y22];
|
||||
t1=-diag(Y.*cos(AngleIJ')*diag(Volt)*yP');
|
||||
t2=diag(diag(Volt)*yP')*Y.*cos(AngleIJ);
|
||||
t3=(t1+t2)*diag(Volt);
|
||||
t4=-(diag(Y.*cos(AngleIJ)*Volt') -diag(Volt)*Y.*cos(AngleIJ') )*diag(diag(Volt)*yP');
|
||||
ddPdTdT=t1+t2+t3+t4
|
||||
Reference in New Issue
Block a user