commit
7566fd250f
|
|
@ -0,0 +1 @@
|
|||
*.asv
|
||||
|
|
@ -0,0 +1,32 @@
|
|||
5 5 1. 50 .1
|
||||
1.e-5 2
|
||||
1 5
|
||||
0
|
||||
1 1 2 0.04 0.25 0.25
|
||||
2 1 3 0.1 0.35 0
|
||||
3 2 3 0.08 0.30 0.25
|
||||
0
|
||||
0
|
||||
1 2 4 0 0.015 1.05 1 1.06
|
||||
2 3 5 0 0.03 1.05 1 1.06
|
||||
0
|
||||
1 0 0 1.6 0.8
|
||||
2 0 0 2 1
|
||||
3 0 0 3.7 1.3
|
||||
4 5 0 0 0
|
||||
5 0 0 0 0
|
||||
0
|
||||
4 1.05 -3 3
|
||||
5 1.05 -2.1 5
|
||||
0
|
||||
4 1200.6485 200.4335 50.439 1 8
|
||||
5 1857.201 500.746 200.55 1 8
|
||||
0
|
||||
1 1 2 2
|
||||
2 1 3 0.65
|
||||
3 2 3 2
|
||||
4 2 4 6
|
||||
5 3 5 5
|
||||
0
|
||||
0
|
||||
0
|
||||
|
|
@ -0,0 +1,9 @@
|
|||
function [deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX(XX)
|
||||
deltZ=XX(1:14);
|
||||
deltL=XX(15:28);
|
||||
deltW=XX(29:42);
|
||||
deltU=XX(43:56);
|
||||
deltX=XX(57:70);
|
||||
deltY=XX(71:80);
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
function [deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX1(XX,ContrlCount,RestraintCount,Busnum)
|
||||
% deltX=XX(1:14);
|
||||
% deltY=XX(15:24);
|
||||
% deltZ=XX(25:38);
|
||||
% deltW=XX(39:52);
|
||||
% deltL=XX(53:66);
|
||||
% deltU=XX(67:80);
|
||||
deltX=XX(1:ContrlCount);
|
||||
k1=ContrlCount+2*Busnum;
|
||||
deltY=XX(ContrlCount+1:k1);
|
||||
k2=k1;
|
||||
k1=k2+RestraintCount;
|
||||
deltZ=XX(k2+1:k1);
|
||||
k2=k1;
|
||||
k1=k2+RestraintCount;
|
||||
deltW=XX(k2+1:k1);
|
||||
k2=k1;
|
||||
k1=k2+RestraintCount;
|
||||
deltL=XX(k2+1:k1);
|
||||
k2=k1;
|
||||
k1=k2+RestraintCount;
|
||||
deltU=XX(k2+1:k1);
|
||||
end
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
function CalCost(GenC,PG,PGi)
|
||||
cost=GenC(:,2).*PG(PGi).^2+GenC(:,3).*PG(PGi)+GenC(:,4);
|
||||
% Org_PG=[5;
|
||||
% 2.5794];
|
||||
% book_PG=[5.5056;
|
||||
% 2.1568];
|
||||
% cost2=GenC(:,2).*Org_PG(1:2).^2+GenC(:,3).*Org_PG(1:2)+GenC(:,4);
|
||||
% cost3=GenC(:,2).*book_PG(1:2).^2+GenC(:,3).*book_PG(1:2)+GenC(:,4);
|
||||
fprintf('总花费为%f\n',sum(cost,1));
|
||||
% fprintf('PF总花费为%f\n',sum(cost2,1));
|
||||
% fprintf('书上OPF总花费为%f\n',sum(cost3,1));
|
||||
% fprintf('较书上减少费用为为%f\n',sum(cost3,1)-sum(cost,1));
|
||||
end
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
function DrawGap(plotGap)
|
||||
x=find(plotGap);
|
||||
ts=size(x,2);
|
||||
plot(1:ts,plotGap(1:ts));
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,12 @@
|
|||
function AA=FormAA(L_1Z,deltG,U_1W,Hcoma,deltH)
|
||||
tOnes=eye(14);
|
||||
tZeros=zeros(14);
|
||||
AA=[
|
||||
tOnes,L_1Z,tZeros,tZeros,tZeros,zeros(14,10);
|
||||
tZeros,tOnes,tZeros,tZeros,-deltG',zeros(14,10);
|
||||
tZeros,tZeros,tOnes,U_1W,tZeros,zeros(14,10);
|
||||
tZeros,tZeros,tZeros,tOnes,deltG',zeros(14,10);
|
||||
tZeros,tZeros,tZeros,tZeros,Hcoma,deltH;
|
||||
zeros(10,14),zeros(10,14),zeros(10,14),zeros(10,14),deltH',zeros(10,10);
|
||||
];
|
||||
end
|
||||
|
|
@ -0,0 +1,17 @@
|
|||
function AA=FormAA1(deltG,deltdeltF,ddh,ddg,deltH,Init_L,Init_U,Init_W,Init_Z,Busnum,PVi,PGi,RestraintCount,Balance)
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
H=-deltdeltF+ddh;%+ddg;
|
||||
AA=[
|
||||
H,deltH,deltG,deltG,zeros(ContrlCount,RestraintCount),zeros(ContrlCount,RestraintCount);
|
||||
deltH',zeros(2*Busnum,2*Busnum),zeros(2*Busnum,RestraintCount),zeros(2*Busnum,RestraintCount),zeros(2*Busnum,RestraintCount),zeros(2*Busnum,RestraintCount);
|
||||
deltG',zeros(RestraintCount,2*Busnum),zeros(RestraintCount,RestraintCount),zeros(RestraintCount,RestraintCount),-eye(RestraintCount,RestraintCount),zeros(RestraintCount,RestraintCount);
|
||||
deltG',zeros(RestraintCount,2*Busnum),zeros(RestraintCount),zeros(RestraintCount),zeros(RestraintCount),eye(RestraintCount);
|
||||
zeros(RestraintCount,ContrlCount),zeros(RestraintCount,2*Busnum),diag(Init_L),zeros(RestraintCount),diag(Init_Z),zeros(RestraintCount);
|
||||
zeros(RestraintCount,ContrlCount),zeros(RestraintCount,2*Busnum),zeros(RestraintCount),diag(Init_U),zeros(RestraintCount),diag(Init_W);
|
||||
];
|
||||
%´¦ÀíÆ½ºâ½Úµã
|
||||
t=size(PVi,1)+size(PGi,1);
|
||||
AA(t+2*Balance-1,:)=0;
|
||||
AA(:,t+2*Balance-1)=0;
|
||||
AA(t+2*Balance-1,t+2*Balance-1)=1;
|
||||
end
|
||||
|
|
@ -0,0 +1,9 @@
|
|||
function AlphaD=FormAlphaD(Init_Z,deltZ,Init_W,deltW)
|
||||
tdeltZinx=find(deltZ<0);
|
||||
tdeltWinx=find(deltW>0);
|
||||
t1=-Init_Z(tdeltZinx)./deltZ(tdeltZinx)';
|
||||
t2=-Init_W(tdeltWinx)./deltW(tdeltWinx)';
|
||||
t3=[t1,t2];
|
||||
t4=min(t3);
|
||||
AlphaD=0.9995*min([t4 1]);
|
||||
end
|
||||
|
|
@ -0,0 +1,9 @@
|
|||
function AlphaP=FormAlphaP(Init_L,deltL,Init_U,deltU)
|
||||
tdeltLinx=find(deltL<0);
|
||||
tdeltUinx=find(deltU<0);
|
||||
t1=-Init_L(tdeltLinx)./deltL(tdeltLinx)';
|
||||
t2=-Init_U(tdeltUinx)./deltU(tdeltUinx)';
|
||||
t3=[t1,t2];
|
||||
t4=min(t3);
|
||||
AlphaP=0.9995*min([t4 1]);
|
||||
end
|
||||
|
|
@ -0,0 +1,20 @@
|
|||
function Mat_G=FormG(Volt,PVi,PGi,PG,QG)
|
||||
%t1=PG(PVi);
|
||||
%GP=t1;%发电机P
|
||||
%GP=[4.5 4.5]';
|
||||
%%线路
|
||||
%发电机Q
|
||||
% t1=Volt'*Volt;
|
||||
% t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
% t3=t1.*t2;
|
||||
% t4=sum(t3,2);%发电机Q
|
||||
%GQ=t4;
|
||||
Mat_G=[
|
||||
%GP;
|
||||
PG(PGi);
|
||||
QG(PVi);
|
||||
%GQ(PVi);
|
||||
%[0 1.45]';
|
||||
Volt';
|
||||
];
|
||||
end
|
||||
|
|
@ -0,0 +1,24 @@
|
|||
function Mat_H=FormH(Busnum,GB,AngleIJMat,Volt,PG,PD,QG,QD,Y,UAngel,r,c,Angle)
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=Volt'*Volt;
|
||||
t3=t1.*t2;
|
||||
t4=sum(-t3,2);%P
|
||||
t5=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t6=t2.*t5;
|
||||
t7=sum(-t6,2);%Q
|
||||
t8=PG-PD;
|
||||
t9=QG-QD;
|
||||
|
||||
% Mat_H(1:2:2*Busnum)=t8(1:Busnum)+t4(1:Busnum);
|
||||
% Mat_H(2:2:2*Busnum)=t9(1:Busnum)+t7(1:Busnum);
|
||||
% Mat_H=Mat_H';
|
||||
%%%%Ò»ÏÂÊÇѧ½ã¸øµÄ¹«Ê½
|
||||
%AngleIJ=AngleIJMat-angle(GB);
|
||||
AngleIJ=sparse(r,c,UAngel(r)-UAngel(c)-Angle',Busnum,Busnum);
|
||||
%dP=PG-PD-diag(Volt)*Y*cos(AngleIJ)*Volt';
|
||||
dP=PG-PD-diag(Volt)*Y.*cos(AngleIJ)*Volt';
|
||||
dQ=QG-QD-diag(Volt)*Y.*sin(AngleIJ)*Volt';
|
||||
|
||||
Mat_H=[dP;dQ;];
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
function Lw=FormLw(Mat_G,Init_U,GenU,Busnum,PVQU)
|
||||
|
||||
PU=GenU(:,2);%发电机有功上界
|
||||
QU=PVQU(:,1);%发电机无功上界
|
||||
VoltU=1.1*ones(1,Busnum);
|
||||
|
||||
t1=([PU',QU',VoltU])';
|
||||
t2=Mat_G+Init_U'-t1;
|
||||
Lw=t2;
|
||||
end
|
||||
|
|
@ -0,0 +1,4 @@
|
|||
function Lx=FormLx(deltF,deltH,Init_Y,deltG,Init_Z,Init_W)
|
||||
t1=deltF-deltH*Init_Y'-deltG*(Init_Z'+Init_W');
|
||||
Lx=t1;
|
||||
end
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
function LxComa=FormLxComa(deltF,deltG,deltH,Init_L,Luu,Lul,Init_Z,Init_Y,Lz,Init_U,Init_W,Lw,Lx)
|
||||
%t1=deltG*(Init_Z'+Init_W');%%
|
||||
t2=Lul+diag(Init_Z)*Lz;
|
||||
t3=inv(diag(Init_L));
|
||||
t4=t3*t2;%
|
||||
t5=Luu-diag(Init_W)*Lw;
|
||||
t6=inv(diag(Init_U));
|
||||
t7=t6*t5;%
|
||||
t8=deltG*(t4+t7);%%
|
||||
LxComa=Lx+t8;
|
||||
end
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
function Lz=FormLz(Mat_G,Init_L,GenL,Busnum,PVQL)
|
||||
|
||||
PL=GenL(:,2);%发电机有功下界
|
||||
QL=PVQL(:,1);%发电机无功下界
|
||||
VoltL=0.9*ones(1,Busnum);
|
||||
t1=([PL',QL',VoltL])';
|
||||
|
||||
t2=Mat_G-Init_L'-t1;
|
||||
Lz=t2;
|
||||
end
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
function YY=FormYY(Init_L,Lul,Lz,Ly,Init_U,Luu,Lw,LxComa)
|
||||
t=[
|
||||
-inv(diag(Init_L))*Lul;
|
||||
Lz;
|
||||
-inv(diag(Init_U))*Luu;
|
||||
-Lw;
|
||||
LxComa;
|
||||
-Ly;
|
||||
];
|
||||
YY=t;
|
||||
end
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
function YY=FormYY1(Lul,Lz,Ly,Luu,Lw,Lx)
|
||||
YY=[
|
||||
Lx;
|
||||
-Ly;
|
||||
-Lz;
|
||||
-Lw;
|
||||
-Lul;
|
||||
-Luu;
|
||||
];
|
||||
end
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,398 @@
|
|||
118 179 100 28 0.1
|
||||
1.e-5 2
|
||||
1 69
|
||||
0
|
||||
1 1 2 0.0303 0.0999 0.0127
|
||||
2 1 3 0.0129 0.0424 0.00541
|
||||
3 4 5 0.00176 0.00798 0.00105
|
||||
4 3 5 0.0241 0.1080 0.0142
|
||||
5 5 6 0.0119 0.0540 0.00713
|
||||
6 6 7 0.00459 0.0208 0.00275
|
||||
7 8 9 0.00244 0.0305 0.5810
|
||||
9 9 10 0.00258 0.0322 0.6150
|
||||
10 4 11 0.0209 0.0688 0.00874
|
||||
11 5 11 0.0203 0.0682 0.00869
|
||||
12 11 12 0.00595 0.0196 0.00251
|
||||
13 2 12 0.0187 0.0616 0.00786
|
||||
14 3 12 0.0484 0.1600 0.0203
|
||||
15 7 12 0.00862 0.0340 0.00437
|
||||
16 11 13 0.02225 0.0731 0.00938
|
||||
17 12 14 0.0215 0.0707 0.00908
|
||||
18 13 15 0.0744 0.2444 0.03134
|
||||
19 14 15 0.0595 0.1950 0.0251
|
||||
20 12 16 0.0212 0.0834 0.0107
|
||||
21 15 17 0.0132 0.0437 0.0222
|
||||
22 16 17 0.0454 0.1801 0.0233
|
||||
23 17 18 0.0123 0.0505 0.00649
|
||||
24 18 19 0.01119 0.0493 0.00571
|
||||
25 19 20 0.0252 0.1170 0.0149
|
||||
26 15 19 0.0120 0.0394 0.00505
|
||||
27 20 21 0.0183 0.0849 0.0108
|
||||
28 21 22 0.0209 0.0970 0.0123
|
||||
29 22 23 0.0342 0.1590 0.0202
|
||||
30 23 24 0.0135 0.0492 0.0249
|
||||
31 23 25 0.0156 0.0800 0.0432
|
||||
33 25 27 0.0318 0.1630 0.0882
|
||||
34 27 28 0.01913 0.0855 0.0108
|
||||
35 28 29 0.0237 0.0943 0.0119
|
||||
37 8 30 0.00431 0.0504 0.2570
|
||||
38 26 30 0.00799 0.0860 0.4540
|
||||
39 17 31 0.0474 0.1563 0.01995
|
||||
40 29 31 0.0108 0.0331 0.00415
|
||||
41 23 32 0.0317 0.1153 0.05865
|
||||
42 31 32 0.0298 0.0985 0.01255
|
||||
43 27 32 0.0229 0.0755 0.00963
|
||||
44 15 33 0.0380 0.1244 0.01597
|
||||
45 19 34 0.0752 0.2470 0.0316
|
||||
46 35 36 0.00224 0.0102 0.00124
|
||||
47 35 37 0.0110 0.0497 0.00659
|
||||
48 33 37 0.0415 0.1420 0.0183
|
||||
49 34 36 0.00871 0.0268 0.00284
|
||||
50 34 37 0.00256 0.0094 0.00429
|
||||
52 37 39 0.0321 0.1060 0.0135
|
||||
53 37 40 0.0593 0.1680 0.0210
|
||||
54 30 38 0.00464 0.0540 0.2110
|
||||
55 39 40 0.0184 0.0605 0.00776
|
||||
56 40 41 0.0145 0.0487 0.00611
|
||||
57 40 42 0.0555 0.1830 0.0233
|
||||
58 41 42 0.0410 0.1350 0.0172
|
||||
59 43 44 0.0608 0.2454 0.03034
|
||||
60 34 43 0.0413 0.1681 0.02113
|
||||
61 44 45 0.0224 0.0901 0.0112
|
||||
62 45 46 0.0400 0.1356 0.0166
|
||||
63 46 47 0.0380 0.1270 0.0158
|
||||
64 46 48 0.0601 0.1890 0.0236
|
||||
65 47 49 0.0191 0.0625 0.00802
|
||||
66 42 49 0.03575 0.1615 0.0860
|
||||
67 45 49 0.0684 0.1860 0.0222
|
||||
68 48 49 0.0179 0.0505 0.00629
|
||||
69 49 50 0.0267 0.0752 0.00937
|
||||
70 49 51 0.0486 0.1370 0.0171
|
||||
71 51 52 0.0203 0.0588 0.00698
|
||||
72 52 53 0.0405 0.1635 0.02029
|
||||
73 53 54 0.0263 0.1220 0.0155
|
||||
74 49 54 0.03976 0.1450 0.0734
|
||||
75 54 55 0.0169 0.0707 0.0101
|
||||
76 54 56 0.00275 0.00955 0.00366
|
||||
77 55 56 0.00488 0.0151 0.00187
|
||||
78 56 57 0.0343 0.0966 0.0121
|
||||
79 50 57 0.0474 0.1340 0.0166
|
||||
80 56 58 0.0343 0.0966 0.0121
|
||||
81 51 58 0.0255 0.0719 0.00894
|
||||
82 54 59 0.0503 0.2293 0.0299
|
||||
83 56 59 0.04069 0.12243 0.05525
|
||||
84 55 59 0.04739 0.2158 0.02823
|
||||
85 59 60 0.0317 0.1450 0.0188
|
||||
86 59 61 0.0328 0.1500 0.0194
|
||||
87 60 61 0.00264 0.0135 0.00728
|
||||
88 60 62 0.0123 0.0561 0.00734
|
||||
89 61 62 0.00824 0.0376 0.0049
|
||||
91 63 64 0.00172 0.0200 0.1080
|
||||
93 38 65 0.00901 0.0986 0.5230
|
||||
94 64 65 0.00269 0.0302 0.1900
|
||||
95 49 66 0.0090 0.04595 0.0248
|
||||
96 62 66 0.0482 0.2180 0.0289
|
||||
97 62 67 0.0258 0.1170 0.0155
|
||||
99 66 67 0.0224 0.1015 0.01341
|
||||
100 65 68 0.00138 0.0160 0.3190
|
||||
101 47 69 0.0844 0.2778 0.03546
|
||||
102 49 69 0.0985 0.3240 0.0414
|
||||
104 69 70 0.0300 0.1270 0.0610
|
||||
105 24 70 0.10221 0.4115 0.05099
|
||||
106 70 71 0.00882 0.0355 0.00439
|
||||
107 24 72 0.0488 0.1960 0.0244
|
||||
108 71 72 0.0446 0.1800 0.02222
|
||||
109 71 73 0.00866 0.0454 0.00589
|
||||
110 70 74 0.0401 0.1323 0.01684
|
||||
111 70 75 0.0428 0.1410 0.0180
|
||||
112 69 75 0.0405 0.1220 0.0620
|
||||
113 74 75 0.0123 0.0406 0.00517
|
||||
114 76 77 0.0444 0.1480 0.0184
|
||||
115 69 77 0.0309 0.1010 0.0519
|
||||
116 75 77 0.0601 0.1999 0.02489
|
||||
117 77 78 0.00376 0.0124 0.00632
|
||||
118 78 79 0.00546 0.0244 0.00324
|
||||
119 77 80 0.01077 0.03318 0.0350
|
||||
120 79 80 0.0156 0.0704 0.00945
|
||||
121 68 81 0.00175 0.0202 0.4040
|
||||
123 77 82 0.0298 0.0853 0.04087
|
||||
124 82 83 0.0112 0.03665 0.01898
|
||||
125 83 84 0.0625 0.1320 0.0129
|
||||
126 83 85 0.0430 0.1480 0.0174
|
||||
127 84 85 0.0302 0.0641 0.00617
|
||||
128 85 86 0.0350 0.1230 0.0138
|
||||
129 86 87 0.02828 0.2074 0.02225
|
||||
130 85 88 0.0200 0.1020 0.0138
|
||||
131 85 89 0.0239 0.1730 0.0235
|
||||
132 88 89 0.0139 0.0712 0.00969
|
||||
133 89 90 0.01631 0.06515 0.0794
|
||||
134 90 91 0.0254 0.0836 0.0107
|
||||
135 89 92 0.00791 0.03827 0.0481
|
||||
136 91 92 0.0387 0.1272 0.01634
|
||||
137 92 93 0.0258 0.0848 0.0109
|
||||
138 92 94 0.0481 0.1580 0.0203
|
||||
139 93 94 0.0223 0.0732 0.00938
|
||||
140 94 95 0.0132 0.0434 0.00555
|
||||
141 80 96 0.0356 0.1820 0.0247
|
||||
142 82 96 0.0162 0.0530 0.0272
|
||||
143 94 96 0.0269 0.0869 0.0115
|
||||
144 80 97 0.0183 0.0934 0.0127
|
||||
145 80 98 0.0238 0.1080 0.0143
|
||||
146 80 99 0.0454 0.2060 0.0273
|
||||
148 94 100 0.0178 0.0580 0.0302
|
||||
149 95 96 0.0171 0.0547 0.00737
|
||||
150 96 97 0.0173 0.0885 0.0120
|
||||
151 98 100 0.0397 0.1790 0.0238
|
||||
152 99 100 0.0180 0.0813 0.0108
|
||||
153 100 101 0.0277 0.1262 0.0164
|
||||
154 92 102 0.0123 0.0559 0.00732
|
||||
155 101 102 0.0246 0.1120 0.0147
|
||||
156 100 103 0.0160 0.0525 0.0268
|
||||
157 100 104 0.0451 0.2040 0.02705
|
||||
158 103 104 0.0466 0.1584 0.02035
|
||||
159 103 105 0.0535 0.1625 0.0204
|
||||
160 100 106 0.0605 0.2290 0.0310
|
||||
161 104 105 0.00994 0.0378 0.00493
|
||||
162 105 106 0.0140 0.0547 0.00717
|
||||
163 105 107 0.0530 0.1830 0.0236
|
||||
164 105 108 0.0261 0.0703 0.09222
|
||||
166 108 109 0.0105 0.0288 0.0038
|
||||
167 103 110 0.03906 0.1813 0.02305
|
||||
168 109 110 0.0278 0.0762 0.0101
|
||||
169 110 111 0.0220 0.0755 0.0100
|
||||
170 110 112 0.0247 0.0640 0.0310
|
||||
171 17 113 0.00913 0.0301 0.00384
|
||||
172 32 113 0.0615 0.2030 0.0259
|
||||
173 32 114 0.0135 0.0612 0.00814
|
||||
174 27 115 0.0164 0.0741 0.00986
|
||||
175 114 115 0.0023 0.0104 0.00138
|
||||
176 68 116 0.00034 0.00405 0.0820
|
||||
177 12 117 0.0329 0.1400 0.0179
|
||||
178 75 118 0.01450 0.04810 0.00599
|
||||
179 76 118 0.0164 0.0544 0.00678
|
||||
0
|
||||
5 -0.4
|
||||
17 0.
|
||||
34 .14
|
||||
37 -0.25
|
||||
44 .1
|
||||
45 .1
|
||||
46 .1
|
||||
48 .15
|
||||
74 .12
|
||||
79 .2
|
||||
82 .2
|
||||
83 .1
|
||||
105 .2
|
||||
107 .06
|
||||
110 .06
|
||||
0
|
||||
1 8 5 0.0 0.0267 0.9850 0.9 1.1
|
||||
2 25 26 0.0 0.0382 0.9600 0.9 1.1
|
||||
3 17 30 0.0 0.0388 0.9600 0.9 1.1
|
||||
4 37 38 0.0 0.0375 0.9350 0.9 1.1
|
||||
5 59 63 0.0 0.0386 0.9600 0.9 1.1
|
||||
6 61 64 0.0 0.0268 0.9850 0.9 1.1
|
||||
7 65 66 0.0 0.0370 0.9350 0.9 1.1
|
||||
8 68 69 0.0 0.0370 0.9350 0.9 1.1
|
||||
9 80 81 0.0 0.0370 0.9350 0.9 1.1
|
||||
10 92 100 0.0648 0.2950 1. 0.9 1.1
|
||||
11 106 107 0.0530 0.1830 1. 0.9 1.1
|
||||
0
|
||||
1 0. 0. 51. 27.
|
||||
2 0. 0. 20. 9.
|
||||
3 0. 0. 39. 10.
|
||||
4 -9. 0. 30. 12.
|
||||
5 0. 0. 0. 0.
|
||||
6 0. 0. 52. 22.
|
||||
7 0. 0. 19. 2.
|
||||
8 -28. 0. 0. 0.
|
||||
9 0. 0. 0. 0.
|
||||
10 450. 0. 0. 0.
|
||||
11 0. 0. 70. 23.
|
||||
12 85. 0. 47. 10.
|
||||
13 0. 0. 34. 16.
|
||||
14 0. 0. 14. 1.
|
||||
15 0. 0. 90. 30.
|
||||
16 0. 0. 25. 10.
|
||||
17 0. 0. 11. 3.
|
||||
18 0. 0. 60. 34.
|
||||
19 0. 0. 45. 25.
|
||||
20 0. 0. 18. 3.
|
||||
21 0. 0. 14. 8.
|
||||
22 0. 0. 10. 5.
|
||||
23 0. 0. 7. 3.
|
||||
24 -13. 0. 0. 0.
|
||||
25 220. 0. 0. 0.
|
||||
26 314. 0. 0. 0.
|
||||
27 -9. 0. 62. 13.
|
||||
28 0. 0. 17. 7.
|
||||
29 0. 0. 24. 4.
|
||||
30 0. 0. 0. 0.
|
||||
31 7. 0. 43. 27.
|
||||
32 0. 0. 59. 23.
|
||||
33 0. 0. 23. 9.
|
||||
34 0. 0. 59. 26.
|
||||
35 0. 0. 33. 9.
|
||||
36 0. 0. 31. 17.
|
||||
37 0. 0. 0. 0.
|
||||
38 0. 0. 0. 0.
|
||||
39 0. 0. 27. 11.
|
||||
40 -46. 0. 20. 23.
|
||||
41 0. 0. 37. 10.
|
||||
42 -59. 0. 37. 23.
|
||||
43 0. 0. 18. 7.
|
||||
44 0. 0. 16. 8.
|
||||
45 0. 0. 53. 22.
|
||||
46 19. 0. 28. 10.
|
||||
47 0. 0. 34. 0.
|
||||
48 0. 0. 20. 11.
|
||||
49 204. 0. 87. 30.
|
||||
50 0. 0. 17. 4.
|
||||
51 0. 0. 17. 8.
|
||||
52 0. 0. 18. 5.
|
||||
53 0. 0. 23. 11.
|
||||
54 48. 0. 113. 32.
|
||||
55 0. 0. 63. 22.
|
||||
56 0. 0. 84. 18.
|
||||
57 0. 0. 12. 3.
|
||||
58 0. 0. 12. 3.
|
||||
59 155. 0. 277. 113.
|
||||
60 0. 0. 78. 3.
|
||||
61 160. 0. 0. 0.
|
||||
62 0. 0. 77. 14.
|
||||
63 0. 0. 0. 0.
|
||||
64 0. 0. 0. 0.
|
||||
65 391. 0. 0. 0.
|
||||
66 392. 0. 39. 18.
|
||||
67 0. 0. 28. 7.
|
||||
68 0. 0. 0. 0.
|
||||
69 516.4 0. 0. 0.
|
||||
70 0. 0. 66. 20.
|
||||
71 0. 0. 0. 0.
|
||||
72 -12. 0. 0. 0.
|
||||
73 -6. 0. 0. 0.
|
||||
74 0. 0. 68. 27.
|
||||
75 0. 0. 47. 11.
|
||||
76 0. 0. 68. 36.
|
||||
77 0. 0. 61. 28.
|
||||
78 0. 0. 71. 26.
|
||||
79 0. 0. 39. 32.
|
||||
80 477. 0. 130. 26.
|
||||
81 0. 0. 0. 0.
|
||||
82 0. 0. 54. 27.
|
||||
83 0. 0. 20. 10.
|
||||
84 0. 0. 11. 7.
|
||||
85 0. 0. 24. 15.
|
||||
86 0. 0. 21. 10.
|
||||
87 4. 0. 0. 0.
|
||||
88 0. 0. 48. 10.
|
||||
89 607. 0. 0. 0.
|
||||
90 -85. 0. 78. 42.
|
||||
91 -10. 0. 0. 0.
|
||||
92 0. 0. 65. 10.
|
||||
93 0. 0. 12. 7.
|
||||
94 0. 0. 30. 16.
|
||||
95 0. 0. 42. 31.
|
||||
96 0. 0. 38. 15.
|
||||
97 0. 0. 15. 9.
|
||||
98 0. 0. 34. 8.
|
||||
99 -42. 0. 0. 0.
|
||||
100 252. 0. 37. 18.
|
||||
101 0. 0. 22. 15.
|
||||
102 0. 0. 5. 3.
|
||||
103 40. 0. 23. 16.
|
||||
104 0. 0. 38. 25.
|
||||
105 0. 0. 31. 26.
|
||||
106 0. 0. 43. 16.
|
||||
107 -22. 0. 28. 12.
|
||||
108 0. 0. 2. 1.
|
||||
109 0. 0. 8. 3.
|
||||
110 0. 0. 39. 30.
|
||||
111 36. 0. 0. 0.
|
||||
112 -43. 0. 25. 13.
|
||||
113 -6. 0. 0. 0.
|
||||
114 0. 0. 8. 3.
|
||||
115 0. 0. 22. 7.
|
||||
116 -184. 0. 0. 0.
|
||||
117 0. 0. 20. 8.
|
||||
118 0. 0. 33. 15.
|
||||
0
|
||||
1 .955 -5. 15.
|
||||
4 .998 -300. 300.
|
||||
6 .99 -13. 50.
|
||||
8 1.015 -300. 300.
|
||||
10 1.05 -147. 200.
|
||||
12 .99 -35. 120.
|
||||
15 .97 -10. 30.
|
||||
18 .973 -16. 50.
|
||||
19 .963 -8. 24.
|
||||
24 .992 -300. 300.
|
||||
25 1.05 -47. 140.
|
||||
26 1.015 -1000. 1000.
|
||||
27 .968 -300. 300.
|
||||
31 .967 -300. 300.
|
||||
32 .964 -14. 42.
|
||||
34 .984 -8. 24.
|
||||
36 .98 -8. 24.
|
||||
40 .97 -300. 300.
|
||||
42 .985 -300. 300.
|
||||
46 1.005 -100. 100.
|
||||
49 1.025 -85. 210.
|
||||
54 .955 -300. 300.
|
||||
55 .952 -8. 23.
|
||||
56 .954 -8. 15.
|
||||
59 .985 -60. 180.
|
||||
61 .995 -100. 300.
|
||||
62 .998 -20. 20.
|
||||
65 1.005 -67. 200.
|
||||
66 1.05 -67. 200.
|
||||
69 1.035 -300. 300.
|
||||
70 .984 -10. 32.
|
||||
72 .98 -100. 100.
|
||||
73 .991 -100. 100.
|
||||
74 .958 -6. 9.
|
||||
76 .943 -8. 23.
|
||||
77 1.006 -20. 70.
|
||||
80 1.04 -165. 280.
|
||||
85 .985 -8. 23.
|
||||
87 1.015 -100. 1000.
|
||||
89 1.005 -210. 300.
|
||||
90 .985 -300. 300.
|
||||
91 .98 -100. 100.
|
||||
92 .993 -3. 9.
|
||||
99 1.01 -100. 100.
|
||||
100 1.017 -50. 155.
|
||||
103 1.001 -15. 40.
|
||||
104 .971 -8. 23.
|
||||
105 .965 -8. 23.
|
||||
107 .952 -200. 200.
|
||||
110 .973 -8. 23.
|
||||
111 .98 -100. 1000.
|
||||
112 .975 -100. 1000.
|
||||
113 .993 -100. 200.
|
||||
116 1.005 -1000. 1000.
|
||||
0
|
||||
10 0. 1.25 1. 100. 600.
|
||||
12 0. 2.6 1.2 60. 200.
|
||||
25 0. 1.5 1. 50. 300.
|
||||
26 0. 1.5 1. 100. 400.
|
||||
49 0. 2.1 1. 100. 400.
|
||||
54 0. 2.0 1.4 20. 300.
|
||||
59 0. 1.6 1. 50. 350.
|
||||
61 0. 1.5 1. 50. 400.
|
||||
65 0. 1.5 1. 100. 500.
|
||||
66 0. 1.5 1. 100. 500.
|
||||
69 0. 1.0 1. 100. 800.
|
||||
80 0. 1.23 1. 100. 600.
|
||||
89 0. 1.2 1. 100. 800.
|
||||
100 0. 1.6 1. 100. 400.
|
||||
103 0. 2.5 1.2 20. 200.
|
||||
111 0. 2.4 1.1 10. 200.
|
||||
0
|
||||
0
|
||||
0
|
||||
1 100 92 -25. 25.
|
||||
2 106 107 -18. 18.
|
||||
0
|
||||
0
|
||||
|
|
@ -0,0 +1,58 @@
|
|||
14 20 100. 20 0.1
|
||||
1.e-5 2
|
||||
1 1
|
||||
0
|
||||
1 1 2 0.01938 0.05917 0.0264
|
||||
2 1 5 0.05403 0.22304 0.0246
|
||||
3 2 3 0.04699 0.19797 0.0219
|
||||
4 2 4 0.05811 0.17632 0.0187
|
||||
5 2 5 0.05695 0.17388 0.0170
|
||||
6 3 4 0.06701 0.17103 0.0173
|
||||
7 4 5 0.01335 0.04211 0.0064
|
||||
11 6 11 0.09498 0.19890 0.0
|
||||
12 6 12 0.12291 0.15581 0.0
|
||||
13 6 13 0.06615 0.13027 0.0
|
||||
14 7 8 0.0 0.17615 0.0
|
||||
15 7 9 0.0 0.11001 0.0
|
||||
16 9 10 0.03181 0.08450 0.0
|
||||
19 12 13 0.22092 0.19988 0.0
|
||||
20 13 14 0.17038 0.34802 0.0
|
||||
4 9 14 0.12711 0.27038 0.0
|
||||
5 10 11 0.08205 0.19207 0.0
|
||||
0
|
||||
9 0.19
|
||||
0
|
||||
1 4 7 0.0 0.20912 0.978 0.9 1.1
|
||||
2 4 9 0.0 0.55618 0.969 0.9 1.1
|
||||
3 5 6 0.0 0.25202 0.932 0.9 1.1
|
||||
0
|
||||
1 60. 0. 0. 0.
|
||||
2 40. 42.4 21.7 12.7
|
||||
3 0. 23.39 94.2 19.0
|
||||
4 0. 0. 47.8 -3.9
|
||||
5 0. 0. 7.6 1.6
|
||||
6 0. 12.24 11.2 7.5
|
||||
7 0. 0. 0. 0.
|
||||
8 0. 17.36 0. 0.
|
||||
9 0. 0. 29.5 16.6
|
||||
10 0. 0. 9. 5.8
|
||||
11 0. 0. 3.5 1.8
|
||||
12 0. 0. 6.1 1.6
|
||||
13 0. 0. 13.5 5.8
|
||||
14 0. 0. 14.9 5.
|
||||
0
|
||||
1 1.060 -40. 50.
|
||||
2 1.045 -40. 50.
|
||||
3 1.010 0. 40.
|
||||
6 1.070 -30. 40.
|
||||
8 1.090 -30. 45.
|
||||
0
|
||||
1 105. 2.45 0.005 50. 200.
|
||||
2 44.4 3.51 0.005 20. 100.
|
||||
6 40.6 3.89 0.005 20. 100.
|
||||
0
|
||||
0
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,96 @@
|
|||
30 41 100.0 28 0.1
|
||||
1.e-5 2
|
||||
1 1
|
||||
0
|
||||
1 1 2 0.0192 0.0575 0.0264
|
||||
2 1 3 0.0452 0.1852 0.0204
|
||||
3 2 4 0.0570 0.1737 0.0184
|
||||
4 3 4 0.0132 0.0379 0.0042
|
||||
5 2 5 0.0472 0.1983 0.0209
|
||||
6 2 6 0.0581 0.1763 0.0187
|
||||
7 4 6 0.0119 0.0414 0.0045
|
||||
8 5 7 0.0460 0.1160 0.0102
|
||||
9 6 7 0.0267 0.0820 0.0085
|
||||
10 6 8 0.0120 0.0420 0.0045
|
||||
13 9 11 0.0 0.2080 0.0
|
||||
15 12 13 0.0 0.1400 0.0
|
||||
16 12 14 0.1231 0.2559 0.0
|
||||
17 12 15 0.0662 0.1304 0.0
|
||||
18 12 16 0.945 0.1987 0.0
|
||||
19 14 15 0.2210 0.1997 0.0
|
||||
20 16 17 0.0824 0.1923 0.0
|
||||
21 15 18 0.1070 0.2185 0.0
|
||||
22 18 19 0.0639 0.1292 0.0
|
||||
23 19 20 0.0340 0.0680 0.0
|
||||
24 10 20 0.0936 0.2090 0.0
|
||||
25 10 17 0.0324 0.0845 0.0
|
||||
26 10 21 0.0348 0.0749 0.0
|
||||
27 10 22 0.0727 0.1499 0.0
|
||||
28 21 22 0.0116 0.0236 0.0
|
||||
29 15 23 0.1000 0.2020 0.0
|
||||
30 22 24 0.1150 0.1790 0.0
|
||||
31 23 24 0.1320 0.2700 0.0
|
||||
32 24 25 0.1885 0.3292 0.0
|
||||
33 25 26 0.2554 0.3800 0.0
|
||||
34 25 27 0.1093 0.2087 0.0
|
||||
36 27 29 0.2198 0.4153 0.0
|
||||
37 27 30 0.3202 0.6027 0.0
|
||||
38 29 30 0.2399 0.4533 0.0
|
||||
39 8 28 0.0636 0.2000 0.0214
|
||||
40 6 28 0.0169 0.0599 0.0065
|
||||
41 9 10 0.0 0.1100 0.0
|
||||
0
|
||||
10 0.19
|
||||
24 0.043
|
||||
0
|
||||
1 9 6 0.0 0.2080 0.978 0.9 1.1
|
||||
2 6 10 0.0 0.5560 0.969 0.9 1.1
|
||||
3 12 4 0.0 0.2560 0.932 0.9 1.1
|
||||
4 28 27 0.0 0.3960 0.968 0.9 1.1
|
||||
0
|
||||
1 20. 0. 0. 0.
|
||||
2 57.56 2.43 21.7 12.7
|
||||
3 0. 0. 2.4 1.2
|
||||
4 0. 0. 7.6 1.6
|
||||
5 24.56 22.25 94.2 19.
|
||||
6 0. 0. 0. 0.
|
||||
7 0. 0. 22.8 10.9
|
||||
8 35 37.27 30. 30.
|
||||
9 0. 0. 0. 0.
|
||||
10 0. 0. 5.8 2.
|
||||
11 17.93 17.61 0. 0.
|
||||
12 0. 0. 11.2 7.5
|
||||
13 16.91 24.69 0. 0.
|
||||
14 0. 0. 6.2 1.6
|
||||
15 0. 0. 8.2 2.5
|
||||
16 0. 0. 3.5 1.8
|
||||
17 0. 0. 9. 5.8
|
||||
18 0. 0. 3.2 .9
|
||||
19 0. 0. 9.5 3.4
|
||||
20 0. 0. 2.2 .7
|
||||
21 0. 0. 17.5 11.2
|
||||
22 0. 0. 0. 0.
|
||||
23 0. 0. 3.2 1.6
|
||||
24 0. 0. 8.7 6.7
|
||||
25 0. 0. 0. 0.
|
||||
26 0. 0. 3.5 2.3
|
||||
27 0. 0. 0. 0.
|
||||
28 0. 0. 0. 0.
|
||||
29 0. 0. 2.4 .9
|
||||
30 0. 0. 10.6 1.9
|
||||
0
|
||||
1 1.060 -50 50.
|
||||
2 1.045 -40. 60.
|
||||
5 1.010 -40. 40.
|
||||
8 1.010 -10. 40.
|
||||
11 1.082 -6. 24.
|
||||
13 1.071 -6. 24.
|
||||
0
|
||||
1 10. 2.0 2.0 10. 60.
|
||||
2 10. 1.5 2.4 10. 60.
|
||||
5 20. 1.8 0.8 10. 150.
|
||||
8 10. 1.0 1.2 10. 120.
|
||||
11 20. 1.8 0.8 10. 150.
|
||||
13 10. 1.5 2.0 10. 60.
|
||||
0
|
||||
0
|
||||
|
|
@ -0,0 +1,824 @@
|
|||
300 409 100. 28 0.1
|
||||
1.e-5 4
|
||||
1 38
|
||||
0
|
||||
1 269 291 0.00080 0.00348 0.00000
|
||||
2 226 271 0.05558 0.24666 0.00000
|
||||
3 226 300 0.05559 0.24666 0.00000
|
||||
4 227 225 0.03811 0.21648 0.00000
|
||||
5 225 228 0.05370 0.07026 0.00000
|
||||
6 228 229 1.10680 0.95278 0.00000
|
||||
7 271 300 0.05580 0.24666 0.00000
|
||||
8 300 144 0.07378 0.06352 0.00000
|
||||
9 144 270 0.03832 0.02894 0.00000
|
||||
10 227 68 0.23552 0.99036 0.00000
|
||||
11 146 147 0.00100 0.00600 0.00000
|
||||
12 230 71 0.00100 0.00900 0.00000
|
||||
13 230 148 0.00600 0.02700 0.05400
|
||||
14 292 272 0.00000 0.00300 0.00000
|
||||
15 292 150 0.00800 0.06900 0.13900
|
||||
16 292 104 0.00100 0.00700 0.00000
|
||||
17 70 149 0.00200 0.01900 1.12700
|
||||
18 147 72 0.00600 0.02900 0.01800
|
||||
19 272 231 0.00100 0.00900 0.07000
|
||||
20 272 98 0.00100 0.00700 0.01400
|
||||
21 148 273 0.01300 0.05950 0.03300
|
||||
22 148 75 0.01300 0.04200 0.08100
|
||||
23 72 273 0.00600 0.02700 0.01300
|
||||
24 273 74 0.00800 0.03400 0.01800
|
||||
25 231 233 0.00200 0.01500 0.11800
|
||||
26 74 232 0.00600 0.03400 0.01600
|
||||
27 75 286 0.01400 0.04200 0.09700
|
||||
28 286 297 0.06500 0.24800 0.12100
|
||||
29 286 165 0.09900 0.24800 0.03500
|
||||
30 286 166 0.09600 0.36300 0.04800
|
||||
31 149 274 0.00200 0.02200 1.28000
|
||||
32 150 233 0.00200 0.01800 0.03600
|
||||
33 150 163 0.01300 0.08000 0.15100
|
||||
34 232 77 0.01600 0.03300 0.01500
|
||||
35 232 79 0.06900 0.18600 0.09800
|
||||
36 233 235 0.00400 0.03400 0.28000
|
||||
37 77 234 0.05200 0.11100 0.05000
|
||||
38 234 78 0.01900 0.03900 0.01800
|
||||
39 235 14 0.00700 0.06800 0.13400
|
||||
40 78 151 0.03600 0.07100 0.03400
|
||||
41 151 79 0.04500 0.12000 0.06500
|
||||
42 151 15 0.04300 0.13000 0.01400
|
||||
43 236 80 0.00000 0.06300 0.00000
|
||||
44 236 238 0.00250 0.01200 0.01300
|
||||
45 236 152 0.00600 0.02900 0.02000
|
||||
46 236 287 0.00700 0.04300 0.02600
|
||||
47 80 274 0.00100 0.00800 0.04200
|
||||
48 237 245 0.01200 0.06000 0.00800
|
||||
49 237 161 0.00600 0.01400 0.00200
|
||||
50 237 293 0.01000 0.02900 0.00300
|
||||
51 81 164 0.00400 0.02700 0.04300
|
||||
52 297 238 0.00800 0.04700 0.00800
|
||||
53 297 152 0.02200 0.06400 0.00700
|
||||
54 297 287 0.01000 0.03600 0.02000
|
||||
55 297 241 0.01700 0.08100 0.04800
|
||||
56 297 165 0.10200 0.25400 0.03300
|
||||
57 297 166 0.04700 0.12700 0.01600
|
||||
58 238 287 0.00800 0.03700 0.02000
|
||||
59 238 239 0.03200 0.08700 0.04000
|
||||
60 82 274 0.00060 0.00640 0.40400
|
||||
61 152 155 0.02600 0.15400 0.02200
|
||||
62 287 274 0.00000 0.02900 0.00000
|
||||
63 287 241 0.06500 0.19100 0.02000
|
||||
64 287 156 0.03100 0.08900 0.03600
|
||||
65 274 153 0.00200 0.01400 0.80600
|
||||
66 239 275 0.02600 0.07200 0.03500
|
||||
67 239 155 0.09500 0.26200 0.03200
|
||||
68 239 84 0.01300 0.03900 0.01600
|
||||
69 275 154 0.02700 0.08400 0.03900
|
||||
70 275 157 0.02800 0.08400 0.03700
|
||||
71 240 87 0.00700 0.04100 0.31200
|
||||
72 240 246 0.00900 0.05400 0.41100
|
||||
73 153 248 0.00500 0.04200 0.69000
|
||||
74 154 277 0.05200 0.14500 0.07300
|
||||
75 154 94 0.04300 0.11800 0.01300
|
||||
76 155 173 0.02500 0.06200 0.00700
|
||||
77 241 156 0.03100 0.09400 0.04300
|
||||
78 156 83 0.03700 0.10900 0.04900
|
||||
79 83 242 0.02700 0.08000 0.03600
|
||||
80 84 157 0.02500 0.07300 0.03500
|
||||
81 157 242 0.03500 0.10300 0.04700
|
||||
82 242 243 0.06500 0.16900 0.08200
|
||||
83 243 85 0.04600 0.08000 0.03600
|
||||
84 243 159 0.15900 0.53700 0.07100
|
||||
85 85 86 0.00900 0.02600 0.00500
|
||||
86 86 158 0.00200 0.01300 0.01500
|
||||
87 87 276 0.00900 0.06500 0.48500
|
||||
88 276 88 0.01600 0.10500 0.20300
|
||||
89 276 101 0.00100 0.00700 0.01300
|
||||
90 159 19 0.02650 0.17200 0.02600
|
||||
91 160 298 0.05100 0.23200 0.02800
|
||||
92 160 247 0.05100 0.15700 0.02300
|
||||
93 89 244 0.03200 0.10000 0.06200
|
||||
94 89 20 0.02000 0.12340 0.02800
|
||||
95 244 245 0.03600 0.13100 0.06800
|
||||
96 244 277 0.03400 0.09900 0.04700
|
||||
97 245 293 0.01800 0.08700 0.01100
|
||||
98 245 21 0.02560 0.19300 0.00000
|
||||
99 277 161 0.02100 0.05700 0.03000
|
||||
100 277 247 0.01800 0.05200 0.01800
|
||||
101 246 164 0.00400 0.02700 0.05000
|
||||
102 246 23 0.02860 0.20130 0.37900
|
||||
103 161 293 0.01600 0.04300 0.00400
|
||||
104 293 162 0.00100 0.00600 0.00700
|
||||
105 293 90 0.01400 0.07000 0.03800
|
||||
106 293 22 0.08910 0.26760 0.02900
|
||||
107 293 24 0.07820 0.21270 0.02200
|
||||
108 162 247 0.00600 0.02200 0.01100
|
||||
109 162 1 0.00000 0.03600 0.00000
|
||||
110 247 298 0.09900 0.37500 0.05100
|
||||
111 90 298 0.02200 0.10700 0.05800
|
||||
112 248 205 0.00350 0.03300 0.53000
|
||||
113 248 206 0.00350 0.03300 0.53000
|
||||
114 91 249 0.00800 0.06400 0.12800
|
||||
115 249 163 0.01200 0.09300 0.18300
|
||||
116 249 17 0.00600 0.04800 0.09200
|
||||
117 165 167 0.04700 0.11900 0.01400
|
||||
118 166 168 0.03200 0.17400 0.02400
|
||||
119 167 169 0.10000 0.25300 0.03100
|
||||
120 167 278 0.02200 0.07700 0.03900
|
||||
121 168 171 0.01900 0.14400 0.01700
|
||||
122 168 250 0.01700 0.09200 0.01200
|
||||
123 169 278 0.27800 0.42700 0.04300
|
||||
124 278 170 0.02200 0.05300 0.00700
|
||||
125 278 280 0.03800 0.09200 0.01200
|
||||
126 278 171 0.04800 0.12200 0.01500
|
||||
127 92 170 0.02400 0.06400 0.00700
|
||||
128 92 280 0.03400 0.12100 0.01500
|
||||
129 279 173 0.05300 0.13500 0.01700
|
||||
130 279 174 0.00200 0.00400 0.00200
|
||||
131 279 251 0.04500 0.35400 0.04400
|
||||
132 279 252 0.05000 0.17400 0.02200
|
||||
133 170 280 0.01600 0.03800 0.00400
|
||||
134 280 172 0.04300 0.06400 0.02700
|
||||
135 171 250 0.01900 0.06200 0.00800
|
||||
136 172 174 0.07600 0.13000 0.04400
|
||||
137 172 16 0.04400 0.12400 0.01500
|
||||
138 250 173 0.01200 0.08800 0.01100
|
||||
139 250 252 0.15700 0.40000 0.04700
|
||||
140 174 18 0.07400 0.20800 0.02600
|
||||
141 251 252 0.07000 0.18400 0.02100
|
||||
142 251 94 0.10000 0.27400 0.03100
|
||||
143 251 175 0.10900 0.39300 0.03600
|
||||
144 252 93 0.14200 0.40400 0.05000
|
||||
145 93 175 0.01700 0.04200 0.00600
|
||||
146 95 256 0.00360 0.01990 0.00400
|
||||
147 96 255 0.00200 0.10490 0.00100
|
||||
148 97 253 0.00010 0.00180 0.01700
|
||||
149 253 254 0.00000 0.02710 0.00000
|
||||
150 253 142 0.00000 0.61630 0.00000
|
||||
151 142 255 0.00000 -0.36970 0.00000
|
||||
152 253 176 0.00220 0.29150 0.00000
|
||||
153 254 255 0.00000 0.03390 0.00000
|
||||
154 254 176 0.00000 0.05820 0.00000
|
||||
155 256 177 0.08080 0.23440 0.02900
|
||||
156 256 179 0.09650 0.36690 0.05400
|
||||
157 177 178 0.03600 0.10760 0.11700
|
||||
158 177 179 0.04760 0.14140 0.14900
|
||||
159 179 294 0.00060 0.01970 0.00000
|
||||
160 294 257 0.00590 0.04050 0.25000
|
||||
161 294 181 0.01150 0.11060 0.18500
|
||||
162 294 182 0.01980 0.16880 0.32100
|
||||
163 294 191 0.00500 0.05000 0.33000
|
||||
164 294 192 0.00770 0.05380 0.33500
|
||||
165 294 196 0.01650 0.11570 0.17100
|
||||
166 257 180 0.00590 0.05770 0.09500
|
||||
167 257 183 0.00490 0.03360 0.20800
|
||||
168 257 195 0.00590 0.05770 0.09500
|
||||
169 180 299 0.00780 0.07730 0.12600
|
||||
170 180 288 0.00260 0.01930 0.03000
|
||||
171 181 299 0.00760 0.07520 0.12200
|
||||
172 181 288 0.00210 0.01860 0.03000
|
||||
173 299 182 0.00160 0.01640 0.02600
|
||||
174 299 105 0.00170 0.01650 0.02600
|
||||
175 299 115 0.00790 0.07930 0.12700
|
||||
176 299 195 0.00780 0.07840 0.12500
|
||||
177 288 295 0.00170 0.01170 0.28900
|
||||
178 288 195 0.00260 0.01930 0.03000
|
||||
179 288 196 0.00210 0.01860 0.03000
|
||||
180 288 2 0.00020 0.01010 0.00000
|
||||
181 183 99 0.00430 0.02930 0.18000
|
||||
182 183 121 0.00390 0.03810 0.25800
|
||||
183 99 184 0.00910 0.06230 0.38500
|
||||
184 184 295 0.01250 0.08900 0.54000
|
||||
185 184 106 0.00560 0.03900 0.95300
|
||||
186 295 296 0.00150 0.01140 0.28400
|
||||
187 295 201 0.00050 0.00340 0.02100
|
||||
188 295 122 0.00070 0.01510 0.12600
|
||||
189 295 262 0.00050 0.00340 0.02100
|
||||
190 185 197 0.05620 0.22480 0.08100
|
||||
191 296 186 0.01200 0.08360 0.12300
|
||||
192 296 187 0.01520 0.11320 0.68400
|
||||
193 296 282 0.04680 0.33690 0.51900
|
||||
194 296 258 0.04300 0.30310 0.46300
|
||||
195 296 102 0.04890 0.34920 0.53800
|
||||
196 296 119 0.00130 0.00890 0.11900
|
||||
197 186 258 0.02910 0.22670 0.34200
|
||||
198 187 281 0.00600 0.05700 0.76700
|
||||
199 281 282 0.00750 0.07730 0.11900
|
||||
200 281 103 0.01270 0.09090 0.13500
|
||||
201 282 258 0.00850 0.05880 0.08700
|
||||
202 282 103 0.02180 0.15110 0.22300
|
||||
203 258 102 0.00730 0.05040 0.07400
|
||||
204 188 261 0.05230 0.15260 0.07400
|
||||
205 188 200 0.13710 0.39190 0.07600
|
||||
206 106 189 0.01370 0.09570 0.14100
|
||||
207 189 110 0.00550 0.02880 0.19000
|
||||
208 107 108 0.17460 0.31610 0.04000
|
||||
209 107 120 0.08040 0.30540 0.04500
|
||||
210 190 110 0.01100 0.05680 0.38800
|
||||
211 191 193 0.00080 0.00980 0.06900
|
||||
212 192 193 0.00290 0.02850 0.19000
|
||||
213 192 109 0.00660 0.04480 0.27700
|
||||
214 111 194 0.00240 0.03260 0.23600
|
||||
215 111 113 0.00180 0.02450 1.66200
|
||||
216 112 194 0.00440 0.05140 3.59700
|
||||
217 113 114 0.00020 0.01230 0.00000
|
||||
218 115 196 0.00180 0.01780 0.02900
|
||||
219 197 259 0.06690 0.48430 0.06300
|
||||
220 197 198 0.05580 0.22100 0.03100
|
||||
221 259 198 0.08070 0.33310 0.04900
|
||||
222 259 260 0.07390 0.30710 0.04300
|
||||
223 259 199 0.17990 0.50170 0.06900
|
||||
224 260 199 0.09040 0.36260 0.04800
|
||||
225 260 200 0.07700 0.30920 0.05400
|
||||
226 199 117 0.02510 0.08290 0.04700
|
||||
227 117 261 0.02220 0.08470 0.05000
|
||||
228 261 200 0.04980 0.18550 0.02900
|
||||
229 261 118 0.00610 0.02900 0.08400
|
||||
230 201 100 0.00040 0.02020 0.00000
|
||||
231 201 123 0.00040 0.00830 0.11500
|
||||
232 121 3 0.00250 0.02450 0.16400
|
||||
233 122 262 0.00070 0.00860 0.11500
|
||||
234 123 262 0.00070 0.00860 0.11500
|
||||
235 262 100 0.00040 0.02020 0.00000
|
||||
236 202 212 0.03300 0.09500 0.00000
|
||||
237 202 131 0.04600 0.06900 0.00000
|
||||
238 203 290 0.00040 0.00220 6.20000
|
||||
239 203 138 0.00000 0.02750 0.00000
|
||||
240 124 125 0.00300 0.04800 0.00000
|
||||
241 125 218 0.00200 0.00900 0.00000
|
||||
242 204 210 0.04500 0.06300 0.00000
|
||||
243 204 212 0.04800 0.12700 0.00000
|
||||
244 205 284 0.00310 0.02860 0.50000
|
||||
245 205 25 0.00240 0.03550 0.36000
|
||||
246 206 284 0.00310 0.02860 0.50000
|
||||
247 263 207 0.01400 0.04000 0.00400
|
||||
248 263 283 0.03000 0.08100 0.01000
|
||||
249 207 289 0.01000 0.06000 0.00900
|
||||
250 207 298 0.01500 0.04000 0.00600
|
||||
251 289 128 0.33200 0.68800 0.00000
|
||||
252 289 129 0.00900 0.04600 0.02500
|
||||
253 289 283 0.02000 0.07300 0.00800
|
||||
254 289 298 0.03400 0.10900 0.03200
|
||||
255 126 208 0.07600 0.13500 0.00900
|
||||
256 126 283 0.04000 0.10200 0.00500
|
||||
257 208 283 0.08100 0.12800 0.01400
|
||||
258 127 209 0.12400 0.18300 0.00000
|
||||
259 129 298 0.01000 0.05900 0.00800
|
||||
260 209 210 0.04600 0.06800 0.00000
|
||||
261 210 211 0.30200 0.44600 0.00000
|
||||
262 211 130 0.07300 0.09300 0.00000
|
||||
263 211 212 0.24000 0.42100 0.00000
|
||||
264 213 215 0.01390 0.07780 0.08600
|
||||
265 214 215 0.00170 0.01850 0.02000
|
||||
266 214 222 0.00150 0.01080 0.00200
|
||||
267 215 132 0.00450 0.02490 0.02600
|
||||
268 132 264 0.00400 0.04970 0.01800
|
||||
269 264 216 0.00000 0.04560 0.00000
|
||||
270 264 284 0.00050 0.01770 0.02000
|
||||
271 264 265 0.00270 0.03950 0.83200
|
||||
272 284 285 0.00030 0.00180 5.20000
|
||||
273 265 216 0.00370 0.04840 0.43000
|
||||
274 265 133 0.00100 0.02950 0.50300
|
||||
275 265 221 0.00160 0.00460 0.40200
|
||||
276 133 134 0.00030 0.00130 1.00000
|
||||
277 217 218 0.01000 0.06400 0.48000
|
||||
278 217 135 0.00190 0.00810 0.86000
|
||||
279 218 124 0.00100 0.06100 0.00000
|
||||
280 135 290 0.00050 0.02120 0.00000
|
||||
281 219 220 0.00190 0.00870 1.28000
|
||||
282 219 290 0.00260 0.09170 0.00000
|
||||
283 219 266 0.00130 0.02880 0.81000
|
||||
284 220 203 0.00000 0.06260 0.00000
|
||||
285 290 136 0.00020 0.00690 1.36400
|
||||
286 290 285 0.00010 0.00060 3.57000
|
||||
287 136 8 0.00170 0.04850 0.00000
|
||||
288 266 137 0.00020 0.02590 0.14400
|
||||
289 266 285 0.00060 0.02720 0.00000
|
||||
290 137 221 0.00020 0.00060 0.80000
|
||||
291 138 13 0.00030 0.00430 0.00900
|
||||
292 222 267 0.00820 0.08510 0.00000
|
||||
293 222 268 0.01120 0.07230 0.00000
|
||||
294 139 140 0.01270 0.03550 0.00000
|
||||
295 139 267 0.03260 0.18040 0.00000
|
||||
296 140 223 0.01950 0.05510 0.00000
|
||||
297 267 223 0.01570 0.07320 0.00000
|
||||
298 267 268 0.03600 0.21190 0.00000
|
||||
299 223 268 0.02680 0.12850 0.00000
|
||||
300 268 224 0.04280 0.12150 0.00000
|
||||
301 224 141 0.03510 0.10040 0.00000
|
||||
302 141 12 0.06160 0.18570 0.00000
|
||||
0
|
||||
97 3.250
|
||||
255 0.550
|
||||
107 0.345
|
||||
194 -2.120
|
||||
114 -1.030
|
||||
259 0.530
|
||||
200 0.450
|
||||
203 -1.500
|
||||
290 -3.000
|
||||
221 -1.500
|
||||
138 -1.400
|
||||
224 0.456
|
||||
300 0.024
|
||||
54 0.017
|
||||
0
|
||||
1 297 269 0.0001 0.0005 1.0082 0.9043 1.1043
|
||||
2 269 226 0.0244 0.4368 0.9668 0.9391 1.1478
|
||||
3 269 227 0.0362 0.6490 0.9796 0.9391 1.1478
|
||||
4 291 62 0.0158 0.3749 1.0435 0.9391 1.1478
|
||||
5 291 63 0.0158 0.3749 0.9391 0.9391 1.1478
|
||||
6 291 145 0.0160 0.3805 1.0435 0.9391 1.1478
|
||||
7 291 64 0.0000 0.1520 1.0435 0.9391 1.1000
|
||||
8 291 65 0.0000 0.8000 1.0435 0.9391 1.1000
|
||||
9 228 47 0.4436 2.8152 1.0000 0.9391 1.1000
|
||||
10 225 48 0.5075 3.2202 1.0000 0.9391 1.1000
|
||||
11 229 49 0.6669 3.9440 1.0000 0.9391 1.1000
|
||||
12 229 50 0.6113 3.6152 1.0000 0.9391 1.1000
|
||||
13 271 66 0.4412 2.9668 1.0000 0.9391 1.1000
|
||||
14 271 67 0.3079 2.0570 1.0000 0.9391 1.1000
|
||||
15 300 51 0.7363 4.6724 1.0000 0.9391 1.1000
|
||||
16 300 52 0.7698 4.8846 1.0000 0.9391 1.1000
|
||||
17 300 53 0.7573 4.8056 1.0000 0.9391 1.1000
|
||||
18 270 59 0.3661 2.4560 1.0000 0.9391 1.1000
|
||||
19 270 60 1.0593 5.4536 1.0000 0.9391 1.1000
|
||||
20 270 61 0.1567 1.6994 1.0000 0.9000 1.1000
|
||||
21 300 54 0.1301 1.3912 1.0000 0.9391 1.1000
|
||||
22 300 55 0.5448 3.4572 1.0000 0.9391 1.1000
|
||||
23 300 56 0.1543 1.6729 1.0000 0.9391 1.1000
|
||||
24 300 57 0.3849 2.5712 1.0000 0.9391 1.1000
|
||||
25 300 58 0.4412 2.9668 1.0000 0.9391 1.1000
|
||||
26 145 69 0.0000 0.7500 0.9583 0.9391 1.1000
|
||||
27 4 214 0.0025 0.0380 1.0000 0.9391 1.1000
|
||||
28 5 285 0.0014 0.0514 1.0000 0.9391 1.1000
|
||||
29 6 290 0.0009 0.0472 1.0000 0.9391 1.1000
|
||||
30 11 285 0.0005 0.0154 1.0000 0.9391 1.1000
|
||||
31 292 146 0.0000 0.0520 0.9470 0.9000 1.1000
|
||||
32 292 230 0.0000 0.0520 0.9560 0.9000 1.1000
|
||||
33 292 70 0.0000 0.0050 0.9710 0.9000 1.1000
|
||||
34 272 147 0.0000 0.0390 0.9480 0.9000 1.1000
|
||||
35 272 71 0.0000 0.0390 0.9590 0.9000 1.1000
|
||||
36 73 273 0.0000 0.0890 1.0460 0.9000 1.1000
|
||||
37 231 73 0.0000 0.0530 0.9850 0.9000 1.1000
|
||||
38 286 76 0.0194 0.0311 0.9561 0.9000 1.1000
|
||||
39 149 286 0.0010 0.0380 0.9710 0.9000 1.1000
|
||||
40 233 232 0.0000 0.0140 0.9520 0.9000 1.1000
|
||||
41 235 234 0.0000 0.0640 0.9430 0.9000 1.1000
|
||||
42 81 237 0.0000 0.0470 1.0100 0.9000 1.1000
|
||||
43 240 275 0.0000 0.0200 1.0080 0.9000 1.1000
|
||||
44 240 153 0.0000 0.0210 1.0000 0.9000 1.1000
|
||||
45 276 158 0.0000 0.0590 0.9750 0.9000 1.1000
|
||||
46 159 88 0.0000 0.0380 1.0170 0.9000 1.1000
|
||||
47 277 246 0.0000 0.0244 1.0000 0.9000 1.1000
|
||||
48 248 164 0.0000 0.0200 1.0000 0.9000 1.1000
|
||||
49 91 279 0.0000 0.0480 1.0000 0.9000 1.1000
|
||||
50 249 280 0.0000 0.0480 1.0000 0.9000 1.1000
|
||||
51 163 169 0.0000 0.0460 1.0150 0.9000 1.1000
|
||||
52 175 130 0.0000 0.1490 0.9670 0.9000 1.1000
|
||||
53 96 178 0.0052 0.0174 1.0100 0.9000 1.1000
|
||||
54 176 95 0.0000 0.0280 1.0500 0.9000 1.1000
|
||||
55 256 191 0.0005 0.0195 1.0000 0.9000 1.1000
|
||||
56 299 98 0.0000 0.0180 1.0522 0.9000 1.1000
|
||||
57 299 104 0.0000 0.0140 1.0522 0.9000 1.1000
|
||||
58 182 116 0.0010 0.0402 1.0500 0.9000 1.1000
|
||||
59 186 198 0.0024 0.0603 0.9750 0.9000 1.1000
|
||||
60 187 260 0.0024 0.0498 1.0000 0.9000 1.1000
|
||||
61 281 101 0.0000 0.0833 1.0350 0.9000 1.1000
|
||||
62 281 188 0.0013 0.0371 0.9565 0.9000 1.1000
|
||||
63 282 118 0.0005 0.0182 1.0000 0.9000 1.1000
|
||||
64 105 116 0.0010 0.0392 1.0500 0.9000 1.1000
|
||||
65 189 120 0.0027 0.0639 1.0730 0.9000 1.1000
|
||||
66 190 108 0.0008 0.0256 1.0500 0.9000 1.1000
|
||||
67 193 97 0.0000 0.0160 1.0506 0.9000 1.1000
|
||||
68 109 178 0.0012 0.0396 0.9750 0.9000 1.1000
|
||||
69 112 295 0.0013 0.0384 0.9800 0.9000 1.1000
|
||||
70 194 190 0.0009 0.0231 0.9560 0.9000 1.1000
|
||||
71 119 185 0.0003 0.0131 1.0500 0.9000 1.1000
|
||||
72 202 283 0.0000 0.2520 1.0300 0.9000 1.1000
|
||||
73 204 263 0.0000 0.2370 1.0300 0.9000 1.1000
|
||||
74 206 213 0.0008 0.0366 0.9850 0.9000 1.1000
|
||||
75 208 224 0.0000 0.2200 1.0000 0.9000 1.1000
|
||||
76 127 160 0.0000 0.0980 1.0300 0.9000 1.1000
|
||||
77 128 298 0.0000 0.1280 1.0100 0.9000 1.1000
|
||||
78 209 143 0.0200 0.2040 1.0500 0.9000 1.1000
|
||||
79 131 289 0.0260 0.2110 1.0300 0.9000 1.1000
|
||||
80 298 213 0.0030 0.0122 1.0000 0.9000 1.1000
|
||||
81 216 284 0.0030 0.0122 0.9700 0.9000 1.1000
|
||||
82 134 217 0.0012 0.0195 1.0000 0.9000 1.1000
|
||||
83 220 7 0.0010 0.0332 1.0200 0.9000 1.1000
|
||||
84 266 9 0.0005 0.0160 1.0700 0.9000 1.1000
|
||||
85 221 10 0.0005 0.0160 1.0200 0.9000 1.1000
|
||||
86 263 143 0.0001 0.0200 1.0000 0.9000 1.1000
|
||||
87 254 26 0.0010 0.0230 1.0223 0.9000 1.1000
|
||||
88 255 27 0.0000 0.0230 0.9284 0.9000 1.1000
|
||||
89 29 230 0.0010 0.0146 1.0000 0.9000 1.1000
|
||||
90 30 292 0.0000 0.0105 1.0000 0.9000 1.1000
|
||||
91 41 158 0.0000 0.0238 1.0000 0.9000 1.1000
|
||||
92 42 276 0.0000 0.0321 0.9500 0.9000 1.1000
|
||||
93 46 114 0.0000 0.0154 1.0000 0.9000 1.1000
|
||||
94 35 235 0.0000 0.0289 1.0000 0.9000 1.1000
|
||||
95 28 146 0.0000 0.0195 1.0000 0.9000 1.1000
|
||||
96 44 299 0.0000 0.0193 1.0000 0.9000 1.1000
|
||||
97 31 273 0.0000 0.0192 1.0000 0.9000 1.1000
|
||||
98 34 234 0.0000 0.0230 1.0000 0.9000 1.1000
|
||||
99 38 241 0.0000 0.0124 1.0000 0.9000 1.1000
|
||||
100 45 185 0.0000 0.0167 1.0000 0.9000 1.1000
|
||||
101 32 231 0.0000 0.0312 1.0000 0.9000 1.1000
|
||||
102 33 76 0.0000 0.0165 0.9420 0.9000 1.1000
|
||||
103 36 82 0.0000 0.0316 0.9650 0.9000 1.1000
|
||||
104 40 243 0.0000 0.0535 0.9500 0.9000 1.1000
|
||||
105 37 275 0.0000 0.1818 0.9420 0.9000 1.1000
|
||||
106 39 242 0.0000 0.1961 0.9420 0.9000 1.1000
|
||||
107 43 244 0.0000 0.0690 0.9565 0.9000 1.1000
|
||||
0
|
||||
146 0.00 0.00 90.00 49.00
|
||||
230 0.00 0.00 56.00 15.00
|
||||
292 0.00 0.00 20.00 0.00
|
||||
70 0.00 0.00 0.00 0.00
|
||||
147 0.00 0.00 353.00 130.00
|
||||
71 0.00 0.00 120.00 41.00
|
||||
272 0.00 0.00 0.00 0.00
|
||||
148 -5.00 0.00 58.00 14.00
|
||||
72 0.00 0.00 96.00 43.00
|
||||
73 -5.00 0.00 148.00 33.00
|
||||
273 0.00 0.00 83.00 21.00
|
||||
231 0.00 0.00 0.00 0.00
|
||||
74 0.00 0.00 58.00 10.00
|
||||
75 0.00 0.00 160.00 60.00
|
||||
286 0.00 0.00 126.70 23.00
|
||||
149 0.00 0.00 0.00 0.00
|
||||
76 0.00 0.00 561.00 220.00
|
||||
150 0.00 0.00 0.00 0.00
|
||||
232 -10.00 0.00 595.00 120.00
|
||||
233 0.00 0.00 77.00 1.00
|
||||
77 0.00 0.00 81.00 23.00
|
||||
234 0.00 0.00 21.00 7.00
|
||||
235 0.00 0.00 0.00 0.00
|
||||
78 0.00 0.00 45.00 12.00
|
||||
151 0.00 0.00 28.00 9.00
|
||||
79 0.00 0.00 69.00 13.00
|
||||
236 0.00 0.00 55.00 6.00
|
||||
80 0.00 0.00 0.00 0.00
|
||||
237 0.00 0.00 0.00 0.00
|
||||
81 0.00 0.00 0.00 0.00
|
||||
297 0.00 0.00 85.00 32.00
|
||||
238 0.00 0.00 155.00 18.00
|
||||
82 0.00 0.00 0.00 0.00
|
||||
152 0.00 0.00 46.00 -21.00
|
||||
287 0.00 0.00 86.00 0.00
|
||||
274 0.00 0.00 0.00 0.00
|
||||
239 0.00 0.00 39.00 9.00
|
||||
275 0.00 0.00 195.00 29.00
|
||||
240 0.00 0.00 0.00 0.00
|
||||
153 0.00 0.00 0.00 0.00
|
||||
154 0.00 0.00 58.00 11.80
|
||||
155 0.00 0.00 41.00 19.00
|
||||
241 0.00 0.00 92.00 26.00
|
||||
156 0.00 0.00 -5.00 5.00
|
||||
83 0.00 0.00 61.00 28.00
|
||||
84 0.00 0.00 69.00 3.00
|
||||
157 0.00 0.00 10.00 1.00
|
||||
242 0.00 0.00 22.00 10.00
|
||||
243 0.00 0.00 98.00 20.00
|
||||
85 0.00 0.00 14.00 1.00
|
||||
86 0.00 0.00 218.00 106.00
|
||||
87 0.00 0.00 0.00 0.00
|
||||
158 0.00 0.00 227.00 110.00
|
||||
276 0.00 0.00 0.00 0.00
|
||||
159 0.00 0.00 70.00 30.00
|
||||
88 0.00 0.00 0.00 0.00
|
||||
160 0.00 0.00 0.00 0.00
|
||||
89 0.00 0.00 56.00 20.00
|
||||
244 0.00 0.00 116.00 38.00
|
||||
245 0.00 0.00 57.00 19.00
|
||||
277 0.00 0.00 224.00 71.00
|
||||
246 0.00 0.00 0.00 0.00
|
||||
161 0.00 0.00 208.00 107.00
|
||||
293 0.00 0.00 74.00 28.00
|
||||
162 0.00 0.00 0.00 0.00
|
||||
247 0.00 0.00 48.00 14.00
|
||||
90 0.00 0.00 28.00 7.00
|
||||
248 0.00 0.00 0.00 0.00
|
||||
1 375.00 0.00 37.00 13.00
|
||||
91 0.00 0.00 0.00 0.00
|
||||
249 0.00 0.00 0.00 0.00
|
||||
163 0.00 0.00 0.00 0.00
|
||||
164 0.00 0.00 0.00 0.00
|
||||
165 0.00 0.00 44.20 0.00
|
||||
166 0.00 0.00 66.00 0.00
|
||||
167 155.00 0.00 17.40 0.00
|
||||
168 290.00 0.00 15.80 0.00
|
||||
169 0.00 0.00 60.30 0.00
|
||||
278 0.00 0.00 39.90 0.00
|
||||
92 68.00 0.00 66.70 0.00
|
||||
279 0.00 0.00 83.50 0.00
|
||||
170 0.00 0.00 0.00 0.00
|
||||
280 0.00 0.00 77.80 0.00
|
||||
171 0.00 0.00 32.00 0.00
|
||||
172 0.00 0.00 8.60 0.00
|
||||
250 0.00 0.00 49.60 0.00
|
||||
173 0.00 0.00 4.60 0.00
|
||||
174 117.00 0.00 112.10 0.00
|
||||
251 0.00 0.00 30.70 0.00
|
||||
252 0.00 0.00 63.00 0.00
|
||||
93 0.00 0.00 19.60 0.00
|
||||
94 0.00 0.00 26.20 0.00
|
||||
175 0.00 0.00 18.20 0.00
|
||||
95 0.00 0.00 0.00 0.00
|
||||
96 0.00 0.00 0.00 0.00
|
||||
97 0.00 0.00 0.00 0.00
|
||||
253 0.00 0.00 14.10 650.00
|
||||
254 1930.00 0.00 0.00 0.00
|
||||
255 0.00 0.00 777.00 215.00
|
||||
176 0.00 0.00 535.00 55.00
|
||||
256 0.00 0.00 229.10 11.80
|
||||
177 0.00 0.00 78.00 1.40
|
||||
178 240.00 0.00 276.40 59.30
|
||||
179 0.00 0.00 514.80 82.70
|
||||
294 0.00 0.00 57.90 5.10
|
||||
257 0.00 0.00 380.80 37.00
|
||||
180 0.00 0.00 0.00 0.00
|
||||
181 0.00 0.00 0.00 0.00
|
||||
299 0.00 0.00 0.00 0.00
|
||||
98 0.00 0.00 0.00 0.00
|
||||
182 0.00 0.00 0.00 0.00
|
||||
288 0.00 0.00 0.00 0.00
|
||||
183 0.00 0.00 0.00 0.00
|
||||
99 0.00 0.00 169.20 41.60
|
||||
184 0.00 0.00 55.20 18.20
|
||||
295 0.00 0.00 273.60 99.80
|
||||
100 -192.50 0.00 826.70 135.20
|
||||
185 0.00 0.00 595.00 83.30
|
||||
296 0.00 0.00 387.70 114.70
|
||||
186 281.00 0.00 145.00 58.00
|
||||
187 0.00 0.00 56.50 24.50
|
||||
281 696.00 0.00 89.50 35.50
|
||||
101 0.00 0.00 0.00 0.00
|
||||
282 0.00 0.00 24.00 14.00
|
||||
258 84.00 0.00 0.00 0.00
|
||||
102 217.00 0.00 0.00 0.00
|
||||
188 0.00 0.00 63.00 25.00
|
||||
103 103.00 0.00 0.00 0.00
|
||||
104 0.00 0.00 0.00 0.00
|
||||
105 0.00 0.00 0.00 0.00
|
||||
106 372.00 0.00 17.00 9.00
|
||||
189 216.00 0.00 0.00 0.00
|
||||
107 0.00 0.00 70.00 5.00
|
||||
190 0.00 0.00 200.00 50.00
|
||||
108 0.00 0.00 75.00 50.00
|
||||
191 0.00 0.00 123.50 -24.30
|
||||
192 0.00 0.00 0.00 0.00
|
||||
193 0.00 0.00 33.00 16.50
|
||||
109 0.00 0.00 0.00 0.00
|
||||
110 0.00 0.00 35.00 15.00
|
||||
111 0.00 0.00 85.00 24.00
|
||||
112 0.00 0.00 0.00 0.40
|
||||
194 0.00 0.00 0.00 0.00
|
||||
113 0.00 0.00 0.00 0.00
|
||||
114 0.00 0.00 0.00 0.00
|
||||
115 0.00 0.00 299.90 95.70
|
||||
195 0.00 0.00 0.00 0.00
|
||||
196 0.00 0.00 0.00 0.00
|
||||
116 205.00 0.00 481.80 205.00
|
||||
2 0.00 0.00 763.60 291.10
|
||||
197 0.00 0.00 26.50 0.00
|
||||
259 0.00 0.00 163.50 43.00
|
||||
198 0.00 0.00 0.00 0.00
|
||||
260 0.00 0.00 176.00 83.00
|
||||
199 228.00 0.00 5.00 4.00
|
||||
117 84.00 0.00 28.00 12.00
|
||||
261 0.00 0.00 427.40 173.60
|
||||
200 0.00 0.00 74.00 29.00
|
||||
118 0.00 0.00 69.50 49.30
|
||||
201 0.00 0.00 73.40 0.00
|
||||
119 0.00 0.00 240.70 89.00
|
||||
120 0.00 0.00 40.00 4.00
|
||||
121 0.00 0.00 136.80 16.60
|
||||
3 200.00 0.00 0.00 0.00
|
||||
122 1200.00 0.00 59.80 24.30
|
||||
123 1200.00 0.00 59.80 24.30
|
||||
262 0.00 0.00 182.60 43.60
|
||||
202 0.00 0.00 7.00 2.00
|
||||
203 475.00 0.00 0.00 0.00
|
||||
124 1973.00 0.00 489.00 53.00
|
||||
125 0.00 0.00 800.00 72.00
|
||||
204 0.00 0.00 0.00 0.00
|
||||
205 0.00 0.00 0.00 0.00
|
||||
206 0.00 0.00 0.00 0.00
|
||||
263 0.00 0.00 10.00 3.00
|
||||
207 0.00 0.00 43.00 14.00
|
||||
289 424.00 0.00 64.00 21.00
|
||||
126 0.00 0.00 35.00 12.00
|
||||
208 0.00 0.00 27.00 12.00
|
||||
127 0.00 0.00 41.00 14.00
|
||||
128 0.00 0.00 38.00 13.00
|
||||
129 0.00 0.00 42.00 14.00
|
||||
209 0.00 0.00 72.00 24.00
|
||||
210 0.00 0.00 0.00 -5.00
|
||||
211 0.00 0.00 12.00 2.00
|
||||
130 0.00 0.00 -21.00 -14.20
|
||||
212 0.00 0.00 7.00 2.00
|
||||
131 0.00 0.00 38.00 13.00
|
||||
283 0.00 0.00 0.00 0.00
|
||||
298 0.00 0.00 96.00 7.00
|
||||
213 0.00 0.00 0.00 0.00
|
||||
4 272.00 0.00 0.00 0.00
|
||||
214 0.00 0.00 22.00 16.00
|
||||
215 0.00 0.00 47.00 26.00
|
||||
132 0.00 0.00 176.00 105.00
|
||||
264 0.00 0.00 100.00 75.00
|
||||
216 0.00 0.00 131.00 96.00
|
||||
284 0.00 0.00 0.00 0.00
|
||||
265 100.00 0.00 285.00 100.00
|
||||
133 450.00 0.00 171.00 70.00
|
||||
5 250.00 0.00 328.00 188.00
|
||||
134 0.00 0.00 428.00 232.00
|
||||
217 0.00 0.00 173.00 99.00
|
||||
218 0.00 0.00 410.00 40.00
|
||||
135 0.00 0.00 0.00 0.00
|
||||
6 303.00 0.00 538.00 369.00
|
||||
219 0.00 0.00 223.00 148.00
|
||||
220 0.00 0.00 96.00 46.00
|
||||
7 345.00 0.00 0.00 0.00
|
||||
290 0.00 0.00 159.00 107.00
|
||||
136 0.00 0.00 448.00 143.00
|
||||
8 300.00 0.00 404.00 212.00
|
||||
266 0.00 0.00 572.00 244.00
|
||||
137 0.00 0.00 269.00 157.00
|
||||
9 600.00 0.00 0.00 0.00
|
||||
285 0.00 0.00 0.00 0.00
|
||||
221 250.00 0.00 255.00 149.00
|
||||
10 550.00 0.00 0.00 0.00
|
||||
138 0.00 0.00 0.00 0.00
|
||||
11 575.43 0.00 0.00 0.00
|
||||
222 170.00 0.00 0.00 0.00
|
||||
139 84.00 0.00 8.00 3.00
|
||||
140 0.00 0.00 0.00 0.00
|
||||
267 0.00 0.00 61.00 30.00
|
||||
223 0.00 0.00 77.00 33.00
|
||||
268 0.00 0.00 61.00 30.00
|
||||
224 0.00 0.00 29.00 14.00
|
||||
141 0.00 0.00 29.00 14.00
|
||||
12 0.00 0.00 -23.00 -17.00
|
||||
13 0.00 0.00 -33.10 -29.40
|
||||
14 0.00 0.00 115.80 -24.00
|
||||
15 0.00 0.00 2.40 -12.60
|
||||
16 0.00 0.00 2.40 -3.90
|
||||
17 0.00 0.00 -14.90 26.50
|
||||
18 0.00 0.00 24.70 -1.20
|
||||
19 0.00 0.00 145.30 -34.90
|
||||
20 0.00 0.00 28.10 -20.50
|
||||
21 0.00 0.00 14.00 2.50
|
||||
22 0.00 0.00 -11.10 -1.40
|
||||
23 0.00 0.00 50.50 17.40
|
||||
24 0.00 0.00 29.60 0.60
|
||||
25 0.00 0.00 -113.70 76.70
|
||||
26 0.00 0.00 100.31 29.17
|
||||
27 0.00 0.00 -100.00 34.17
|
||||
142 0.00 0.00 0.00 0.00
|
||||
143 0.00 0.00 0.00 0.00
|
||||
28 467.00 0.00 0.00 0.00
|
||||
29 623.00 0.00 0.00 0.00
|
||||
30 1210.00 0.00 0.00 0.00
|
||||
31 234.00 0.00 0.00 0.00
|
||||
32 372.00 0.00 0.00 0.00
|
||||
33 330.00 0.00 0.00 0.00
|
||||
34 185.00 0.00 0.00 0.00
|
||||
35 410.00 0.00 0.00 0.00
|
||||
36 500.00 0.00 0.00 0.00
|
||||
37 37.00 0.00 0.00 0.00
|
||||
38 0.00 0.00 0.00 0.00
|
||||
39 45.00 0.00 0.00 0.00
|
||||
40 165.00 0.00 0.00 0.00
|
||||
41 400.00 0.00 0.00 0.00
|
||||
42 400.00 0.00 0.00 0.00
|
||||
43 116.00 0.00 0.00 0.00
|
||||
44 1292.00 0.00 0.00 0.00
|
||||
45 700.00 0.00 0.00 0.00
|
||||
46 553.00 0.00 0.00 0.00
|
||||
269 0.00 0.00 0.00 0.00
|
||||
225 -4.20 0.00 0.00 0.00
|
||||
300 0.00 0.00 2.71 0.94
|
||||
270 0.00 0.00 0.86 0.28
|
||||
291 0.00 0.00 0.00 0.00
|
||||
226 0.00 0.00 0.00 0.00
|
||||
271 0.00 0.00 0.00 0.00
|
||||
227 0.00 0.00 0.00 0.00
|
||||
228 0.00 0.00 4.75 1.56
|
||||
47 0.00 0.00 1.53 0.53
|
||||
229 0.00 0.00 0.00 0.00
|
||||
48 0.00 0.00 1.35 0.47
|
||||
49 0.00 0.00 0.45 0.16
|
||||
50 0.00 0.00 0.45 0.16
|
||||
51 0.00 0.00 1.84 0.64
|
||||
52 0.00 0.00 1.39 0.48
|
||||
53 0.00 0.00 1.89 0.65
|
||||
54 0.00 0.00 1.55 0.54
|
||||
55 0.00 0.00 1.66 0.58
|
||||
56 0.00 0.00 3.03 1.00
|
||||
57 0.00 0.00 1.86 0.64
|
||||
58 0.00 0.00 2.58 0.89
|
||||
59 0.00 0.00 1.01 0.35
|
||||
60 0.00 0.00 0.81 0.28
|
||||
61 0.00 0.00 1.60 0.52
|
||||
144 0.00 0.00 0.00 0.00
|
||||
62 -35.81 0.00 0.00 0.00
|
||||
63 0.00 0.00 30.00 23.00
|
||||
145 -26.48 0.00 0.00 0.00
|
||||
64 50.00 0.00 0.00 0.00
|
||||
65 8.00 0.00 0.00 0.00
|
||||
66 0.00 0.00 1.02 0.35
|
||||
67 0.00 0.00 1.02 0.35
|
||||
68 0.00 0.00 3.80 1.25
|
||||
69 0.00 0.00 1.19 0.41
|
||||
0
|
||||
148 1.0153 -10.00 10.00
|
||||
73 1.0205 -20.00 20.00
|
||||
232 1.0010 -20.00 20.00
|
||||
159 0.9583 -25.00 25.00
|
||||
161 0.9632 12.00 35.00
|
||||
1 1.0250 -240.00 240.00
|
||||
167 1.0520 -11.00 96.00
|
||||
168 1.0520 -153.00 153.00
|
||||
92 1.0000 -30.00 56.00
|
||||
174 0.9900 -24.00 77.00
|
||||
254 1.0435 -500.00 1500.00
|
||||
178 1.0233 -60.00 120.00
|
||||
179 1.0103 -25.00 200.00
|
||||
100 1.0550 -125.00 350.00
|
||||
186 1.0510 -50.00 75.00
|
||||
281 1.0435 -100.00 300.00
|
||||
258 1.0528 -15.00 35.00
|
||||
102 1.0528 -50.00 100.00
|
||||
103 1.0735 -25.00 50.00
|
||||
106 1.0535 -50.00 175.00
|
||||
189 1.0435 -50.00 90.00
|
||||
108 0.9630 -10.00 15.00
|
||||
116 0.9290 -40.00 90.00
|
||||
2 0.9829 -50.00 150.00
|
||||
199 1.0522 -45.00 90.00
|
||||
117 1.0077 -15.00 35.00
|
||||
3 1.0522 -50.00 80.00
|
||||
122 1.0650 -100.00 400.00
|
||||
123 1.0650 -100.00 400.00
|
||||
203 1.0551 -300.00 300.00
|
||||
124 1.0435 -1000.00 1000.00
|
||||
289 1.0150 -260.00 260.00
|
||||
4 1.0100 -150.00 150.00
|
||||
265 1.0080 -60.00 60.00
|
||||
133 1.0000 -320.00 320.00
|
||||
5 1.0500 -300.00 300.00
|
||||
6 1.0000 -300.00 300.00
|
||||
7 1.0400 -250.00 250.00
|
||||
8 1.0000 -500.00 500.00
|
||||
9 1.0165 -300.00 300.00
|
||||
221 1.0100 -200.00 200.00
|
||||
10 1.0000 -400.00 400.00
|
||||
11 1.0500 -600.00 600.00
|
||||
222 0.9930 40.00 100.00
|
||||
139 1.0100 40.00 80.00
|
||||
28 1.0507 -210.00 210.00
|
||||
29 1.0507 -280.00 280.00
|
||||
30 1.0323 -420.00 420.00
|
||||
31 1.0145 -100.00 100.00
|
||||
32 1.0145 -224.00 224.00
|
||||
33 1.0507 0.00 350.00
|
||||
34 1.0507 0.00 120.00
|
||||
35 1.0290 -224.00 224.00
|
||||
36 1.0500 -200.00 200.00
|
||||
37 1.0145 0.00 42.00
|
||||
38 1.0507 -500.00 500.00
|
||||
39 0.9967 0.00 25.00
|
||||
40 1.0212 -90.00 90.00
|
||||
41 1.0145 -150.00 150.00
|
||||
42 1.0017 0.00 150.00
|
||||
43 0.9893 0.00 87.00
|
||||
44 1.0507 -100.00 600.00
|
||||
45 1.0507 -125.00 325.00
|
||||
46 1.0145 -200.00 300.00
|
||||
225 0.9945 -2.00 2.00
|
||||
62 1.0000 -17.35 17.35
|
||||
145 1.0000 -12.80 12.83
|
||||
64 1.0000 -38.00 38.00
|
||||
65 1.0000 -6.00 6.00
|
||||
0
|
||||
5 0.2000 0.2000 0.1375 210.0000 600.0000
|
||||
4 0.3000 0.1750 0.1750 200.0000 580.0000
|
||||
9 0.3000 0.1250 0.1000 200.0000 800.0000
|
||||
11 0.3500 0.2250 0.1283 300.0000 800.0000
|
||||
28 0.2200 0.1430 0.2500 300.0000 600.0000
|
||||
29 0.7500 0.1250 0.2500 300.0000 800.0000
|
||||
30 0.5400 0.1950 0.2520 600.0000 1600.0000
|
||||
31 0.3800 0.2200 0.4390 200.0000 400.0000
|
||||
32 0.3600 0.1250 0.6350 200.0000 500.0000
|
||||
33 0.9000 0.1300 0.0250 200.0000 500.0000
|
||||
34 0.8300 0.2300 0.0730 100.0000 300.0000
|
||||
35 0.4400 0.1430 0.3120 320.0000 600.0000
|
||||
36 0.1200 0.1400 0.6650 400.0000 800.0000
|
||||
38 0.5400 0.1150 0.1020 600.0000 1600.0000
|
||||
40 0.6600 0.1550 0.2650 100.0000 350.0000
|
||||
41 0.8200 0.1600 0.7000 250.0000 600.0000
|
||||
42 0.4400 0.1450 0.1050 250.0000 600.0000
|
||||
43 0.3500 0.1270 0.4500 80.0000 300.0000
|
||||
44 0.5400 0.1250 0.1220 600.0000 1600.0000
|
||||
45 0.3800 0.2000 0.1390 500.0000 900.0000
|
||||
46 0.3600 0.1250 0.2350 400.0000 800.0000
|
||||
0
|
||||
0
|
||||
|
|
@ -0,0 +1,824 @@
|
|||
300 409 100 28 0.100000000000000 0 0 0
|
||||
1.00000000000000e-05 4 0 0 0 0 0 0
|
||||
1 38 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
1 269 291 0.000800000000000000 0.00348000000000000 0 0 0
|
||||
2 226 271 0.0555800000000000 0.246660000000000 0 0 0
|
||||
3 226 300 0.0555900000000000 0.246660000000000 0 0 0
|
||||
4 227 225 0.0381100000000000 0.216480000000000 0 0 0
|
||||
5 225 228 0.0537000000000000 0.0702600000000000 0 0 0
|
||||
6 228 229 1.10680000000000 0.952780000000000 0 0 0
|
||||
7 271 300 0.0558000000000000 0.246660000000000 0 0 0
|
||||
8 300 144 0.0737800000000000 0.0635200000000000 0 0 0
|
||||
9 144 270 0.0383200000000000 0.0289400000000000 0 0 0
|
||||
10 227 68 0.235520000000000 0.990360000000000 0 0 0
|
||||
11 146 147 0.00100000000000000 0.00600000000000000 0 0 0
|
||||
12 230 71 0.00100000000000000 0.00900000000000000 0 0 0
|
||||
13 230 148 0.00600000000000000 0.0270000000000000 0.0540000000000000 0 0
|
||||
14 292 272 0 0.00300000000000000 0 0 0
|
||||
15 292 150 0.00800000000000000 0.0690000000000000 0.139000000000000 0 0
|
||||
16 292 104 0.00100000000000000 0.00700000000000000 0 0 0
|
||||
17 70 149 0.00200000000000000 0.0190000000000000 1.12700000000000 0 0
|
||||
18 147 72 0.00600000000000000 0.0290000000000000 0.0180000000000000 0 0
|
||||
19 272 231 0.00100000000000000 0.00900000000000000 0.0700000000000000 0 0
|
||||
20 272 98 0.00100000000000000 0.00700000000000000 0.0140000000000000 0 0
|
||||
21 148 273 0.0130000000000000 0.0595000000000000 0.0330000000000000 0 0
|
||||
22 148 75 0.0130000000000000 0.0420000000000000 0.0810000000000000 0 0
|
||||
23 72 273 0.00600000000000000 0.0270000000000000 0.0130000000000000 0 0
|
||||
24 273 74 0.00800000000000000 0.0340000000000000 0.0180000000000000 0 0
|
||||
25 231 233 0.00200000000000000 0.0150000000000000 0.118000000000000 0 0
|
||||
26 74 232 0.00600000000000000 0.0340000000000000 0.0160000000000000 0 0
|
||||
27 75 286 0.0140000000000000 0.0420000000000000 0.0970000000000000 0 0
|
||||
28 286 297 0.0650000000000000 0.248000000000000 0.121000000000000 0 0
|
||||
29 286 165 0.0990000000000000 0.248000000000000 0.0350000000000000 0 0
|
||||
30 286 166 0.0960000000000000 0.363000000000000 0.0480000000000000 0 0
|
||||
31 149 274 0.00200000000000000 0.0220000000000000 1.28000000000000 0 0
|
||||
32 150 233 0.00200000000000000 0.0180000000000000 0.0360000000000000 0 0
|
||||
33 150 163 0.0130000000000000 0.0800000000000000 0.151000000000000 0 0
|
||||
34 232 77 0.0160000000000000 0.0330000000000000 0.0150000000000000 0 0
|
||||
35 232 79 0.0690000000000000 0.186000000000000 0.0980000000000000 0 0
|
||||
36 233 235 0.00400000000000000 0.0340000000000000 0.280000000000000 0 0
|
||||
37 77 234 0.0520000000000000 0.111000000000000 0.0500000000000000 0 0
|
||||
38 234 78 0.0190000000000000 0.0390000000000000 0.0180000000000000 0 0
|
||||
39 235 14 0.00700000000000000 0.0680000000000000 0.134000000000000 0 0
|
||||
40 78 151 0.0360000000000000 0.0710000000000000 0.0340000000000000 0 0
|
||||
41 151 79 0.0450000000000000 0.120000000000000 0.0650000000000000 0 0
|
||||
42 151 15 0.0430000000000000 0.130000000000000 0.0140000000000000 0 0
|
||||
43 236 80 0 0.0630000000000000 0 0 0
|
||||
44 236 238 0.00250000000000000 0.0120000000000000 0.0130000000000000 0 0
|
||||
45 236 152 0.00600000000000000 0.0290000000000000 0.0200000000000000 0 0
|
||||
46 236 287 0.00700000000000000 0.0430000000000000 0.0260000000000000 0 0
|
||||
47 80 274 0.00100000000000000 0.00800000000000000 0.0420000000000000 0 0
|
||||
48 237 245 0.0120000000000000 0.0600000000000000 0.00800000000000000 0 0
|
||||
49 237 161 0.00600000000000000 0.0140000000000000 0.00200000000000000 0 0
|
||||
50 237 293 0.0100000000000000 0.0290000000000000 0.00300000000000000 0 0
|
||||
51 81 164 0.00400000000000000 0.0270000000000000 0.0430000000000000 0 0
|
||||
52 297 238 0.00800000000000000 0.0470000000000000 0.00800000000000000 0 0
|
||||
53 297 152 0.0220000000000000 0.0640000000000000 0.00700000000000000 0 0
|
||||
54 297 287 0.0100000000000000 0.0360000000000000 0.0200000000000000 0 0
|
||||
55 297 241 0.0170000000000000 0.0810000000000000 0.0480000000000000 0 0
|
||||
56 297 165 0.102000000000000 0.254000000000000 0.0330000000000000 0 0
|
||||
57 297 166 0.0470000000000000 0.127000000000000 0.0160000000000000 0 0
|
||||
58 238 287 0.00800000000000000 0.0370000000000000 0.0200000000000000 0 0
|
||||
59 238 239 0.0320000000000000 0.0870000000000000 0.0400000000000000 0 0
|
||||
60 82 274 0.000600000000000000 0.00640000000000000 0.404000000000000 0 0
|
||||
61 152 155 0.0260000000000000 0.154000000000000 0.0220000000000000 0 0
|
||||
62 287 274 0 0.0290000000000000 0 0 0
|
||||
63 287 241 0.0650000000000000 0.191000000000000 0.0200000000000000 0 0
|
||||
64 287 156 0.0310000000000000 0.0890000000000000 0.0360000000000000 0 0
|
||||
65 274 153 0.00200000000000000 0.0140000000000000 0.806000000000000 0 0
|
||||
66 239 275 0.0260000000000000 0.0720000000000000 0.0350000000000000 0 0
|
||||
67 239 155 0.0950000000000000 0.262000000000000 0.0320000000000000 0 0
|
||||
68 239 84 0.0130000000000000 0.0390000000000000 0.0160000000000000 0 0
|
||||
69 275 154 0.0270000000000000 0.0840000000000000 0.0390000000000000 0 0
|
||||
70 275 157 0.0280000000000000 0.0840000000000000 0.0370000000000000 0 0
|
||||
71 240 87 0.00700000000000000 0.0410000000000000 0.312000000000000 0 0
|
||||
72 240 246 0.00900000000000000 0.0540000000000000 0.411000000000000 0 0
|
||||
73 153 248 0.00500000000000000 0.0420000000000000 0.690000000000000 0 0
|
||||
74 154 277 0.0520000000000000 0.145000000000000 0.0730000000000000 0 0
|
||||
75 154 94 0.0430000000000000 0.118000000000000 0.0130000000000000 0 0
|
||||
76 155 173 0.0250000000000000 0.0620000000000000 0.00700000000000000 0 0
|
||||
77 241 156 0.0310000000000000 0.0940000000000000 0.0430000000000000 0 0
|
||||
78 156 83 0.0370000000000000 0.109000000000000 0.0490000000000000 0 0
|
||||
79 83 242 0.0270000000000000 0.0800000000000000 0.0360000000000000 0 0
|
||||
80 84 157 0.0250000000000000 0.0730000000000000 0.0350000000000000 0 0
|
||||
81 157 242 0.0350000000000000 0.103000000000000 0.0470000000000000 0 0
|
||||
82 242 243 0.0650000000000000 0.169000000000000 0.0820000000000000 0 0
|
||||
83 243 85 0.0460000000000000 0.0800000000000000 0.0360000000000000 0 0
|
||||
84 243 159 0.159000000000000 0.537000000000000 0.0710000000000000 0 0
|
||||
85 85 86 0.00900000000000000 0.0260000000000000 0.00500000000000000 0 0
|
||||
86 86 158 0.00200000000000000 0.0130000000000000 0.0150000000000000 0 0
|
||||
87 87 276 0.00900000000000000 0.0650000000000000 0.485000000000000 0 0
|
||||
88 276 88 0.0160000000000000 0.105000000000000 0.203000000000000 0 0
|
||||
89 276 101 0.00100000000000000 0.00700000000000000 0.0130000000000000 0 0
|
||||
90 159 19 0.0265000000000000 0.172000000000000 0.0260000000000000 0 0
|
||||
91 160 298 0.0510000000000000 0.232000000000000 0.0280000000000000 0 0
|
||||
92 160 247 0.0510000000000000 0.157000000000000 0.0230000000000000 0 0
|
||||
93 89 244 0.0320000000000000 0.100000000000000 0.0620000000000000 0 0
|
||||
94 89 20 0.0200000000000000 0.123400000000000 0.0280000000000000 0 0
|
||||
95 244 245 0.0360000000000000 0.131000000000000 0.0680000000000000 0 0
|
||||
96 244 277 0.0340000000000000 0.0990000000000000 0.0470000000000000 0 0
|
||||
97 245 293 0.0180000000000000 0.0870000000000000 0.0110000000000000 0 0
|
||||
98 245 21 0.0256000000000000 0.193000000000000 0 0 0
|
||||
99 277 161 0.0210000000000000 0.0570000000000000 0.0300000000000000 0 0
|
||||
100 277 247 0.0180000000000000 0.0520000000000000 0.0180000000000000 0 0
|
||||
101 246 164 0.00400000000000000 0.0270000000000000 0.0500000000000000 0 0
|
||||
102 246 23 0.0286000000000000 0.201300000000000 0.379000000000000 0 0
|
||||
103 161 293 0.0160000000000000 0.0430000000000000 0.00400000000000000 0 0
|
||||
104 293 162 0.00100000000000000 0.00600000000000000 0.00700000000000000 0 0
|
||||
105 293 90 0.0140000000000000 0.0700000000000000 0.0380000000000000 0 0
|
||||
106 293 22 0.0891000000000000 0.267600000000000 0.0290000000000000 0 0
|
||||
107 293 24 0.0782000000000000 0.212700000000000 0.0220000000000000 0 0
|
||||
108 162 247 0.00600000000000000 0.0220000000000000 0.0110000000000000 0 0
|
||||
109 162 1 0 0.0360000000000000 0 0 0
|
||||
110 247 298 0.0990000000000000 0.375000000000000 0.0510000000000000 0 0
|
||||
111 90 298 0.0220000000000000 0.107000000000000 0.0580000000000000 0 0
|
||||
112 248 205 0.00350000000000000 0.0330000000000000 0.530000000000000 0 0
|
||||
113 248 206 0.00350000000000000 0.0330000000000000 0.530000000000000 0 0
|
||||
114 91 249 0.00800000000000000 0.0640000000000000 0.128000000000000 0 0
|
||||
115 249 163 0.0120000000000000 0.0930000000000000 0.183000000000000 0 0
|
||||
116 249 17 0.00600000000000000 0.0480000000000000 0.0920000000000000 0 0
|
||||
117 165 167 0.0470000000000000 0.119000000000000 0.0140000000000000 0 0
|
||||
118 166 168 0.0320000000000000 0.174000000000000 0.0240000000000000 0 0
|
||||
119 167 169 0.100000000000000 0.253000000000000 0.0310000000000000 0 0
|
||||
120 167 278 0.0220000000000000 0.0770000000000000 0.0390000000000000 0 0
|
||||
121 168 171 0.0190000000000000 0.144000000000000 0.0170000000000000 0 0
|
||||
122 168 250 0.0170000000000000 0.0920000000000000 0.0120000000000000 0 0
|
||||
123 169 278 0.278000000000000 0.427000000000000 0.0430000000000000 0 0
|
||||
124 278 170 0.0220000000000000 0.0530000000000000 0.00700000000000000 0 0
|
||||
125 278 280 0.0380000000000000 0.0920000000000000 0.0120000000000000 0 0
|
||||
126 278 171 0.0480000000000000 0.122000000000000 0.0150000000000000 0 0
|
||||
127 92 170 0.0240000000000000 0.0640000000000000 0.00700000000000000 0 0
|
||||
128 92 280 0.0340000000000000 0.121000000000000 0.0150000000000000 0 0
|
||||
129 279 173 0.0530000000000000 0.135000000000000 0.0170000000000000 0 0
|
||||
130 279 174 0.00200000000000000 0.00400000000000000 0.00200000000000000 0 0
|
||||
131 279 251 0.0450000000000000 0.354000000000000 0.0440000000000000 0 0
|
||||
132 279 252 0.0500000000000000 0.174000000000000 0.0220000000000000 0 0
|
||||
133 170 280 0.0160000000000000 0.0380000000000000 0.00400000000000000 0 0
|
||||
134 280 172 0.0430000000000000 0.0640000000000000 0.0270000000000000 0 0
|
||||
135 171 250 0.0190000000000000 0.0620000000000000 0.00800000000000000 0 0
|
||||
136 172 174 0.0760000000000000 0.130000000000000 0.0440000000000000 0 0
|
||||
137 172 16 0.0440000000000000 0.124000000000000 0.0150000000000000 0 0
|
||||
138 250 173 0.0120000000000000 0.0880000000000000 0.0110000000000000 0 0
|
||||
139 250 252 0.157000000000000 0.400000000000000 0.0470000000000000 0 0
|
||||
140 174 18 0.0740000000000000 0.208000000000000 0.0260000000000000 0 0
|
||||
141 251 252 0.0700000000000000 0.184000000000000 0.0210000000000000 0 0
|
||||
142 251 94 0.100000000000000 0.274000000000000 0.0310000000000000 0 0
|
||||
143 251 175 0.109000000000000 0.393000000000000 0.0360000000000000 0 0
|
||||
144 252 93 0.142000000000000 0.404000000000000 0.0500000000000000 0 0
|
||||
145 93 175 0.0170000000000000 0.0420000000000000 0.00600000000000000 0 0
|
||||
146 95 256 0.00360000000000000 0.0199000000000000 0.00400000000000000 0 0
|
||||
147 96 255 0.00200000000000000 0.104900000000000 0.00100000000000000 0 0
|
||||
148 97 253 0.000100000000000000 0.00180000000000000 0.0170000000000000 0 0
|
||||
149 253 254 0 0.0271000000000000 0 0 0
|
||||
150 253 142 0 0.616300000000000 0 0 0
|
||||
151 142 255 0 -0.369700000000000 0 0 0
|
||||
152 253 176 0.00220000000000000 0.291500000000000 0 0 0
|
||||
153 254 255 0 0.0339000000000000 0 0 0
|
||||
154 254 176 0 0.0582000000000000 0 0 0
|
||||
155 256 177 0.0808000000000000 0.234400000000000 0.0290000000000000 0 0
|
||||
156 256 179 0.0965000000000000 0.366900000000000 0.0540000000000000 0 0
|
||||
157 177 178 0.0360000000000000 0.107600000000000 0.117000000000000 0 0
|
||||
158 177 179 0.0476000000000000 0.141400000000000 0.149000000000000 0 0
|
||||
159 179 294 0.000600000000000000 0.0197000000000000 0 0 0
|
||||
160 294 257 0.00590000000000000 0.0405000000000000 0.250000000000000 0 0
|
||||
161 294 181 0.0115000000000000 0.110600000000000 0.185000000000000 0 0
|
||||
162 294 182 0.0198000000000000 0.168800000000000 0.321000000000000 0 0
|
||||
163 294 191 0.00500000000000000 0.0500000000000000 0.330000000000000 0 0
|
||||
164 294 192 0.00770000000000000 0.0538000000000000 0.335000000000000 0 0
|
||||
165 294 196 0.0165000000000000 0.115700000000000 0.171000000000000 0 0
|
||||
166 257 180 0.00590000000000000 0.0577000000000000 0.0950000000000000 0 0
|
||||
167 257 183 0.00490000000000000 0.0336000000000000 0.208000000000000 0 0
|
||||
168 257 195 0.00590000000000000 0.0577000000000000 0.0950000000000000 0 0
|
||||
169 180 299 0.00780000000000000 0.0773000000000000 0.126000000000000 0 0
|
||||
170 180 288 0.00260000000000000 0.0193000000000000 0.0300000000000000 0 0
|
||||
171 181 299 0.00760000000000000 0.0752000000000000 0.122000000000000 0 0
|
||||
172 181 288 0.00210000000000000 0.0186000000000000 0.0300000000000000 0 0
|
||||
173 299 182 0.00160000000000000 0.0164000000000000 0.0260000000000000 0 0
|
||||
174 299 105 0.00170000000000000 0.0165000000000000 0.0260000000000000 0 0
|
||||
175 299 115 0.00790000000000000 0.0793000000000000 0.127000000000000 0 0
|
||||
176 299 195 0.00780000000000000 0.0784000000000000 0.125000000000000 0 0
|
||||
177 288 295 0.00170000000000000 0.0117000000000000 0.289000000000000 0 0
|
||||
178 288 195 0.00260000000000000 0.0193000000000000 0.0300000000000000 0 0
|
||||
179 288 196 0.00210000000000000 0.0186000000000000 0.0300000000000000 0 0
|
||||
180 288 2 0.000200000000000000 0.0101000000000000 0 0 0
|
||||
181 183 99 0.00430000000000000 0.0293000000000000 0.180000000000000 0 0
|
||||
182 183 121 0.00390000000000000 0.0381000000000000 0.258000000000000 0 0
|
||||
183 99 184 0.00910000000000000 0.0623000000000000 0.385000000000000 0 0
|
||||
184 184 295 0.0125000000000000 0.0890000000000000 0.540000000000000 0 0
|
||||
185 184 106 0.00560000000000000 0.0390000000000000 0.953000000000000 0 0
|
||||
186 295 296 0.00150000000000000 0.0114000000000000 0.284000000000000 0 0
|
||||
187 295 201 0.000500000000000000 0.00340000000000000 0.0210000000000000 0 0
|
||||
188 295 122 0.000700000000000000 0.0151000000000000 0.126000000000000 0 0
|
||||
189 295 262 0.000500000000000000 0.00340000000000000 0.0210000000000000 0 0
|
||||
190 185 197 0.0562000000000000 0.224800000000000 0.0810000000000000 0 0
|
||||
191 296 186 0.0120000000000000 0.0836000000000000 0.123000000000000 0 0
|
||||
192 296 187 0.0152000000000000 0.113200000000000 0.684000000000000 0 0
|
||||
193 296 282 0.0468000000000000 0.336900000000000 0.519000000000000 0 0
|
||||
194 296 258 0.0430000000000000 0.303100000000000 0.463000000000000 0 0
|
||||
195 296 102 0.0489000000000000 0.349200000000000 0.538000000000000 0 0
|
||||
196 296 119 0.00130000000000000 0.00890000000000000 0.119000000000000 0 0
|
||||
197 186 258 0.0291000000000000 0.226700000000000 0.342000000000000 0 0
|
||||
198 187 281 0.00600000000000000 0.0570000000000000 0.767000000000000 0 0
|
||||
199 281 282 0.00750000000000000 0.0773000000000000 0.119000000000000 0 0
|
||||
200 281 103 0.0127000000000000 0.0909000000000000 0.135000000000000 0 0
|
||||
201 282 258 0.00850000000000000 0.0588000000000000 0.0870000000000000 0 0
|
||||
202 282 103 0.0218000000000000 0.151100000000000 0.223000000000000 0 0
|
||||
203 258 102 0.00730000000000000 0.0504000000000000 0.0740000000000000 0 0
|
||||
204 188 261 0.0523000000000000 0.152600000000000 0.0740000000000000 0 0
|
||||
205 188 200 0.137100000000000 0.391900000000000 0.0760000000000000 0 0
|
||||
206 106 189 0.0137000000000000 0.0957000000000000 0.141000000000000 0 0
|
||||
207 189 110 0.00550000000000000 0.0288000000000000 0.190000000000000 0 0
|
||||
208 107 108 0.174600000000000 0.316100000000000 0.0400000000000000 0 0
|
||||
209 107 120 0.0804000000000000 0.305400000000000 0.0450000000000000 0 0
|
||||
210 190 110 0.0110000000000000 0.0568000000000000 0.388000000000000 0 0
|
||||
211 191 193 0.000800000000000000 0.00980000000000000 0.0690000000000000 0 0
|
||||
212 192 193 0.00290000000000000 0.0285000000000000 0.190000000000000 0 0
|
||||
213 192 109 0.00660000000000000 0.0448000000000000 0.277000000000000 0 0
|
||||
214 111 194 0.00240000000000000 0.0326000000000000 0.236000000000000 0 0
|
||||
215 111 113 0.00180000000000000 0.0245000000000000 1.66200000000000 0 0
|
||||
216 112 194 0.00440000000000000 0.0514000000000000 3.59700000000000 0 0
|
||||
217 113 114 0.000200000000000000 0.0123000000000000 0 0 0
|
||||
218 115 196 0.00180000000000000 0.0178000000000000 0.0290000000000000 0 0
|
||||
219 197 259 0.0669000000000000 0.484300000000000 0.0630000000000000 0 0
|
||||
220 197 198 0.0558000000000000 0.221000000000000 0.0310000000000000 0 0
|
||||
221 259 198 0.0807000000000000 0.333100000000000 0.0490000000000000 0 0
|
||||
222 259 260 0.0739000000000000 0.307100000000000 0.0430000000000000 0 0
|
||||
223 259 199 0.179900000000000 0.501700000000000 0.0690000000000000 0 0
|
||||
224 260 199 0.0904000000000000 0.362600000000000 0.0480000000000000 0 0
|
||||
225 260 200 0.0770000000000000 0.309200000000000 0.0540000000000000 0 0
|
||||
226 199 117 0.0251000000000000 0.0829000000000000 0.0470000000000000 0 0
|
||||
227 117 261 0.0222000000000000 0.0847000000000000 0.0500000000000000 0 0
|
||||
228 261 200 0.0498000000000000 0.185500000000000 0.0290000000000000 0 0
|
||||
229 261 118 0.00610000000000000 0.0290000000000000 0.0840000000000000 0 0
|
||||
230 201 100 0.000400000000000000 0.0202000000000000 0 0 0
|
||||
231 201 123 0.000400000000000000 0.00830000000000000 0.115000000000000 0 0
|
||||
232 121 3 0.00250000000000000 0.0245000000000000 0.164000000000000 0 0
|
||||
233 122 262 0.000700000000000000 0.00860000000000000 0.115000000000000 0 0
|
||||
234 123 262 0.000700000000000000 0.00860000000000000 0.115000000000000 0 0
|
||||
235 262 100 0.000400000000000000 0.0202000000000000 0 0 0
|
||||
236 202 212 0.0330000000000000 0.0950000000000000 0 0 0
|
||||
237 202 131 0.0460000000000000 0.0690000000000000 0 0 0
|
||||
238 203 290 0.000400000000000000 0.00220000000000000 6.20000000000000 0 0
|
||||
239 203 138 0 0.0275000000000000 0 0 0
|
||||
240 124 125 0.00300000000000000 0.0480000000000000 0 0 0
|
||||
241 125 218 0.00200000000000000 0.00900000000000000 0 0 0
|
||||
242 204 210 0.0450000000000000 0.0630000000000000 0 0 0
|
||||
243 204 212 0.0480000000000000 0.127000000000000 0 0 0
|
||||
244 205 284 0.00310000000000000 0.0286000000000000 0.500000000000000 0 0
|
||||
245 205 25 0.00240000000000000 0.0355000000000000 0.360000000000000 0 0
|
||||
246 206 284 0.00310000000000000 0.0286000000000000 0.500000000000000 0 0
|
||||
247 263 207 0.0140000000000000 0.0400000000000000 0.00400000000000000 0 0
|
||||
248 263 283 0.0300000000000000 0.0810000000000000 0.0100000000000000 0 0
|
||||
249 207 289 0.0100000000000000 0.0600000000000000 0.00900000000000000 0 0
|
||||
250 207 298 0.0150000000000000 0.0400000000000000 0.00600000000000000 0 0
|
||||
251 289 128 0.332000000000000 0.688000000000000 0 0 0
|
||||
252 289 129 0.00900000000000000 0.0460000000000000 0.0250000000000000 0 0
|
||||
253 289 283 0.0200000000000000 0.0730000000000000 0.00800000000000000 0 0
|
||||
254 289 298 0.0340000000000000 0.109000000000000 0.0320000000000000 0 0
|
||||
255 126 208 0.0760000000000000 0.135000000000000 0.00900000000000000 0 0
|
||||
256 126 283 0.0400000000000000 0.102000000000000 0.00500000000000000 0 0
|
||||
257 208 283 0.0810000000000000 0.128000000000000 0.0140000000000000 0 0
|
||||
258 127 209 0.124000000000000 0.183000000000000 0 0 0
|
||||
259 129 298 0.0100000000000000 0.0590000000000000 0.00800000000000000 0 0
|
||||
260 209 210 0.0460000000000000 0.0680000000000000 0 0 0
|
||||
261 210 211 0.302000000000000 0.446000000000000 0 0 0
|
||||
262 211 130 0.0730000000000000 0.0930000000000000 0 0 0
|
||||
263 211 212 0.240000000000000 0.421000000000000 0 0 0
|
||||
264 213 215 0.0139000000000000 0.0778000000000000 0.0860000000000000 0 0
|
||||
265 214 215 0.00170000000000000 0.0185000000000000 0.0200000000000000 0 0
|
||||
266 214 222 0.00150000000000000 0.0108000000000000 0.00200000000000000 0 0
|
||||
267 215 132 0.00450000000000000 0.0249000000000000 0.0260000000000000 0 0
|
||||
268 132 264 0.00400000000000000 0.0497000000000000 0.0180000000000000 0 0
|
||||
269 264 216 0 0.0456000000000000 0 0 0
|
||||
270 264 284 0.000500000000000000 0.0177000000000000 0.0200000000000000 0 0
|
||||
271 264 265 0.00270000000000000 0.0395000000000000 0.832000000000000 0 0
|
||||
272 284 285 0.000300000000000000 0.00180000000000000 5.20000000000000 0 0
|
||||
273 265 216 0.00370000000000000 0.0484000000000000 0.430000000000000 0 0
|
||||
274 265 133 0.00100000000000000 0.0295000000000000 0.503000000000000 0 0
|
||||
275 265 221 0.00160000000000000 0.00460000000000000 0.402000000000000 0 0
|
||||
276 133 134 0.000300000000000000 0.00130000000000000 1 0 0
|
||||
277 217 218 0.0100000000000000 0.0640000000000000 0.480000000000000 0 0
|
||||
278 217 135 0.00190000000000000 0.00810000000000000 0.860000000000000 0 0
|
||||
279 218 124 0.00100000000000000 0.0610000000000000 0 0 0
|
||||
280 135 290 0.000500000000000000 0.0212000000000000 0 0 0
|
||||
281 219 220 0.00190000000000000 0.00870000000000000 1.28000000000000 0 0
|
||||
282 219 290 0.00260000000000000 0.0917000000000000 0 0 0
|
||||
283 219 266 0.00130000000000000 0.0288000000000000 0.810000000000000 0 0
|
||||
284 220 203 0 0.0626000000000000 0 0 0
|
||||
285 290 136 0.000200000000000000 0.00690000000000000 1.36400000000000 0 0
|
||||
286 290 285 0.000100000000000000 0.000600000000000000 3.57000000000000 0 0
|
||||
287 136 8 0.00170000000000000 0.0485000000000000 0 0 0
|
||||
288 266 137 0.000200000000000000 0.0259000000000000 0.144000000000000 0 0
|
||||
289 266 285 0.000600000000000000 0.0272000000000000 0 0 0
|
||||
290 137 221 0.000200000000000000 0.000600000000000000 0.800000000000000 0 0
|
||||
291 138 13 0.000300000000000000 0.00430000000000000 0.00900000000000000 0 0
|
||||
292 222 267 0.00820000000000000 0.0851000000000000 0 0 0
|
||||
293 222 268 0.0112000000000000 0.0723000000000000 0 0 0
|
||||
294 139 140 0.0127000000000000 0.0355000000000000 0 0 0
|
||||
295 139 267 0.0326000000000000 0.180400000000000 0 0 0
|
||||
296 140 223 0.0195000000000000 0.0551000000000000 0 0 0
|
||||
297 267 223 0.0157000000000000 0.0732000000000000 0 0 0
|
||||
298 267 268 0.0360000000000000 0.211900000000000 0 0 0
|
||||
299 223 268 0.0268000000000000 0.128500000000000 0 0 0
|
||||
300 268 224 0.0428000000000000 0.121500000000000 0 0 0
|
||||
301 224 141 0.0351000000000000 0.100400000000000 0 0 0
|
||||
302 141 12 0.0616000000000000 0.185700000000000 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
97 3.25000000000000 0 0 0 0 0 0
|
||||
255 0.550000000000000 0 0 0 0 0 0
|
||||
107 0.345000000000000 0 0 0 0 0 0
|
||||
194 -2.12000000000000 0 0 0 0 0 0
|
||||
114 -1.03000000000000 0 0 0 0 0 0
|
||||
259 0.530000000000000 0 0 0 0 0 0
|
||||
200 0.450000000000000 0 0 0 0 0 0
|
||||
203 -1.50000000000000 0 0 0 0 0 0
|
||||
290 -3 0 0 0 0 0 0
|
||||
221 -1.50000000000000 0 0 0 0 0 0
|
||||
138 -1.40000000000000 0 0 0 0 0 0
|
||||
224 0.456000000000000 0 0 0 0 0 0
|
||||
300 0.0240000000000000 0 0 0 0 0 0
|
||||
54 0.0170000000000000 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
1 297 269 0.000100000000000000 0.000500000000000000 1.00820000000000 0.904300000000000 1.10430000000000
|
||||
2 269 226 0.0244000000000000 0.436800000000000 0.966800000000000 0.939100000000000 1.14780000000000
|
||||
3 269 227 0.0362000000000000 0.649000000000000 0.979600000000000 0.939100000000000 1.14780000000000
|
||||
4 291 62 0.0158000000000000 0.374900000000000 1.04350000000000 0.939100000000000 1.14780000000000
|
||||
5 291 63 0.0158000000000000 0.374900000000000 0.939100000000000 0.939100000000000 1.14780000000000
|
||||
6 291 145 0.0160000000000000 0.380500000000000 1.04350000000000 0.939100000000000 1.14780000000000
|
||||
7 291 64 0 0.152000000000000 1.04350000000000 0.939100000000000 1.10000000000000
|
||||
8 291 65 0 0.800000000000000 1.04350000000000 0.939100000000000 1.10000000000000
|
||||
9 228 47 0.443600000000000 2.81520000000000 1 0.939100000000000 1.10000000000000
|
||||
10 225 48 0.507500000000000 3.22020000000000 1 0.939100000000000 1.10000000000000
|
||||
11 229 49 0.666900000000000 3.94400000000000 1 0.939100000000000 1.10000000000000
|
||||
12 229 50 0.611300000000000 3.61520000000000 1 0.939100000000000 1.10000000000000
|
||||
13 271 66 0.441200000000000 2.96680000000000 1 0.939100000000000 1.10000000000000
|
||||
14 271 67 0.307900000000000 2.05700000000000 1 0.939100000000000 1.10000000000000
|
||||
15 300 51 0.736300000000000 4.67240000000000 1 0.939100000000000 1.10000000000000
|
||||
16 300 52 0.769800000000000 4.88460000000000 1 0.939100000000000 1.10000000000000
|
||||
17 300 53 0.757300000000000 4.80560000000000 1 0.939100000000000 1.10000000000000
|
||||
18 270 59 0.366100000000000 2.45600000000000 1 0.939100000000000 1.10000000000000
|
||||
19 270 60 1.05930000000000 5.45360000000000 1 0.939100000000000 1.10000000000000
|
||||
20 270 61 0.156700000000000 1.69940000000000 1 0.900000000000000 1.10000000000000
|
||||
21 300 54 0.130100000000000 1.39120000000000 1 0.939100000000000 1.10000000000000
|
||||
22 300 55 0.544800000000000 3.45720000000000 1 0.939100000000000 1.10000000000000
|
||||
23 300 56 0.154300000000000 1.67290000000000 1 0.939100000000000 1.10000000000000
|
||||
24 300 57 0.384900000000000 2.57120000000000 1 0.939100000000000 1.10000000000000
|
||||
25 300 58 0.441200000000000 2.96680000000000 1 0.939100000000000 1.10000000000000
|
||||
26 145 69 0 0.750000000000000 0.958300000000000 0.939100000000000 1.10000000000000
|
||||
27 4 214 0.00250000000000000 0.0380000000000000 1 0.939100000000000 1.10000000000000
|
||||
28 5 285 0.00140000000000000 0.0514000000000000 1 0.939100000000000 1.10000000000000
|
||||
29 6 290 0.000900000000000000 0.0472000000000000 1 0.939100000000000 1.10000000000000
|
||||
30 11 285 0.000500000000000000 0.0154000000000000 1 0.939100000000000 1.10000000000000
|
||||
31 292 146 0 0.0520000000000000 0.947000000000000 0.900000000000000 1.10000000000000
|
||||
32 292 230 0 0.0520000000000000 0.956000000000000 0.900000000000000 1.10000000000000
|
||||
33 292 70 0 0.00500000000000000 0.971000000000000 0.900000000000000 1.10000000000000
|
||||
34 272 147 0 0.0390000000000000 0.948000000000000 0.900000000000000 1.10000000000000
|
||||
35 272 71 0 0.0390000000000000 0.959000000000000 0.900000000000000 1.10000000000000
|
||||
36 73 273 0 0.0890000000000000 1.04600000000000 0.900000000000000 1.10000000000000
|
||||
37 231 73 0 0.0530000000000000 0.985000000000000 0.900000000000000 1.10000000000000
|
||||
38 286 76 0.0194000000000000 0.0311000000000000 0.956100000000000 0.900000000000000 1.10000000000000
|
||||
39 149 286 0.00100000000000000 0.0380000000000000 0.971000000000000 0.900000000000000 1.10000000000000
|
||||
40 233 232 0 0.0140000000000000 0.952000000000000 0.900000000000000 1.10000000000000
|
||||
41 235 234 0 0.0640000000000000 0.943000000000000 0.900000000000000 1.10000000000000
|
||||
42 81 237 0 0.0470000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
||||
43 240 275 0 0.0200000000000000 1.00800000000000 0.900000000000000 1.10000000000000
|
||||
44 240 153 0 0.0210000000000000 1 0.900000000000000 1.10000000000000
|
||||
45 276 158 0 0.0590000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
||||
46 159 88 0 0.0380000000000000 1.01700000000000 0.900000000000000 1.10000000000000
|
||||
47 277 246 0 0.0244000000000000 1 0.900000000000000 1.10000000000000
|
||||
48 248 164 0 0.0200000000000000 1 0.900000000000000 1.10000000000000
|
||||
49 91 279 0 0.0480000000000000 1 0.900000000000000 1.10000000000000
|
||||
50 249 280 0 0.0480000000000000 1 0.900000000000000 1.10000000000000
|
||||
51 163 169 0 0.0460000000000000 1.01500000000000 0.900000000000000 1.10000000000000
|
||||
52 175 130 0 0.149000000000000 0.967000000000000 0.900000000000000 1.10000000000000
|
||||
53 96 178 0.00520000000000000 0.0174000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
||||
54 176 95 0 0.0280000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
55 256 191 0.000500000000000000 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
||||
56 299 98 0 0.0180000000000000 1.05220000000000 0.900000000000000 1.10000000000000
|
||||
57 299 104 0 0.0140000000000000 1.05220000000000 0.900000000000000 1.10000000000000
|
||||
58 182 116 0.00100000000000000 0.0402000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
59 186 198 0.00240000000000000 0.0603000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
||||
60 187 260 0.00240000000000000 0.0498000000000000 1 0.900000000000000 1.10000000000000
|
||||
61 281 101 0 0.0833000000000000 1.03500000000000 0.900000000000000 1.10000000000000
|
||||
62 281 188 0.00130000000000000 0.0371000000000000 0.956500000000000 0.900000000000000 1.10000000000000
|
||||
63 282 118 0.000500000000000000 0.0182000000000000 1 0.900000000000000 1.10000000000000
|
||||
64 105 116 0.00100000000000000 0.0392000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
65 189 120 0.00270000000000000 0.0639000000000000 1.07300000000000 0.900000000000000 1.10000000000000
|
||||
66 190 108 0.000800000000000000 0.0256000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
67 193 97 0 0.0160000000000000 1.05060000000000 0.900000000000000 1.10000000000000
|
||||
68 109 178 0.00120000000000000 0.0396000000000000 0.975000000000000 0.900000000000000 1.10000000000000
|
||||
69 112 295 0.00130000000000000 0.0384000000000000 0.980000000000000 0.900000000000000 1.10000000000000
|
||||
70 194 190 0.000900000000000000 0.0231000000000000 0.956000000000000 0.900000000000000 1.10000000000000
|
||||
71 119 185 0.000300000000000000 0.0131000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
72 202 283 0 0.252000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
73 204 263 0 0.237000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
74 206 213 0.000800000000000000 0.0366000000000000 0.985000000000000 0.900000000000000 1.10000000000000
|
||||
75 208 224 0 0.220000000000000 1 0.900000000000000 1.10000000000000
|
||||
76 127 160 0 0.0980000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
77 128 298 0 0.128000000000000 1.01000000000000 0.900000000000000 1.10000000000000
|
||||
78 209 143 0.0200000000000000 0.204000000000000 1.05000000000000 0.900000000000000 1.10000000000000
|
||||
79 131 289 0.0260000000000000 0.211000000000000 1.03000000000000 0.900000000000000 1.10000000000000
|
||||
80 298 213 0.00300000000000000 0.0122000000000000 1 0.900000000000000 1.10000000000000
|
||||
81 216 284 0.00300000000000000 0.0122000000000000 0.970000000000000 0.900000000000000 1.10000000000000
|
||||
82 134 217 0.00120000000000000 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
||||
83 220 7 0.00100000000000000 0.0332000000000000 1.02000000000000 0.900000000000000 1.10000000000000
|
||||
84 266 9 0.000500000000000000 0.0160000000000000 1.07000000000000 0.900000000000000 1.10000000000000
|
||||
85 221 10 0.000500000000000000 0.0160000000000000 1.02000000000000 0.900000000000000 1.10000000000000
|
||||
86 263 143 0.000100000000000000 0.0200000000000000 1 0.900000000000000 1.10000000000000
|
||||
87 254 26 0.00100000000000000 0.0230000000000000 1.02230000000000 0.900000000000000 1.10000000000000
|
||||
88 255 27 0 0.0230000000000000 0.928400000000000 0.900000000000000 1.10000000000000
|
||||
89 29 230 0.00100000000000000 0.0146000000000000 1 0.900000000000000 1.10000000000000
|
||||
90 30 292 0 0.0105000000000000 1 0.900000000000000 1.10000000000000
|
||||
91 41 158 0 0.0238000000000000 1 0.900000000000000 1.10000000000000
|
||||
92 42 276 0 0.0321000000000000 0.950000000000000 0.900000000000000 1.10000000000000
|
||||
93 46 114 0 0.0154000000000000 1 0.900000000000000 1.10000000000000
|
||||
94 35 235 0 0.0289000000000000 1 0.900000000000000 1.10000000000000
|
||||
95 28 146 0 0.0195000000000000 1 0.900000000000000 1.10000000000000
|
||||
96 44 299 0 0.0193000000000000 1 0.900000000000000 1.10000000000000
|
||||
97 31 273 0 0.0192000000000000 1 0.900000000000000 1.10000000000000
|
||||
98 34 234 0 0.0230000000000000 1 0.900000000000000 1.10000000000000
|
||||
99 38 241 0 0.0124000000000000 1 0.900000000000000 1.10000000000000
|
||||
100 45 185 0 0.0167000000000000 1 0.900000000000000 1.10000000000000
|
||||
101 32 231 0 0.0312000000000000 1 0.900000000000000 1.10000000000000
|
||||
102 33 76 0 0.0165000000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
||||
103 36 82 0 0.0316000000000000 0.965000000000000 0.900000000000000 1.10000000000000
|
||||
104 40 243 0 0.0535000000000000 0.950000000000000 0.900000000000000 1.10000000000000
|
||||
105 37 275 0 0.181800000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
||||
106 39 242 0 0.196100000000000 0.942000000000000 0.900000000000000 1.10000000000000
|
||||
107 43 244 0 0.0690000000000000 0.956500000000000 0.900000000000000 1.10000000000000
|
||||
0 0 0 0 0 0 0 0
|
||||
1 375 0 37 13 0 0 0
|
||||
2 0 0 763.600000000000 291.100000000000 0 0 0
|
||||
3 200 0 0 0 0 0 0
|
||||
4 272 0 0 0 0 0 0
|
||||
5 250 0 328 188 0 0 0
|
||||
6 303 0 538 369 0 0 0
|
||||
7 345 0 0 0 0 0 0
|
||||
8 300 0 404 212 0 0 0
|
||||
9 600 0 0 0 0 0 0
|
||||
10 550 0 0 0 0 0 0
|
||||
11 575.430000000000 0 0 0 0 0 0
|
||||
12 0 0 -23 -17 0 0 0
|
||||
13 0 0 -33.1000000000000 -29.4000000000000 0 0 0
|
||||
14 0 0 115.800000000000 -24 0 0 0
|
||||
15 0 0 2.40000000000000 -12.6000000000000 0 0 0
|
||||
16 0 0 2.40000000000000 -3.90000000000000 0 0 0
|
||||
17 0 0 -14.9000000000000 26.5000000000000 0 0 0
|
||||
18 0 0 24.7000000000000 -1.20000000000000 0 0 0
|
||||
19 0 0 145.300000000000 -34.9000000000000 0 0 0
|
||||
20 0 0 28.1000000000000 -20.5000000000000 0 0 0
|
||||
21 0 0 14 2.50000000000000 0 0 0
|
||||
22 0 0 -11.1000000000000 -1.40000000000000 0 0 0
|
||||
23 0 0 50.5000000000000 17.4000000000000 0 0 0
|
||||
24 0 0 29.6000000000000 0.600000000000000 0 0 0
|
||||
25 0 0 -113.700000000000 76.7000000000000 0 0 0
|
||||
26 0 0 100.310000000000 29.1700000000000 0 0 0
|
||||
27 0 0 -100 34.1700000000000 0 0 0
|
||||
28 467 0 0 0 0 0 0
|
||||
29 623 0 0 0 0 0 0
|
||||
30 1210 0 0 0 0 0 0
|
||||
31 234 0 0 0 0 0 0
|
||||
32 372 0 0 0 0 0 0
|
||||
33 330 0 0 0 0 0 0
|
||||
34 185 0 0 0 0 0 0
|
||||
35 410 0 0 0 0 0 0
|
||||
36 500 0 0 0 0 0 0
|
||||
37 37 0 0 0 0 0 0
|
||||
38 0 0 0 0 0 0 0
|
||||
39 45 0 0 0 0 0 0
|
||||
40 165 0 0 0 0 0 0
|
||||
41 400 0 0 0 0 0 0
|
||||
42 400 0 0 0 0 0 0
|
||||
43 116 0 0 0 0 0 0
|
||||
44 1292 0 0 0 0 0 0
|
||||
45 700 0 0 0 0 0 0
|
||||
46 553 0 0 0 0 0 0
|
||||
47 0 0 1.53000000000000 0.530000000000000 0 0 0
|
||||
48 0 0 1.35000000000000 0.470000000000000 0 0 0
|
||||
49 0 0 0.450000000000000 0.160000000000000 0 0 0
|
||||
50 0 0 0.450000000000000 0.160000000000000 0 0 0
|
||||
51 0 0 1.84000000000000 0.640000000000000 0 0 0
|
||||
52 0 0 1.39000000000000 0.480000000000000 0 0 0
|
||||
53 0 0 1.89000000000000 0.650000000000000 0 0 0
|
||||
54 0 0 1.55000000000000 0.540000000000000 0 0 0
|
||||
55 0 0 1.66000000000000 0.580000000000000 0 0 0
|
||||
56 0 0 3.03000000000000 1 0 0 0
|
||||
57 0 0 1.86000000000000 0.640000000000000 0 0 0
|
||||
58 0 0 2.58000000000000 0.890000000000000 0 0 0
|
||||
59 0 0 1.01000000000000 0.350000000000000 0 0 0
|
||||
60 0 0 0.810000000000000 0.280000000000000 0 0 0
|
||||
61 0 0 1.60000000000000 0.520000000000000 0 0 0
|
||||
62 -35.8100000000000 0 0 0 0 0 0
|
||||
63 0 0 30 23 0 0 0
|
||||
64 50 0 0 0 0 0 0
|
||||
65 8 0 0 0 0 0 0
|
||||
66 0 0 1.02000000000000 0.350000000000000 0 0 0
|
||||
67 0 0 1.02000000000000 0.350000000000000 0 0 0
|
||||
68 0 0 3.80000000000000 1.25000000000000 0 0 0
|
||||
69 0 0 1.19000000000000 0.410000000000000 0 0 0
|
||||
70 0 0 0 0 0 0 0
|
||||
71 0 0 120 41 0 0 0
|
||||
72 0 0 96 43 0 0 0
|
||||
73 -5 0 148 33 0 0 0
|
||||
74 0 0 58 10 0 0 0
|
||||
75 0 0 160 60 0 0 0
|
||||
76 0 0 561 220 0 0 0
|
||||
77 0 0 81 23 0 0 0
|
||||
78 0 0 45 12 0 0 0
|
||||
79 0 0 69 13 0 0 0
|
||||
80 0 0 0 0 0 0 0
|
||||
81 0 0 0 0 0 0 0
|
||||
82 0 0 0 0 0 0 0
|
||||
83 0 0 61 28 0 0 0
|
||||
84 0 0 69 3 0 0 0
|
||||
85 0 0 14 1 0 0 0
|
||||
86 0 0 218 106 0 0 0
|
||||
87 0 0 0 0 0 0 0
|
||||
88 0 0 0 0 0 0 0
|
||||
89 0 0 56 20 0 0 0
|
||||
90 0 0 28 7 0 0 0
|
||||
91 0 0 0 0 0 0 0
|
||||
92 68 0 66.7000000000000 0 0 0 0
|
||||
93 0 0 19.6000000000000 0 0 0 0
|
||||
94 0 0 26.2000000000000 0 0 0 0
|
||||
95 0 0 0 0 0 0 0
|
||||
96 0 0 0 0 0 0 0
|
||||
97 0 0 0 0 0 0 0
|
||||
98 0 0 0 0 0 0 0
|
||||
99 0 0 169.200000000000 41.6000000000000 0 0 0
|
||||
100 -192.500000000000 0 826.700000000000 135.200000000000 0 0 0
|
||||
101 0 0 0 0 0 0 0
|
||||
102 217 0 0 0 0 0 0
|
||||
103 103 0 0 0 0 0 0
|
||||
104 0 0 0 0 0 0 0
|
||||
105 0 0 0 0 0 0 0
|
||||
106 372 0 17 9 0 0 0
|
||||
107 0 0 70 5 0 0 0
|
||||
108 0 0 75 50 0 0 0
|
||||
109 0 0 0 0 0 0 0
|
||||
110 0 0 35 15 0 0 0
|
||||
111 0 0 85 24 0 0 0
|
||||
112 0 0 0 0.400000000000000 0 0 0
|
||||
113 0 0 0 0 0 0 0
|
||||
114 0 0 0 0 0 0 0
|
||||
115 0 0 299.900000000000 95.7000000000000 0 0 0
|
||||
116 205 0 481.800000000000 205 0 0 0
|
||||
117 84 0 28 12 0 0 0
|
||||
118 0 0 69.5000000000000 49.3000000000000 0 0 0
|
||||
119 0 0 240.700000000000 89 0 0 0
|
||||
120 0 0 40 4 0 0 0
|
||||
121 0 0 136.800000000000 16.6000000000000 0 0 0
|
||||
122 1200 0 59.8000000000000 24.3000000000000 0 0 0
|
||||
123 1200 0 59.8000000000000 24.3000000000000 0 0 0
|
||||
124 1973 0 489 53 0 0 0
|
||||
125 0 0 800 72 0 0 0
|
||||
126 0 0 35 12 0 0 0
|
||||
127 0 0 41 14 0 0 0
|
||||
128 0 0 38 13 0 0 0
|
||||
129 0 0 42 14 0 0 0
|
||||
130 0 0 -21 -14.2000000000000 0 0 0
|
||||
131 0 0 38 13 0 0 0
|
||||
132 0 0 176 105 0 0 0
|
||||
133 450 0 171 70 0 0 0
|
||||
134 0 0 428 232 0 0 0
|
||||
135 0 0 0 0 0 0 0
|
||||
136 0 0 448 143 0 0 0
|
||||
137 0 0 269 157 0 0 0
|
||||
138 0 0 0 0 0 0 0
|
||||
139 84 0 8 3 0 0 0
|
||||
140 0 0 0 0 0 0 0
|
||||
141 0 0 29 14 0 0 0
|
||||
142 0 0 0 0 0 0 0
|
||||
143 0 0 0 0 0 0 0
|
||||
144 0 0 0 0 0 0 0
|
||||
145 -26.4800000000000 0 0 0 0 0 0
|
||||
146 0 0 90 49 0 0 0
|
||||
147 0 0 353 130 0 0 0
|
||||
148 -5 0 58 14 0 0 0
|
||||
149 0 0 0 0 0 0 0
|
||||
150 0 0 0 0 0 0 0
|
||||
151 0 0 28 9 0 0 0
|
||||
152 0 0 46 -21 0 0 0
|
||||
153 0 0 0 0 0 0 0
|
||||
154 0 0 58 11.8000000000000 0 0 0
|
||||
155 0 0 41 19 0 0 0
|
||||
156 0 0 -5 5 0 0 0
|
||||
157 0 0 10 1 0 0 0
|
||||
158 0 0 227 110 0 0 0
|
||||
159 0 0 70 30 0 0 0
|
||||
160 0 0 0 0 0 0 0
|
||||
161 0 0 208 107 0 0 0
|
||||
162 0 0 0 0 0 0 0
|
||||
163 0 0 0 0 0 0 0
|
||||
164 0 0 0 0 0 0 0
|
||||
165 0 0 44.2000000000000 0 0 0 0
|
||||
166 0 0 66 0 0 0 0
|
||||
167 155 0 17.4000000000000 0 0 0 0
|
||||
168 290 0 15.8000000000000 0 0 0 0
|
||||
169 0 0 60.3000000000000 0 0 0 0
|
||||
170 0 0 0 0 0 0 0
|
||||
171 0 0 32 0 0 0 0
|
||||
172 0 0 8.60000000000000 0 0 0 0
|
||||
173 0 0 4.60000000000000 0 0 0 0
|
||||
174 117 0 112.100000000000 0 0 0 0
|
||||
175 0 0 18.2000000000000 0 0 0 0
|
||||
176 0 0 535 55 0 0 0
|
||||
177 0 0 78 1.40000000000000 0 0 0
|
||||
178 240 0 276.400000000000 59.3000000000000 0 0 0
|
||||
179 0 0 514.800000000000 82.7000000000000 0 0 0
|
||||
180 0 0 0 0 0 0 0
|
||||
181 0 0 0 0 0 0 0
|
||||
182 0 0 0 0 0 0 0
|
||||
183 0 0 0 0 0 0 0
|
||||
184 0 0 55.2000000000000 18.2000000000000 0 0 0
|
||||
185 0 0 595 83.3000000000000 0 0 0
|
||||
186 281 0 145 58 0 0 0
|
||||
187 0 0 56.5000000000000 24.5000000000000 0 0 0
|
||||
188 0 0 63 25 0 0 0
|
||||
189 216 0 0 0 0 0 0
|
||||
190 0 0 200 50 0 0 0
|
||||
191 0 0 123.500000000000 -24.3000000000000 0 0 0
|
||||
192 0 0 0 0 0 0 0
|
||||
193 0 0 33 16.5000000000000 0 0 0
|
||||
194 0 0 0 0 0 0 0
|
||||
195 0 0 0 0 0 0 0
|
||||
196 0 0 0 0 0 0 0
|
||||
197 0 0 26.5000000000000 0 0 0 0
|
||||
198 0 0 0 0 0 0 0
|
||||
199 228 0 5 4 0 0 0
|
||||
200 0 0 74 29 0 0 0
|
||||
201 0 0 73.4000000000000 0 0 0 0
|
||||
202 0 0 7 2 0 0 0
|
||||
203 475 0 0 0 0 0 0
|
||||
204 0 0 0 0 0 0 0
|
||||
205 0 0 0 0 0 0 0
|
||||
206 0 0 0 0 0 0 0
|
||||
207 0 0 43 14 0 0 0
|
||||
208 0 0 27 12 0 0 0
|
||||
209 0 0 72 24 0 0 0
|
||||
210 0 0 0 -5 0 0 0
|
||||
211 0 0 12 2 0 0 0
|
||||
212 0 0 7 2 0 0 0
|
||||
213 0 0 0 0 0 0 0
|
||||
214 0 0 22 16 0 0 0
|
||||
215 0 0 47 26 0 0 0
|
||||
216 0 0 131 96 0 0 0
|
||||
217 0 0 173 99 0 0 0
|
||||
218 0 0 410 40 0 0 0
|
||||
219 0 0 223 148 0 0 0
|
||||
220 0 0 96 46 0 0 0
|
||||
221 250 0 255 149 0 0 0
|
||||
222 170 0 0 0 0 0 0
|
||||
223 0 0 77 33 0 0 0
|
||||
224 0 0 29 14 0 0 0
|
||||
225 -4.20000000000000 0 0 0 0 0 0
|
||||
226 0 0 0 0 0 0 0
|
||||
227 0 0 0 0 0 0 0
|
||||
228 0 0 4.75000000000000 1.56000000000000 0 0 0
|
||||
229 0 0 0 0 0 0 0
|
||||
230 0 0 56 15 0 0 0
|
||||
231 0 0 0 0 0 0 0
|
||||
232 -10 0 595 120 0 0 0
|
||||
233 0 0 77 1 0 0 0
|
||||
234 0 0 21 7 0 0 0
|
||||
235 0 0 0 0 0 0 0
|
||||
236 0 0 55 6 0 0 0
|
||||
237 0 0 0 0 0 0 0
|
||||
238 0 0 155 18 0 0 0
|
||||
239 0 0 39 9 0 0 0
|
||||
240 0 0 0 0 0 0 0
|
||||
241 0 0 92 26 0 0 0
|
||||
242 0 0 22 10 0 0 0
|
||||
243 0 0 98 20 0 0 0
|
||||
244 0 0 116 38 0 0 0
|
||||
245 0 0 57 19 0 0 0
|
||||
246 0 0 0 0 0 0 0
|
||||
247 0 0 48 14 0 0 0
|
||||
248 0 0 0 0 0 0 0
|
||||
249 0 0 0 0 0 0 0
|
||||
250 0 0 49.6000000000000 0 0 0 0
|
||||
251 0 0 30.7000000000000 0 0 0 0
|
||||
252 0 0 63 0 0 0 0
|
||||
253 0 0 14.1000000000000 650 0 0 0
|
||||
254 1930 0 0 0 0 0 0
|
||||
255 0 0 777 215 0 0 0
|
||||
256 0 0 229.100000000000 11.8000000000000 0 0 0
|
||||
257 0 0 380.800000000000 37 0 0 0
|
||||
258 84 0 0 0 0 0 0
|
||||
259 0 0 163.500000000000 43 0 0 0
|
||||
260 0 0 176 83 0 0 0
|
||||
261 0 0 427.400000000000 173.600000000000 0 0 0
|
||||
262 0 0 182.600000000000 43.6000000000000 0 0 0
|
||||
263 0 0 10 3 0 0 0
|
||||
264 0 0 100 75 0 0 0
|
||||
265 100 0 285 100 0 0 0
|
||||
266 0 0 572 244 0 0 0
|
||||
267 0 0 61 30 0 0 0
|
||||
268 0 0 61 30 0 0 0
|
||||
269 0 0 0 0 0 0 0
|
||||
270 0 0 0.860000000000000 0.280000000000000 0 0 0
|
||||
271 0 0 0 0 0 0 0
|
||||
272 0 0 0 0 0 0 0
|
||||
273 0 0 83 21 0 0 0
|
||||
274 0 0 0 0 0 0 0
|
||||
275 0 0 195 29 0 0 0
|
||||
276 0 0 0 0 0 0 0
|
||||
277 0 0 224 71 0 0 0
|
||||
278 0 0 39.9000000000000 0 0 0 0
|
||||
279 0 0 83.5000000000000 0 0 0 0
|
||||
280 0 0 77.8000000000000 0 0 0 0
|
||||
281 696 0 89.5000000000000 35.5000000000000 0 0 0
|
||||
282 0 0 24 14 0 0 0
|
||||
283 0 0 0 0 0 0 0
|
||||
284 0 0 0 0 0 0 0
|
||||
285 0 0 0 0 0 0 0
|
||||
286 0 0 126.700000000000 23 0 0 0
|
||||
287 0 0 86 0 0 0 0
|
||||
288 0 0 0 0 0 0 0
|
||||
289 424 0 64 21 0 0 0
|
||||
290 0 0 159 107 0 0 0
|
||||
291 0 0 0 0 0 0 0
|
||||
292 0 0 20 0 0 0 0
|
||||
293 0 0 74 28 0 0 0
|
||||
294 0 0 57.9000000000000 5.10000000000000 0 0 0
|
||||
295 0 0 273.600000000000 99.8000000000000 0 0 0
|
||||
296 0 0 387.700000000000 114.700000000000 0 0 0
|
||||
297 0 0 85 32 0 0 0
|
||||
298 0 0 96 7 0 0 0
|
||||
299 0 0 0 0 0 0 0
|
||||
300 0 0 2.71000000000000 0.940000000000000 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
148 1.01530000000000 -10 10 0 0 0 0
|
||||
73 1.02050000000000 -20 20 0 0 0 0
|
||||
232 1.00100000000000 -20 20 0 0 0 0
|
||||
159 0.958300000000000 -25 25 0 0 0 0
|
||||
161 0.963200000000000 12 35 0 0 0 0
|
||||
1 1.02500000000000 -240 240 0 0 0 0
|
||||
167 1.05200000000000 -11 96 0 0 0 0
|
||||
168 1.05200000000000 -153 153 0 0 0 0
|
||||
92 1 -30 56 0 0 0 0
|
||||
174 0.990000000000000 -24 77 0 0 0 0
|
||||
254 1.04350000000000 -500 1500 0 0 0 0
|
||||
178 1.02330000000000 -60 120 0 0 0 0
|
||||
179 1.01030000000000 -25 200 0 0 0 0
|
||||
100 1.05500000000000 -125 350 0 0 0 0
|
||||
186 1.05100000000000 -50 75 0 0 0 0
|
||||
281 1.04350000000000 -100 300 0 0 0 0
|
||||
258 1.05280000000000 -15 35 0 0 0 0
|
||||
102 1.05280000000000 -50 100 0 0 0 0
|
||||
103 1.07350000000000 -25 50 0 0 0 0
|
||||
106 1.05350000000000 -50 175 0 0 0 0
|
||||
189 1.04350000000000 -50 90 0 0 0 0
|
||||
108 0.963000000000000 -10 15 0 0 0 0
|
||||
116 0.929000000000000 -40 90 0 0 0 0
|
||||
2 0.982900000000000 -50 150 0 0 0 0
|
||||
199 1.05220000000000 -45 90 0 0 0 0
|
||||
117 1.00770000000000 -15 35 0 0 0 0
|
||||
3 1.05220000000000 -50 80 0 0 0 0
|
||||
122 1.06500000000000 -100 400 0 0 0 0
|
||||
123 1.06500000000000 -100 400 0 0 0 0
|
||||
203 1.05510000000000 -300 300 0 0 0 0
|
||||
124 1.04350000000000 -1000 1000 0 0 0 0
|
||||
289 1.01500000000000 -260 260 0 0 0 0
|
||||
4 1.01000000000000 -150 150 0 0 0 0
|
||||
265 1.00800000000000 -60 60 0 0 0 0
|
||||
133 1 -320 320 0 0 0 0
|
||||
5 1.05000000000000 -300 300 0 0 0 0
|
||||
6 1 -300 300 0 0 0 0
|
||||
7 1.04000000000000 -250 250 0 0 0 0
|
||||
8 1 -500 500 0 0 0 0
|
||||
9 1.01650000000000 -300 300 0 0 0 0
|
||||
221 1.01000000000000 -200 200 0 0 0 0
|
||||
10 1 -400 400 0 0 0 0
|
||||
11 1.05000000000000 -600 600 0 0 0 0
|
||||
222 0.993000000000000 40 100 0 0 0 0
|
||||
139 1.01000000000000 40 80 0 0 0 0
|
||||
28 1.05070000000000 -210 210 0 0 0 0
|
||||
29 1.05070000000000 -280 280 0 0 0 0
|
||||
30 1.03230000000000 -420 420 0 0 0 0
|
||||
31 1.01450000000000 -100 100 0 0 0 0
|
||||
32 1.01450000000000 -224 224 0 0 0 0
|
||||
33 1.05070000000000 0 350 0 0 0 0
|
||||
34 1.05070000000000 0 120 0 0 0 0
|
||||
35 1.02900000000000 -224 224 0 0 0 0
|
||||
36 1.05000000000000 -200 200 0 0 0 0
|
||||
37 1.01450000000000 0 42 0 0 0 0
|
||||
38 1.05070000000000 -500 500 0 0 0 0
|
||||
39 0.996700000000000 0 25 0 0 0 0
|
||||
40 1.02120000000000 -90 90 0 0 0 0
|
||||
41 1.01450000000000 -150 150 0 0 0 0
|
||||
42 1.00170000000000 0 150 0 0 0 0
|
||||
43 0.989300000000000 0 87 0 0 0 0
|
||||
44 1.05070000000000 -100 600 0 0 0 0
|
||||
45 1.05070000000000 -125 325 0 0 0 0
|
||||
46 1.01450000000000 -200 300 0 0 0 0
|
||||
225 0.994500000000000 -2 2 0 0 0 0
|
||||
62 1 -17.3500000000000 17.3500000000000 0 0 0 0
|
||||
145 1 -12.8000000000000 12.8300000000000 0 0 0 0
|
||||
64 1 -38 38 0 0 0 0
|
||||
65 1 -6 6 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
5 0.200000000000000 0.200000000000000 0.137500000000000 210 600 0 0
|
||||
4 0.300000000000000 0.175000000000000 0.175000000000000 200 580 0 0
|
||||
9 0.300000000000000 0.125000000000000 0.100000000000000 200 800 0 0
|
||||
11 0.350000000000000 0.225000000000000 0.128300000000000 300 800 0 0
|
||||
28 0.220000000000000 0.143000000000000 0.250000000000000 300 600 0 0
|
||||
29 0.750000000000000 0.125000000000000 0.250000000000000 300 800 0 0
|
||||
30 0.540000000000000 0.195000000000000 0.252000000000000 600 1600 0 0
|
||||
31 0.380000000000000 0.220000000000000 0.439000000000000 200 400 0 0
|
||||
32 0.360000000000000 0.125000000000000 0.635000000000000 200 500 0 0
|
||||
33 0.900000000000000 0.130000000000000 0.0250000000000000 200 500 0 0
|
||||
34 0.830000000000000 0.230000000000000 0.0730000000000000 100 300 0 0
|
||||
35 0.440000000000000 0.143000000000000 0.312000000000000 320 600 0 0
|
||||
36 0.120000000000000 0.140000000000000 0.665000000000000 400 800 0 0
|
||||
38 0.540000000000000 0.115000000000000 0.102000000000000 600 1600 0 0
|
||||
40 0.660000000000000 0.155000000000000 0.265000000000000 100 350 0 0
|
||||
41 0.820000000000000 0.160000000000000 0.700000000000000 250 600 0 0
|
||||
42 0.440000000000000 0.145000000000000 0.105000000000000 250 600 0 0
|
||||
43 0.350000000000000 0.127000000000000 0.450000000000000 80 300 0 0
|
||||
44 0.540000000000000 0.125000000000000 0.122000000000000 600 1600 0 0
|
||||
45 0.380000000000000 0.200000000000000 0.139000000000000 500 900 0 0
|
||||
46 0.360000000000000 0.125000000000000 0.235000000000000 400 800 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
0 0 0 0 0 0 0 0
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
4 4 1. 18 .1
|
||||
1.e-5 2
|
||||
1 4
|
||||
0
|
||||
1 1 2 .1 .4 0.01528
|
||||
2 1 4 .12 .5 0.0192
|
||||
3 2 4 .08 .4 0.01413
|
||||
0
|
||||
0
|
||||
1 1 3 .0 .3 0.90909 .9 1.15
|
||||
0
|
||||
1 0. 0. 0.3 0.18
|
||||
2 0. 0. 0.55 0.13
|
||||
3 0.5 0. 0. 0.
|
||||
4 0.36 0.26 0. 0.
|
||||
0
|
||||
3 1.1 -0.1 0.6
|
||||
4 1.05 -0.6 0.6
|
||||
0
|
||||
3 44.4 351. 50. 0.3 1.2
|
||||
4 40.6 389. 50. 0.3 1.2
|
||||
0
|
||||
0
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
function [P0,Q0,U,Uangle] = Initial(PG,PD,PQstandard,Pointpoweri,QG,QD,Busnum)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——计算功率不平衡分量等
|
||||
% 编 者:
|
||||
% 编制时间 :2010.12
|
||||
%**************************************************************************
|
||||
%% 计算功率的不平衡分量
|
||||
P0 = sparse(1, Pointpoweri,(PG-PD)/PQstandard); % 求取节点注入有功功率的标幺值
|
||||
Q0 = sparse(1, Pointpoweri,(QG-QD)/PQstandard); % 求取节点注入无功功率的标幺值
|
||||
%% 平启动赋电压初值
|
||||
U = ones(1,Busnum); % 按照平启动给电压幅值赋值
|
||||
Uangle = zeros(1,Busnum); % 按照平启动给电压相角赋值
|
||||
end
|
||||
|
|
@ -0,0 +1,22 @@
|
|||
function [Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,Volt,UAngel]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,Volt,UAngel,PVi,ContrlCount,Balance,Busnum,PGi)
|
||||
AlphaP=FormAlphaP(Init_L,deltL,Init_U,deltU);
|
||||
fprintf('AlphaP %f\n',full(AlphaP));
|
||||
AlphaD=FormAlphaD(Init_Z,deltZ,Init_W,deltW);
|
||||
fprintf('AlphaD %f\n',full(AlphaD));
|
||||
|
||||
Init_Z=Init_Z+AlphaD*deltZ';
|
||||
Init_L=Init_L+AlphaP*deltL';
|
||||
Init_W=Init_W+AlphaD*deltW';
|
||||
Init_U=Init_U+AlphaP*deltU';
|
||||
Init_Y=Init_Y+AlphaD*deltY';
|
||||
%PG(PGi)=PG(PGi)+deltX(1:size(PGi,1));
|
||||
PG(PGi)=PG(PGi)+AlphaP*deltX(1:size(PGi,1));
|
||||
%QG(PVi)=QG(PVi)+deltX(size(PGi,1)+1:size(PVi,1)+size(PGi,1) );
|
||||
QG(PVi)=QG(PVi)+AlphaP*deltX(size(PGi,1)+1:size(PVi,1)+size(PGi,1) );
|
||||
t=deltX(size(PVi,1)+size(PGi,1)+1:ContrlCount)';
|
||||
t(Busnum+Balance)=0;
|
||||
%Volt=Volt+AlphaP*t(2:2:2*Busnum);ÔÝʱ¸ÄÒ»ÏÂ20111227
|
||||
%UAngel=UAngel+AlphaP*t(1:2:2*Busnum);ÔÝʱ¸ÄÒ»ÏÂ20111227
|
||||
Volt=Volt+AlphaP*t(1:Busnum);
|
||||
UAngel=UAngel+AlphaP*t(Busnum+1:2*Busnum);
|
||||
end
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
tic
|
||||
clear
|
||||
%[kmax,Precision,UAngel,Volt,Busnum,PVi,PVu,Balance,Y,Angle,P0,Q0,r,c,GB,Linei,Linej,Transfori,Transforj,GenU,GenL,GenC,LineLimti,LineLimtj,LinePLimt,PG,QG,PD,QD,CenterA,LineCount,PGi,PVQU,PVQL]=pf('5sj.txt');
|
||||
[kmax,Precision,UAngel,Volt,Busnum,PVi,PVu,Balance,Y,Angle,P0,Q0,r,c,GB,Linei,Linej,Transfori,Transforj,GenU,GenL,GenC,PG,QG,PD,QD,CenterA,PGi,PVQU,PVQL]=pf('C:\Users\dmy\Desktop\解南线_252750_2013-10-29_iPso_newFile.txt');
|
||||
|
||||
%PVi电压节点序号
|
||||
%PVu电压节点电压标幺值
|
||||
Volt;
|
||||
UAngel*180/3.1415926;
|
||||
%sprintf('%f\n',Volt);
|
||||
%sprintf('%f\n',Angel);
|
||||
%% 初值
|
||||
PG=sparse(PG);
|
||||
PD=sparse(PD);
|
||||
QG=sparse(QG);
|
||||
QD=sparse(QD);
|
||||
[Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL);
|
||||
Gap=(Init_L*Init_Z'-Init_U*Init_W');
|
||||
KK=0;
|
||||
plotGap=zeros(1,50);
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
while(abs(Gap)>Precision)
|
||||
if KK>kmax
|
||||
break;
|
||||
end
|
||||
plotGap(KK+1)=Gap;
|
||||
Init_u=Gap/2/RestraintCount*CenterA;
|
||||
AngleIJMat=repmat(UAngel',1,Busnum)-repmat(UAngel,Busnum,1);
|
||||
%% 开始计算OPF
|
||||
%% 形成等式约束的雅克比
|
||||
deltH=func_deltH(Busnum,Volt,PVi,AngleIJMat,Y,GB,PGi,UAngel,r,c,Angle);
|
||||
%% 形成不等式约束的雅克比
|
||||
deltG=func_deltG(Busnum,PVi,PGi);
|
||||
%%
|
||||
L_1Z=diag(Init_Z./Init_L);
|
||||
U_1W=diag(Init_W./Init_U);
|
||||
%% 形成海森阵
|
||||
deltdeltF=func_deltdeltF(Busnum,GenC,PVi,PGi);
|
||||
%% 形成ddHy
|
||||
ddh=func_ddh3(AngleIJMat,GB,Volt,Init_Y,Busnum,PVi,PGi,Y,UAngel,r,c,Angle);
|
||||
%% 开始构建ddg
|
||||
ddg=func_ddg(PGi,PVi,Busnum,RestraintCount);
|
||||
%% 开始构建deltF
|
||||
deltF=func_deltF(PG,PVi,GenC,ContrlCount,PGi);
|
||||
|
||||
%% 形成方程矩阵
|
||||
% Hcoma=-deltdeltF+ddh+ddg-deltG*(L_1Z-U_1W)*deltG';
|
||||
%AA=FormAA1(deltG,deltdeltF,ddh,ddg,deltH,Init_L,Init_U,Init_W,Init_Z,Busnum,PVi,PGi,RestraintCount,Balance);
|
||||
%AA=FormAA(L_1Z,deltG,U_1W,Hcoma,deltH);
|
||||
%%
|
||||
Luu=Init_U'.*Init_W'+Init_u*ones(RestraintCount,1);
|
||||
Lul=Init_L'.*Init_Z'-Init_u*ones(RestraintCount,1);
|
||||
Mat_G=FormG(Volt,PVi,PGi,PG,QG);
|
||||
Mat_H=FormH(Busnum,GB,AngleIJMat,Volt,PG,PD,QG,QD,Y,UAngel,r,c,Angle);
|
||||
Ly=Mat_H;
|
||||
Lz=FormLz(Mat_G,Init_L,GenL,Busnum,PVQL);
|
||||
Lw=FormLw(Mat_G,Init_U,GenU,Busnum,PVQU);
|
||||
Lx=FormLx(deltF,deltH,Init_Y,deltG,Init_Z,Init_W);
|
||||
%LxComa=FormLxComa(deltF,deltG,deltH,Init_L,Luu,Lul,Init_Z,Init_Y,Lz,Init_U,Init_W,Lw);
|
||||
YY=FormYY1(Lul,Lz,Ly,Luu,Lw,Lx);
|
||||
%YY=FormYY(Init_L,Lul,Lz,Ly,Init_U,Luu,Lw,LxComa);
|
||||
%% 开始解方程
|
||||
%XX=AA\YY;
|
||||
XX=SolveIt(deltF,deltG,Init_L,Init_Z,Init_U,Init_W,deltdeltF,ddh,ddg,deltH,Init_Y,Ly,Lz,ContrlCount,Lw,Lul,Luu,RestraintCount,Lx,Balance,PVi,PGi,Busnum);
|
||||
%%取各分量
|
||||
[deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX1(XX,ContrlCount,RestraintCount,Busnum);
|
||||
%[deltZ,deltL,deltW,deltU,deltX,deltY]=AssignXX(XX);
|
||||
[Init_Z,Init_L,Init_W,Init_U,Init_Y,PG,QG,Volt,UAngel]=Modification(Init_Z,Init_L,Init_W,Init_U,Init_Y,deltZ,deltL,deltW,deltU,deltX,deltY,PG,QG,Volt,UAngel,PVi,ContrlCount,Balance,Busnum,PGi);
|
||||
Gap=(Init_L*Init_Z'-Init_U*Init_W')
|
||||
KK=KK+1;
|
||||
end
|
||||
fprintf('迭代次数%d\n',KK);
|
||||
CalCost(GenC,PG,PGi);
|
||||
DrawGap(plotGap);
|
||||
toc
|
||||
|
||||
|
|
@ -0,0 +1,19 @@
|
|||
function [Volt,UAngel,Init_Z,Init_W,Init_L,Init_U,Init_Y,PG,QG,RestraintCount]=OPF_Init(Busnum,Balance,PG,QG,Volt,GenU,GenL,PVi,PGi,PVQU,PVQL)
|
||||
RestraintCount=size(PVi,1)+size(PGi,1)+Busnum; %约束条件数
|
||||
t_Bal_volt=Volt(Balance);
|
||||
Volt=sparse(ones(1,Busnum));
|
||||
%Volt(Balance)=t_Bal_volt;
|
||||
Volt(Balance)=1;
|
||||
UAngel=sparse(1,Busnum);
|
||||
Init_Z=sparse(ones(1,RestraintCount));
|
||||
Init_W=sparse(-1*ones(1,RestraintCount));
|
||||
Init_L=sparse(ones(1,RestraintCount));
|
||||
Init_U=sparse(ones(1,RestraintCount));
|
||||
Init_Y=sparse(1,2*Busnum);%与学姐一致
|
||||
tPU=sparse(GenU(:,2));% 发电机有功上限
|
||||
tQU=sparse(PVQU(:,1));% 无功上限
|
||||
tPL=sparse(GenL(:,2));% 发电机有功下限
|
||||
tQL=sparse(PVQL(:,1));% 无功下限
|
||||
PG(PGi)=(tPU+tPL)/2;
|
||||
QG(PVi)=(tQU+tQL)/2;
|
||||
end
|
||||
|
|
@ -0,0 +1 @@
|
|||
对照学姐给的公式
|
||||
|
|
@ -0,0 +1,36 @@
|
|||
function XX=SolveIt(deltF,deltG,Init_L,Init_Z,Init_U,Init_W,deltdeltF,ddh,ddg,deltH,Init_Y,Ly,Lz,ContrlCount,Lw,Lul,Luu,RestraintCount,Lx,Balance,PVi,PGi,Busnum)
|
||||
LxComa=FormLxComa(deltF,deltG,deltH,Init_L,Luu,Lul,Init_Z,Init_Y,Lz,Init_U,Init_W,Lw,Lx);
|
||||
H=-deltdeltF+ddh;%+ddg*(Init_Z'+Init_W');
|
||||
t1=diag(Init_L.\Init_Z-Init_U.\Init_W);
|
||||
t2=-deltG*( t1 )*deltG';
|
||||
aa=[
|
||||
(H+t2),deltH;
|
||||
deltH',zeros(size(Init_Y,2));
|
||||
];
|
||||
yy=[LxComa;-Ly];
|
||||
% t=size(PVi,1)+size(PGi,1);
|
||||
% aa(t+2*Balance-1,:)=0;
|
||||
% aa(:,t+2*Balance-1)=0;
|
||||
% aa(t+2*Balance-1,t+2*Balance-1)=1;
|
||||
%ÔÝʱ¸ÄÒ»ÏÂ
|
||||
t=size(PVi,1)+size(PGi,1)+Busnum;
|
||||
aa(t+Balance,:)=0;
|
||||
aa(:,t+Balance)=0;
|
||||
aa(t+Balance,t+Balance)=1;
|
||||
dxdy=aa\yy;
|
||||
dX=dxdy(1:ContrlCount);
|
||||
dY=dxdy(ContrlCount+1:ContrlCount+2*Busnum);
|
||||
dL=Lz+deltG'*dX;
|
||||
dU=-Lw-deltG'*dX;
|
||||
dZ=-diag(Init_L)\Lul-diag(Init_L)\diag(Init_Z)*dL;
|
||||
dW=-diag(Init_U)\Luu-diag(Init_U)\diag(Init_W)*dU;
|
||||
XX=[
|
||||
dX;
|
||||
dY;
|
||||
dZ;
|
||||
dW;
|
||||
dL;
|
||||
dU;
|
||||
|
||||
];
|
||||
end
|
||||
|
|
@ -0,0 +1,31 @@
|
|||
function [G,B,GB,Y,r,c,Angle] = admmatrix(Busnum,Linei,Linej,Liner,Linex,Lineb,Transfori...
|
||||
,Transforj,Transforr,Transforx,Transfork0,Branchi,Branchb)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成节点导纳矩阵Y
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 支路导纳计算
|
||||
G = -sparse(Linei,Linej,Liner./(Liner.^2+Linex.^2),Busnum,Busnum) - sparse(Linej,Linei,Liner./(Liner.^2+Linex.^2),Busnum,Busnum);
|
||||
G = G - sparse(1:Busnum,1:Busnum,sum(G,2)'); % 计算各线路支路电导
|
||||
B = sparse(Linei,Linej,Linex./(Liner.^2+Linex.^2),Busnum,Busnum)+sparse(Linej,Linei,Linex./(Liner.^2+Linex.^2),Busnum,Busnum);
|
||||
B = B - sparse(1:Busnum,1:Busnum,sum(B,2)')+sparse(Linei,Linei,Lineb,Busnum,Busnum)+sparse(Linej,Linej,Lineb,Busnum,Busnum);
|
||||
%% 变压器支路计算
|
||||
if Transfori>0
|
||||
mr = Transforr./(Transforr.^2+Transforx.^2); % 计算变压器支路电导
|
||||
mx = -Transforx./(Transforr.^2+Transforx.^2); % 计算变压器支路电纳
|
||||
G = G-sparse(Transfori,Transforj,mr./Transfork0,Busnum,Busnum)-sparse(Transforj,Transfori,mr./Transfork0,Busnum,Busnum)...
|
||||
+sparse(Transfori,Transfori,mr./Transfork0./Transfork0,Busnum,Busnum)+sparse(Transforj,Transforj,mr,Busnum,Busnum);
|
||||
B = B-sparse(Transfori,Transforj,mx./Transfork0,Busnum,Busnum)-sparse(Transforj,Transfori,mx./Transfork0,Busnum,Busnum)...
|
||||
+sparse(Transfori,Transfori,mx./Transfork0./Transfork0,Busnum,Busnum)+sparse(Transforj,Transforj,mx,Busnum,Busnum);
|
||||
end
|
||||
%% 接地支路计算
|
||||
if Branchi>0 % 判断有无接地支路
|
||||
B = B+sparse(Branchi,Branchi,Branchb,Busnum,Busnum);
|
||||
end
|
||||
%% 化作极坐标形式
|
||||
GB = G+B.*1i; %将电导,电纳合并,写成复数形式
|
||||
Y = abs(GB); %求节点导纳幅值
|
||||
[r,c] = find(Y);
|
||||
Angle = angle(GB(GB~=0)); %求节点导纳角度
|
||||
%Angle=angle(GB);
|
||||
|
|
@ -0,0 +1,176 @@
|
|||
function ddf=func_ddh(AngleIJMat,GB,Volt,Init_Y,Busnum)
|
||||
%% deltaPi/deltaThytai_deltaThytaj 非对角元素
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
dPdTidTj=t1.*t2; %%(保留了对角元素的)
|
||||
dPidTidTj_2=dPdTidTj-diag(diag(dPdTidTj));%去掉了对角元素的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
dPidTidTj_2=dPidTidTj_2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
dPjdTidTj=t3-diag(diag(t3));%去掉了对角元素的
|
||||
t3=repmat(Init_Y,size(Init_Y,2),1);
|
||||
dPjdTidTj=dPjdTidTj.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidTj=dPidTidTj_2+dPjdTidTj;%最终非对角元素 @@
|
||||
%% deltaP/deltaThyta_deltaThyta 对角元素
|
||||
t1=sum(-dPidTidTj_2,2);
|
||||
t2=diag(t1'.*Init_Y(1:2:size(Init_Y,2)));%乘y的系数
|
||||
t3=sum(-dPidTidTj_2,1);
|
||||
t4=diag(t3.*Init_Y(1:2:size(Init_Y,2)));%乘y的系数
|
||||
dPdTidTi=t2+t4;%%最终对角元素 @@
|
||||
%% deltaP/deltaThytai_dVi 对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t1-diag(t2);%去掉了对角元素的
|
||||
t4=sum(t3,2);
|
||||
t4=t4'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidVi=diag(t4);
|
||||
dPidTjdVj=-t3;
|
||||
t6=sum(dPidTjdVj,1);%乘y的系数
|
||||
t6=t6.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVi=dPidTidVi+diag(t6);%%最终对角元素 @@
|
||||
%% deltaP/deltaThytai_dVj 非对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidTidVj=t1-diag(diag(t1));%%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidTidVj=dPidTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=ones(Busnum,1)*Volt.*real(GB).*(sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdTidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=t2';
|
||||
dPjdTidVj=dPjdTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVj=dPidTidVj+dPjdTidVj;%最终非对角元素 @@
|
||||
%% deltaP/dVi_deltaThytaj 非对角元素
|
||||
t1=-ones(Busnum,1)*Volt.*real(GB).*(sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidVidTj=t1-diag(diag(t1));
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidTj=dPidVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdVidTj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidTj=dPidVidTj+dPjdVidTj;%最终非对角元素
|
||||
%% deltaPi/dVi_deltaThyta 对角元素
|
||||
dPdVidTi=dPdTidVi;%最终对角元素 @@
|
||||
%% deltaP/dVi_dVj 非对角元素
|
||||
t1=-(real(GB).*(cos(AngleIJMat)+imag(GB).*sin(AngleIJMat)));
|
||||
dPidVidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidVj=dPidVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-(real(GB).*(cos(AngleIJMat)-imag(GB).*sin(AngleIJMat)));
|
||||
dPjdVidVj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidVj=dPjdVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidVj=dPidVidVj+dPjdVidVj;%最终非对角元素 @@
|
||||
%% deltaP/dVi_dVi 对角元素
|
||||
t1=diag(real(GB));
|
||||
t2=t1'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidVidVi=-2*diag(t2);
|
||||
dPidVjdVj=0;
|
||||
dPdVidVi=dPidVidVi+dPidVjdVj;%最终对角元素 @@
|
||||
%% 生成APi
|
||||
APi=zeros(2*Busnum,2*Busnum);
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTj;%%非对角 TT
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVj;%%非对角 TV
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTj;%%非对角 VT
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVj;%%非对角 VV
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTi;%%对角
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVi;%%对角
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTi;%%对角
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVi;%%对角
|
||||
%% deltaQ/deltaThyta_deltaThyta 非对角元素
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*(sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dQidTidTj=t1.*t2;%不去掉对角元素了,反正最后是要修正的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidTj=dQidTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*(sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dQjdTidTj=t1.*t2;
|
||||
t3=t3';
|
||||
dQjdTidTj=dQjdTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidTj=dQidTidTj+dQjdTidTj;%最终非对角元素
|
||||
%% deltaQ/deltaThyta_deltaThyta 对角元素
|
||||
t1=dQidTidTj-diag(diag(dQidTidTj));
|
||||
t2=sum(t1,2);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidTidTi=diag(t3);
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*(sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=sum(t4,1);
|
||||
t6=t5.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdTidTi=diag(t6);
|
||||
dQdTidTi=dQjdTidTi+dQidTidTi;%最终对角元素
|
||||
%% deltaQ/deltaThyta_deltaV 非对角元素
|
||||
t1=-Volt;
|
||||
t2=real(GB).*(cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
t3=ones(Busnum,1)*t1.*t2;
|
||||
t4=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*(cos(AngleIJMat)-imag(GB).*sin(AngleIJMat));
|
||||
t3=Volt'*ones(1,Busnum).*t2;
|
||||
t4=t4';
|
||||
dQjdTidVj=t2.*t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidVj=dQidTidVj+dQjdTidVj;%最终非对角元素
|
||||
%% deltaQ/deltaThyta_deltaV 对角元素
|
||||
t1=sum(dQidTidVj,2)-diag(dQidTidVj);
|
||||
t2=t1'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidTidVi=diag(t2);
|
||||
t1=-Volt'*ones(1,Busnum).*(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
t2=t1-diag(diag(t1));
|
||||
t3=sum(t2,1);
|
||||
t4=t3.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdTidVi=diag(t4);
|
||||
dQdTidVi=dQidTidVi+dQjdTidVi;
|
||||
%% deltaQ/deltaV_deltaV 非对角元素
|
||||
t1=real(GB).*(sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVj=t3;
|
||||
t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=t2';
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidVj=t3;
|
||||
dQdVidVj=dQidVidVj+dQjdVidVj;
|
||||
%% deltaQ/deltaV_deltaV 对角元素
|
||||
t1=2*(real(GB).*(sin(AngleIJMat)-imag(GB).*cos(AngleIJMat)));
|
||||
t2=diag(t1);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVi=diag(t3);
|
||||
t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=diag(t1);
|
||||
t3=t1-diag(t2);
|
||||
t4=sum(t3,1);
|
||||
t5=t4.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidVi=diag(t5);
|
||||
dQdVidVi=dQidVidVi+dQjdVidVi;
|
||||
%% deltaQ/deltaV_deltaThyta 非对角元素
|
||||
t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2'.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidTj=t4;
|
||||
t1=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=t3';
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidTj=t4;
|
||||
dQdVidTj=dQidVidTj+dQjdVidTj;
|
||||
%% deltaQ/deltaV_deltaThyta 对角元素
|
||||
dQdVidTi=dQdTidVi;
|
||||
%% 生成AQi
|
||||
AQi=zeros(2*Busnum,2*Busnum);
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTj;%%非对角 TT
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVj;%%非对角 TV
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTj;%%非对角 VT
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVj;%%非对角 VV
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTi;%%对角
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVi;%%对角
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTi;%%对角
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVi;%%对角
|
||||
%% 生成ddf
|
||||
t=[zeros(2*14-2*5,2*14);
|
||||
zeros(2*5,2*14-2*5),AQi+APi;
|
||||
];
|
||||
ddf=t;
|
||||
end
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
function ddg=func_ddg(PGi,PVi,Busnum,RestraintCount)
|
||||
|
||||
t=sparse(size(PVi,1)+size(PGi,1)+2*Busnum,RestraintCount);
|
||||
|
||||
ddg=t;
|
||||
end
|
||||
|
|
@ -0,0 +1,187 @@
|
|||
function ddh=func_ddh(AngleIJMat,GB,Volt,Init_Y,Busnum)
|
||||
%% deltaPi/deltaThytai_deltaThytaj 非对角元素
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
dPdTidTj=t1.*t2; %%(保留了对角元素的)
|
||||
dPidTidTj_2=dPdTidTj-diag(diag(dPdTidTj));%去掉了对角元素的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
dPidTidTj_2=dPidTidTj_2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
dPjdTidTj=t3-diag(diag(t3));%去掉了对角元素的
|
||||
t3=repmat(Init_Y,size(Init_Y,2),1);
|
||||
dPjdTidTj=dPjdTidTj.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidTj=dPidTidTj_2+dPjdTidTj;%最终非对角元素 @@@
|
||||
%% deltaP/deltaThyta_deltaThyta 对角元素
|
||||
t1=sum(-dPidTidTj_2,2);
|
||||
t2=diag(t1'.*Init_Y(1:2:size(Init_Y,2)));%乘y的系数
|
||||
t3=sum(-dPidTidTj_2,1);
|
||||
t4=diag(t3.*Init_Y(1:2:size(Init_Y,2)));%乘y的系数
|
||||
dPdTidTi=t2+t4;%%最终对角元素 @@@
|
||||
%% deltaP/deltaThytai_dVi 对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t1-diag(t2);%去掉了对角元素的
|
||||
t4=sum(t3,2);
|
||||
t4=t4'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidVi=diag(t4);
|
||||
dPidTjdVj=-t3;
|
||||
t6=sum(dPidTjdVj,1);
|
||||
t6=t6.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVi=dPidTidVi+diag(t6);%%最终对角元素 @@@
|
||||
%% deltaP/deltaThytai_dVj 非对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidTidVj=t1-diag(diag(t1));%%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidTidVj=dPidTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdTidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=t2';
|
||||
dPjdTidVj=dPjdTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVj=dPidTidVj+dPjdTidVj;%最终非对角元素 @@@
|
||||
%% deltaP/dVi_deltaThytaj 非对角元素
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidVidTj=t1-diag(diag(t1));
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidTj=dPidVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdVidTj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidTj=dPjdVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidTj=dPidVidTj+dPjdVidTj;%最终非对角元素 @@@
|
||||
%% deltaPi/dVi_deltaThyta 对角元素
|
||||
dPdVidTi=dPdTidVi;%最终对角元素 @@
|
||||
%% deltaP/dVi_dVj 非对角元素
|
||||
t1=-(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
dPidVidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidVj=dPidVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-(real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat));
|
||||
dPjdVidVj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidVj=dPjdVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidVj=dPidVidVj+dPjdVidVj;%最终非对角元素 @@@@
|
||||
%% deltaP/dVi_dVi 对角元素
|
||||
t0=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t1=diag(t0);
|
||||
t2=t1'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidVidVi=-2*diag(t2);
|
||||
dPidVjdVj=0;
|
||||
dPdVidVi=dPidVidVi+dPidVjdVj;%最终对角元素 @@@
|
||||
%% 生成APi
|
||||
APi=zeros(2*Busnum,2*Busnum);
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTj;%%非对角 TT
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVj;%%非对角 TV
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTj;%%非对角 VT
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVj;%%非对角 VV
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTi;%%对角
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVi;%%对角
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTi;%%对角
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVi;%%对角
|
||||
%% deltaQ/deltaThyta_deltaThyta 非对角元素
|
||||
%t1=-Volt'*Volt;
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
dQidTidTj=t1.*t2;%不去掉对角元素了,反正最后是要修正的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidTj=dQidTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
dQjdTidTj=-t1.*t2;
|
||||
t3=t3';
|
||||
dQjdTidTj=dQjdTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidTj=dQidTidTj+dQjdTidTj;%最终非对角元素 @@@
|
||||
%% deltaQ/deltaThyta_deltaThyta 对角元素
|
||||
t1=dQidTidTj-diag(diag(dQidTidTj));%去对角元素
|
||||
t2=sum(t1,2);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
%dQidTidTi=diag(t3);
|
||||
dQidTidTi=-diag(t3);
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
t6=t4.*t5(2:2:size(Init_Y,2),2:2:size(Init_Y,2));
|
||||
t7=sum(t6,1);
|
||||
dQjdTidTi=diag(t7);
|
||||
dQdTidTi=dQjdTidTi+dQidTidTi;%最终对角元素 @@@
|
||||
%% deltaQ/deltaThyta_deltaV 非对角元素
|
||||
%t1=-Volt;
|
||||
t1=Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t3=t1'*ones(1,Busnum).*t2;
|
||||
t4=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=-Volt'*ones(1,Busnum).*t2;
|
||||
t4=t4';
|
||||
dQjdTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidVj=dQidTidVj+dQjdTidVj;%最终非对角元素 @@@
|
||||
%% deltaQ/deltaThyta_deltaV 对角元素
|
||||
%t1=sum(dQidTidVj,2)-diag(dQidTidVj);%去掉对角元素
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=ones(Busnum,1)*Volt.*t1;
|
||||
t3=sum(t2,2);
|
||||
t4=t3'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidTidVi=diag(t4);
|
||||
t1=-Volt'*ones(1,Busnum).*(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
t2=t1-diag(diag(t1));
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t5=sum(t4,1);
|
||||
dQjdTidVi=diag(t5);
|
||||
dQdTidVi=dQidTidVi+dQjdTidVi;% @@
|
||||
%% deltaQ/deltaV_deltaV 非对角元素
|
||||
t1=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVj=t3;
|
||||
t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=t2';
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidVj=t3;
|
||||
dQdVidVj=dQidVidVj+dQjdVidVj;% @@@
|
||||
%% deltaQ/deltaV_deltaV 对角元素
|
||||
t1=2*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVi=diag(t3);
|
||||
% t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
% t2=diag(t1);
|
||||
% t3=t1-diag(t2);
|
||||
% t4=sum(t3,1);
|
||||
% t5=t4.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
% dQjdVidVi=diag(t5);
|
||||
dQjdVidVi=0;
|
||||
dQdVidVi=dQidVidVi+dQjdVidVi; % @@
|
||||
%% deltaQ/deltaV_deltaThyta 非对角元素
|
||||
%t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2'.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidTj=t4;
|
||||
t1=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=t3';
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidTj=t4;
|
||||
dQdVidTj=dQidVidTj+dQjdVidTj;% @
|
||||
%% deltaQ/deltaV_deltaThyta 对角元素
|
||||
dQdVidTi=dQdTidVi;% @
|
||||
%% 生成AQi
|
||||
AQi=zeros(2*Busnum,2*Busnum);
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTj;%%非对角 TT
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVj;%%非对角 TV
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTj;%%非对角 VT
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVj;%%非对角 VV
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTi;%%对角
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVi;%%对角
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTi;%%对角
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVi;%%对角
|
||||
%% 生成ddh
|
||||
t=[zeros(4,14);
|
||||
zeros(2*5,4),AQi+APi;
|
||||
];
|
||||
ddh=t;
|
||||
end
|
||||
|
|
@ -0,0 +1,204 @@
|
|||
function ddh=func_ddh1(AngleIJMat,GB,Volt,Init_Y,Busnum,PVi)
|
||||
%% deltaPi/deltaThytai_deltaThytaj 非对角元素
|
||||
ContrlCount=size(PVi,1)*2+Busnum*2;
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
dPdTidTj=t1.*t2; %%(保留了对角元素的)
|
||||
dPidTidTj_2=dPdTidTj-diag(diag(dPdTidTj));%去掉了对角元素的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
dPidTidTj_2=dPidTidTj_2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
dPjdTidTj=t3-diag(diag(t3));%去掉了对角元素的
|
||||
t3=repmat(Init_Y,size(Init_Y,2),1);
|
||||
dPjdTidTj=dPjdTidTj.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidTj=dPidTidTj_2+dPjdTidTj;%最终非对角元素 @@@@@@
|
||||
%% deltaP/deltaThyta_deltaThyta 对角元素
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=sum(t4,2);
|
||||
t6=t5'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidTi=diag(t6);
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=t2-diag(diag(t2));
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
t4=t1.*t2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t5=sum(t4,1);
|
||||
dPidTjdTj=diag(t5);
|
||||
dPdTidTi=dPidTidTi+dPidTjdTj;%%最终对角元素 @@@@@@
|
||||
%% deltaP/deltaThytai_dVi 对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t1-diag(t2);%去掉了对角元素的
|
||||
t4=sum(t3,2);
|
||||
t4=t4'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidVi=diag(t4);
|
||||
t1=-Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t1=t1-diag(diag(t1));%去掉对角元素
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=t1.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t6=sum(t3,1);
|
||||
dPdTidVi=dPidTidVi+diag(t6);%%最终对角元素 @@@@@@
|
||||
%% deltaP/deltaThytai_dVj 非对角元素
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidTidVj=t1-diag(diag(t1));%%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidTidVj=dPidTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdTidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=t2';
|
||||
dPjdTidVj=dPjdTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVj=dPidTidVj+dPjdTidVj;%最终非对角元素 @@@@@
|
||||
%% deltaP/dVi_deltaThytaj 非对角元素
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidVidTj=t1-diag(diag(t1));
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidTj=dPidVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdVidTj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidTj=dPjdVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidTj=dPidVidTj+dPjdVidTj;%最终非对角元素 @@@@
|
||||
%% deltaPi/dVi_deltaThyta 对角元素
|
||||
dPdVidTi=dPdTidVi;%最终对角元素 @@
|
||||
%% deltaP/dVi_dVj 非对角元素
|
||||
t1=-(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
dPidVidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidVj=dPidVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-(real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat));
|
||||
dPjdVidVj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidVj=dPjdVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidVj=dPidVidVj+dPjdVidVj;%最终非对角元素 @@@@@
|
||||
%% deltaP/dVi_dVi 对角元素
|
||||
t0=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t1=diag(t0);
|
||||
t2=t1'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidVidVi=-2*diag(t2);
|
||||
dPidVjdVj=0;
|
||||
dPdVidVi=dPidVidVi+dPidVjdVj;%最终对角元素 @@@@
|
||||
%% 生成APi
|
||||
APi=zeros(2*Busnum,2*Busnum);
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTj;%%非对角 TT
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVj;%%非对角 TV
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTj;%%非对角 VT
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVj;%%非对角 VV
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTi;%%对角
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVi;%%对角
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTi;%%对角
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVi;%%对角
|
||||
%% deltaQ/deltaThyta_deltaThyta 非对角元素
|
||||
t1=-Volt'*Volt;
|
||||
%t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
dQidTidTj=t1.*t2;%不去掉对角元素了,反正最后是要修正的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidTj=dQidTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
dQjdTidTj=-t1.*t2;
|
||||
t3=t3';
|
||||
dQjdTidTj=dQjdTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidTj=dQidTidTj+dQjdTidTj;%最终非对角元素 @@@@
|
||||
%% deltaQ/deltaThyta_deltaThyta 对角元素
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t6=t4.*t5(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t7=sum(t6,2);
|
||||
dQidTidTi=diag(t7);
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
%t5=t5';
|
||||
t6=t4.*t5(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t7=sum(t6,1);
|
||||
dQjdTidTi=diag(t7);
|
||||
dQdTidTi=dQjdTidTi+dQidTidTi;%最终对角元素 @@@@
|
||||
%% deltaQ/deltaThyta_deltaV 非对角元素
|
||||
t1=-Volt;
|
||||
%t1=Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t3=t1'*ones(1,Busnum).*t2;
|
||||
t4=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=Volt'*ones(1,Busnum).*t2;
|
||||
t4=t4';
|
||||
dQjdTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidVj=dQidTidVj+dQjdTidVj;%最终非对角元素 @@@@@
|
||||
%% deltaQ/deltaThyta_deltaV 对角元素
|
||||
%t1=sum(dQidTidVj,2)-diag(dQidTidVj);%去掉对角元素
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*t1;
|
||||
t2=t2-diag(diag(t2));
|
||||
t3=sum(t2,2);
|
||||
t4=t3'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidTidVi=diag(t4);
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
t2=t1-diag(diag(t1));
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t5=sum(t4,1);
|
||||
dQjdTidVi=diag(t5);
|
||||
dQdTidVi=dQidTidVi+dQjdTidVi;% @@@@
|
||||
%% deltaQ/deltaV_deltaV 非对角元素
|
||||
t1=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=-t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVj=t3;
|
||||
t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t2=t2';
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidVj=t3;
|
||||
dQdVidVj=dQidVidVj+dQjdVidVj;% @@@@@
|
||||
%% deltaQ/deltaV_deltaV 对角元素
|
||||
t1=-2*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVi=diag(t3);
|
||||
% t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
% t2=diag(t1);
|
||||
% t3=t1-diag(t2);
|
||||
% t4=sum(t3,1);
|
||||
% t5=t4.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
% dQjdVidVi=diag(t5);
|
||||
dQjdVidVi=0;
|
||||
dQdVidVi=dQidVidVi+dQjdVidVi; % @@@@
|
||||
%% deltaQ/deltaV_deltaThyta 非对角元素
|
||||
%t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=ones(Busnum,1)*Volt.*(t1);
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2'.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidTj=t4;
|
||||
t1=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=t3';
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidTj=t4;
|
||||
dQdVidTj=dQidVidTj+dQjdVidTj;% @@@
|
||||
%% deltaQ/deltaV_deltaThyta 对角元素
|
||||
dQdVidTi=dQdTidVi;% @
|
||||
%% 生成AQi
|
||||
AQi=zeros(2*Busnum,2*Busnum);
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTj;%%非对角 TT
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVj;%%非对角 TV
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTj;%%非对角 VT
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVj;%%非对角 VV
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTi;%%对角
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVi;%%对角
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTi;%%对角
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVi;%%对角
|
||||
%% 生成ddh
|
||||
t=[zeros(2*size(PVi,1),ContrlCount);
|
||||
zeros(2*Busnum,2*size(PVi,1)),AQi+APi;
|
||||
];
|
||||
ddh=t;
|
||||
end
|
||||
|
|
@ -0,0 +1,206 @@
|
|||
function ddh=func_ddh2(AngleIJMat,GB,Volt,Init_Y,Busnum,PVi,PGi)
|
||||
%% deltaPi/deltaThytai_deltaThytaj 非对角元素
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
t1=-Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
dPdTidTj=t1.*t2; %%(保留了对角元素的)
|
||||
dPidTidTj_2=dPdTidTj-diag(diag(dPdTidTj));%去掉了对角元素的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
dPidTidTj_2=dPidTidTj_2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
dPjdTidTj=t3-diag(diag(t3));%去掉了对角元素的
|
||||
t3=repmat(Init_Y,size(Init_Y,2),1);
|
||||
dPjdTidTj=dPjdTidTj.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidTj=dPidTidTj_2+dPjdTidTj;%最终非对角元素 @@@@@@@
|
||||
%% deltaP/deltaThyta_deltaThyta 对角元素
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=sum(t4,2);
|
||||
t6=t5'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidTi=diag(t6);
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=t1.*t2;
|
||||
t2=t2-diag(diag(t2));
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));%乘y的系数
|
||||
t4=t2.*t3(1:2:size(Init_Y,2),1:2:size(Init_Y,2));
|
||||
t5=sum(t4,1);
|
||||
dPidTjdTj=diag(t5);
|
||||
dPdTidTi=dPidTidTi+dPidTjdTj;%%最终对角元素 @@@@@@@
|
||||
%% deltaP/deltaThytai_dVi 对角元素
|
||||
t1=ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t1-diag(t2);%去掉了对角元素的
|
||||
t4=sum(t3,2);
|
||||
t4=t4'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidTidVi=diag(t4);
|
||||
t1=-Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t1=t1-diag(diag(t1));%去掉对角元素
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=t1.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t6=sum(t3,1);
|
||||
dPdTidVi=dPidTidVi+diag(t6);%%最终对角元素 @@@@@@
|
||||
%% deltaP/deltaThytai_dVj 非对角元素
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidTidVj=t1-diag(diag(t1));%%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidTidVj=dPidTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdTidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=t2';
|
||||
dPjdTidVj=dPjdTidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdTidVj=dPidTidVj+dPjdTidVj;%最终非对角元素 @@@@@@
|
||||
%% deltaP/dVi_deltaThytaj 非对角元素
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
dPidVidTj=t1-diag(diag(t1));
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidTj=dPidVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-ones(Busnum,1)*Volt.*(real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat));
|
||||
dPjdVidTj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidTj=dPjdVidTj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidTj=dPidVidTj+dPjdVidTj;%最终非对角元素 @@@@@
|
||||
%% deltaPi/dVi_deltaThyta 对角元素
|
||||
dPdVidTi=dPdTidVi;%最终对角元素 @@
|
||||
%% deltaP/dVi_dVj 非对角元素
|
||||
t1=-(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
dPidVidVj=t1-diag(diag(t1));%去掉对角元素的
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dPidVidVj=dPidVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
t1=-(real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat));
|
||||
dPjdVidVj=t1-diag(diag(t1));
|
||||
t2=t2';
|
||||
dPjdVidVj=dPjdVidVj.*t2(1:2:size(Init_Y,2),1:2:size(Init_Y,2));%乘y的系数
|
||||
dPdVidVj=dPidVidVj+dPjdVidVj;%最终非对角元素 @@@@@@
|
||||
%% deltaP/dVi_dVi 对角元素
|
||||
t0=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t1=diag(t0);
|
||||
t2=t1'.*Init_Y(1:2:size(Init_Y,2));%乘y的系数
|
||||
dPidVidVi=-2*diag(t2);
|
||||
dPidVjdVj=0;
|
||||
dPdVidVi=dPidVidVi+dPidVjdVj;%最终对角元素 @@@@@
|
||||
%% 生成APi
|
||||
APi=zeros(2*Busnum,2*Busnum);
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTj;%%非对角 TT
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVj;%%非对角 TV
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTj;%%非对角 VT
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVj;%%非对角 VV
|
||||
APi(1:2:2*Busnum,1:2:2*Busnum)=dPdTidTi;%%对角
|
||||
APi(1:2:2*Busnum,2:2:2*Busnum)=dPdTidVi;%%对角
|
||||
APi(2:2:2*Busnum,1:2:2*Busnum)=dPdVidTi;%%对角
|
||||
APi(2:2:2*Busnum,2:2:2*Busnum)=dPdVidVi;%%对角
|
||||
%% deltaQ/deltaThyta_deltaThyta 非对角元素
|
||||
t1=-Volt'*Volt;
|
||||
%t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
dQidTidTj=t1.*t2;%不去掉对角元素了,反正最后是要修正的
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidTj=dQidTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
dQjdTidTj=-t1.*t2;
|
||||
t3=t3';
|
||||
dQjdTidTj=dQjdTidTj.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidTj=dQidTidTj+dQjdTidTj;%最终非对角元素 @@@@@
|
||||
%% deltaQ/deltaThyta_deltaThyta 对角元素
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
t5=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t6=t4.*t5(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t7=sum(t6,2);
|
||||
dQidTidTi=diag(t7);
|
||||
t1=Volt'*Volt;
|
||||
t2=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t3=t1.*t2;
|
||||
t4=t3-diag(diag(t3));
|
||||
%t5=t5';
|
||||
t6=t4.*t5(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t7=sum(t6,1);
|
||||
dQjdTidTi=diag(t7);
|
||||
dQdTidTi=dQjdTidTi+dQidTidTi;%最终对角元素 @@@@@
|
||||
%% deltaQ/deltaThyta_deltaV 非对角元素
|
||||
t1=-Volt;
|
||||
%t1=Volt;
|
||||
t2=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t3=t1'*ones(1,Busnum).*t2;
|
||||
t4=repmat(Init_Y',1,size(Init_Y,2));
|
||||
dQidTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t2=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t3=Volt'*ones(1,Busnum).*t2;
|
||||
t4=t4';
|
||||
dQjdTidVj=t3.*t4(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQdTidVj=dQidTidVj+dQjdTidVj;%最终非对角元素 @@@@@@
|
||||
%% deltaQ/deltaThyta_deltaV 对角元素
|
||||
%t1=sum(dQidTidVj,2)-diag(dQidTidVj);%去掉对角元素
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*t1;
|
||||
t2=t2-diag(diag(t2));
|
||||
t3=sum(t2,2);
|
||||
t4=t3'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidTidVi=diag(t4);
|
||||
t1=Volt'*ones(1,Busnum).*(real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat));
|
||||
t2=t1-diag(diag(t1));
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t5=sum(t4,1);
|
||||
dQjdTidVi=diag(t5);
|
||||
dQdTidVi=dQidTidVi+dQjdTidVi;% @@@@
|
||||
%% deltaQ/deltaV_deltaV 非对角元素
|
||||
t1=real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
t2=repmat(Init_Y',1,size(Init_Y,2));
|
||||
t3=-t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVj=t3;
|
||||
t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t2=t2';
|
||||
t3=t1.*t2(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidVj=t3;
|
||||
dQdVidVj=dQidVidVj+dQjdVidVj;% @@@@@@
|
||||
%% deltaQ/deltaV_deltaV 对角元素
|
||||
t1=-2*(real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat));
|
||||
t2=diag(t1);
|
||||
t3=t2'.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidVi=diag(t3);
|
||||
% t1=-real(GB).*sin(AngleIJMat)-imag(GB).*cos(AngleIJMat);
|
||||
% t2=diag(t1);
|
||||
% t3=t1-diag(t2);
|
||||
% t4=sum(t3,1);
|
||||
% t5=t4.*Init_Y(2:2:size(Init_Y,2));%乘y的系数
|
||||
% dQjdVidVi=diag(t5);
|
||||
dQjdVidVi=0;
|
||||
dQdVidVi=dQidVidVi+dQjdVidVi; % @@@@@
|
||||
%% deltaQ/deltaV_deltaThyta 非对角元素
|
||||
%t1=real(GB).*sin(AngleIJMat)+imag(GB).*cos(AngleIJMat);
|
||||
t1=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
t2=ones(Busnum,1)*Volt.*(t1);
|
||||
t3=repmat(Init_Y',1,size(Init_Y,2));
|
||||
%t4=t2'.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQidVidTj=t4;
|
||||
t1=real(GB).*cos(AngleIJMat)-imag(GB).*sin(AngleIJMat);
|
||||
t2=-ones(Busnum,1)*Volt.*(t1);
|
||||
t3=t3';
|
||||
t4=t2.*t3(2:2:size(Init_Y,2),2:2:size(Init_Y,2));%乘y的系数
|
||||
dQjdVidTj=t4;
|
||||
dQdVidTj=dQidVidTj+dQjdVidTj;% @@@@
|
||||
%% deltaQ/deltaV_deltaThyta 对角元素
|
||||
dQdVidTi=dQdTidVi;% @
|
||||
%% 生成AQi
|
||||
AQi=zeros(2*Busnum,2*Busnum);
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTj;%%非对角 TT
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVj;%%非对角 TV
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTj;%%非对角 VT
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVj;%%非对角 VV
|
||||
AQi(1:2:2*Busnum,1:2:2*Busnum)=dQdTidTi;%%对角
|
||||
AQi(1:2:2*Busnum,2:2:2*Busnum)=dQdTidVi;%%对角
|
||||
AQi(2:2:2*Busnum,1:2:2*Busnum)=dQdVidTi;%%对角
|
||||
AQi(2:2:2*Busnum,2:2:2*Busnum)=dQdVidVi;%%对角
|
||||
%% 生成ddh
|
||||
t=[zeros(size(PGi,1)+size(PVi,1),ContrlCount);
|
||||
zeros(2*Busnum,size(PVi,1)+size(PGi,1)),AQi+APi;
|
||||
];
|
||||
ddh=t;
|
||||
end
|
||||
|
|
@ -0,0 +1,58 @@
|
|||
function ddh=func_ddh3(AngleIJMat,GB,Volt,Init_Y,Busnum,PVi,PGi,Y,UAngel,r,c,Angle)
|
||||
%决定用循环重写
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2;
|
||||
%% 以下是学姐给的公式
|
||||
AngleIJ=AngleIJMat-angle(GB);
|
||||
mat_AngleIJ=sparse(r,c,UAngel(r)-UAngel(c)-Angle',Busnum,Busnum);
|
||||
mat_INV_AngleIJ=mat_AngleIJ';
|
||||
yP=Init_Y(1:size(Init_Y,2)/2);%暂时改这里 20111227
|
||||
yQ=Init_Y(size(Init_Y,2)/2+1:size(Init_Y,2));%暂时改这里 20111227
|
||||
t1=-diag(Y.*cos(mat_INV_AngleIJ)*diag(Volt)*yP');
|
||||
t2=diag(diag(Volt)*yP')*Y.*cos(mat_AngleIJ);
|
||||
t3=(t1+t2)*diag(Volt);
|
||||
t4=-(diag(Y.*cos(mat_AngleIJ)*Volt') -diag(Volt)*Y.*cos(mat_INV_AngleIJ) )*diag(diag(Volt)*yP');
|
||||
ddPdTdT=t3+t4;%ok1
|
||||
t1=(-diag(Y.*sin(mat_AngleIJ)*Volt')+diag(Volt)*Y.*sin(mat_INV_AngleIJ) )*diag(yP);
|
||||
t2= -diag( diag(Volt)*yP' )*Y.*sin(mat_AngleIJ)+diag(Y.*sin(mat_INV_AngleIJ)*diag(Volt)*yP');
|
||||
ddPdVdT=t1+t2;%ok1
|
||||
t1=diag( Y.*sin(mat_INV_AngleIJ)*diag(Volt)*yP');
|
||||
t2=diag(yP)*Y.*sin(mat_AngleIJ)*diag(Volt);
|
||||
t3=-diag(yP)*diag(Y.*sin(mat_AngleIJ)*Volt');
|
||||
t4=-Y.*sin(mat_INV_AngleIJ)*diag( diag(Volt)*yP' );
|
||||
ddPdTdV=t1+t2+t3+t4;%存疑与我的不一样
|
||||
t1=Y.*cos(mat_INV_AngleIJ)*diag(yP);
|
||||
t2=diag(yP)*Y.*cos(mat_AngleIJ);
|
||||
ddPdVdV=t1+t2;
|
||||
t1=-diag(Y.*sin(mat_AngleIJ)*Volt');
|
||||
t2=diag(Volt)*Y.*sin(mat_INV_AngleIJ);
|
||||
t3=(t1+t2)*diag( diag(Volt)*yQ' );
|
||||
t4=-diag( diag(Volt)*yQ' )*Y.*sin(mat_AngleIJ);
|
||||
|
||||
t5=diag(Y.*sin(mat_INV_AngleIJ)*diag(Volt)*yQ');
|
||||
t6=-(t4+t5)*diag(Volt);
|
||||
ddQdTdT=t3+t6;%ok1
|
||||
t1=(diag(Y.*cos(mat_AngleIJ)*Volt')-diag(Volt)*Y.*cos(mat_INV_AngleIJ) )*diag(yQ);
|
||||
t2=+diag( diag(Volt)*yQ' )*Y.*cos(mat_AngleIJ)-diag(Y.*cos(mat_INV_AngleIJ)*diag(Volt)*yQ');
|
||||
ddQdVdT=t1+t2;
|
||||
t1=Y.*cos(mat_INV_AngleIJ)*diag(diag(Volt)*yQ');
|
||||
t2=diag(yQ)*diag(Y.*cos(mat_AngleIJ)*Volt');
|
||||
t3=-diag(Y.*cos(mat_INV_AngleIJ)*diag(Volt)*yQ');
|
||||
t4=-diag(yQ)*Y.*cos(mat_AngleIJ)*diag(Volt);
|
||||
ddQdTdV=t1+t2+t3+t4;
|
||||
t1=Y.*sin(mat_INV_AngleIJ)*diag(yQ);
|
||||
t2=diag(yQ)*Y.*sin(mat_AngleIJ);
|
||||
ddQdVdV=t1+t2;
|
||||
t=[ddPdVdV+ddQdVdV,ddPdTdV+ddQdTdV ;
|
||||
ddPdVdT+ddQdVdT,ddPdTdT+ddQdTdT;
|
||||
];
|
||||
sizePGi=size(PGi,1);
|
||||
sizePVi=size(PVi,1);
|
||||
% t=[zeros(size(PGi,1)+size(PVi,1),ContrlCount);
|
||||
% zeros(2*Busnum,size(PVi,1)+size(PGi,1)),-t;
|
||||
% ];
|
||||
t=[
|
||||
sparse(sizePGi+sizePVi,ContrlCount);
|
||||
sparse(2*Busnum,sizePVi+sizePGi),-t;
|
||||
];
|
||||
ddh=t;
|
||||
end
|
||||
|
|
@ -0,0 +1,18 @@
|
|||
function deltF=func_deltF(PG,PVi,GenC,ContrlCount,PGi)
|
||||
%t1=PG(setdiff(PVi,Balance));
|
||||
% t2=Volt'*Volt;
|
||||
% t3=real(GB).*cos(AngleIJMat)+imag(GB).*sin(AngleIJMat);
|
||||
% t4=t2.*t3;
|
||||
% t5=sum(t4,2);
|
||||
% PBal=t5(Balance);
|
||||
% PPG=([PQ(1),PBal])';%暂时用土办法处理一下
|
||||
%%
|
||||
c2=GenC(:,2);
|
||||
c1=GenC(:,3);
|
||||
t1=2*PG(PGi).*c2+c1;
|
||||
deltF=[
|
||||
sparse(t1);
|
||||
sparse(ContrlCount-size(PGi,1),1);
|
||||
];
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,35 @@
|
|||
function deltG=func_deltG(Busnum,PVi,PGi)
|
||||
%dg1_dPg=eye(size(PGi,1));
|
||||
sizePGi=size(PGi,1);
|
||||
sizePVi=size(PVi,1);
|
||||
%%
|
||||
dg1_dPg=sparse(1:sizePGi,1:sizePGi,ones(sizePGi,1),sizePGi,sizePGi);
|
||||
%dg2_dPg=zeros(size(PGi,1),size(PVi,1));
|
||||
dg2_dPg=sparse(sizePGi,sizePVi);
|
||||
%dg3_dPg=zeros(size(PGi,1),Busnum);
|
||||
dg3_dPg=sparse(sizePGi,Busnum);
|
||||
%%
|
||||
% dg1_dQr=zeros(size(PVi,1),size(PGi,1));
|
||||
% dg2_dQr=eye(size(PVi,1));
|
||||
% dg3_dQr=zeros(size(PVi,1),Busnum);
|
||||
dg1_dQr=sparse(sizePVi,sizePGi);
|
||||
dg2_dQr=sparse(1:sizePVi,1:sizePVi,ones(sizePVi,1),sizePVi,sizePVi);
|
||||
dg3_dQr=sparse(sizePVi,Busnum);
|
||||
%%
|
||||
% dg1_dx=zeros(2*Busnum,size(PGi,1));
|
||||
% dg2_dx=zeros(2*Busnum,size(PVi,1));
|
||||
% dg3_dx=zeros(2*Busnum,Busnum);
|
||||
% for I=1:Busnum
|
||||
% %dg3_dx(2*I,I)=1;ÔÝĘą¸ÄŇťĎÂ
|
||||
% dg3_dx(I,I)=1;
|
||||
% end
|
||||
dg1_dx=sparse(2*Busnum,sizePGi);
|
||||
dg2_dx=sparse(2*Busnum,sizePVi);
|
||||
dg3_dx=[sparse(1:Busnum,1:Busnum,ones(Busnum,1),Busnum,Busnum);
|
||||
sparse(Busnum,Busnum);
|
||||
];
|
||||
%%
|
||||
deltG=[dg1_dPg,dg2_dPg,dg3_dPg;
|
||||
dg1_dQr,dg2_dQr,dg3_dQr;
|
||||
dg1_dx,dg2_dx,dg3_dx;
|
||||
];
|
||||
|
|
@ -0,0 +1,9 @@
|
|||
function deltH=func_deltH(Busnum,Volt,PVi,AngleIJMat,Y,GB,PGi,UAngel,r,c,Angle)
|
||||
|
||||
dH_dPg=sparse(1:size(PGi,1),PGi,ones(size(PGi,1),1),size(PGi,1),2*Busnum);
|
||||
|
||||
dH_dQr=sparse(1:size(PVi,1),PVi+Busnum,ones(size(PVi,1),1),size(PVi,1),2*Busnum);
|
||||
dH_dx = jacobian_M3(Busnum,Volt,Y,Angle,AngleIJMat,UAngel,r,c); %形成雅克比矩阵
|
||||
%deltH=[dH_dPg;dH_dQr;dH_dx'];%dH_dx 需要使用一下转置 暂时改一下
|
||||
deltH=[dH_dPg;dH_dQr;dH_dx'];
|
||||
end
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
function deltdeltF=func_deltdeltF(Busnum,GenC,PVi,PGi)
|
||||
|
||||
ContrlCount=size(PVi,1)+size(PGi,1)+Busnum*2; %P,Q,Volt theta这些控制变量数
|
||||
deltdeltF=[diag(GenC(:,2))*2,zeros(size(GenC,1),ContrlCount-size(GenC,1));
|
||||
zeros(ContrlCount-size(GenC,1),ContrlCount);
|
||||
]; %#ok<NASGU>
|
||||
sizeGenC=size(GenC(:,2),1);
|
||||
diagC=sparse(1:sizeGenC,1:sizeGenC,GenC(:,2),sizeGenC,sizeGenC);
|
||||
deltdeltF=[
|
||||
diagC*2,sparse(sizeGenC,ContrlCount-sizeGenC);
|
||||
sparse(ContrlCount-sizeGenC,ContrlCount);
|
||||
];
|
||||
|
||||
end
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
function [P0,Q0,U,Uangle]=imbalance(PG,PD,PQstandard,Pointpoweri,QG,QD,Busnum)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——计算功率不平衡分量等
|
||||
% 编 者: 梁 捷
|
||||
% 编制时间 :2010.12
|
||||
%**************************************************************************
|
||||
%% 计算功率的不平衡分量
|
||||
P0=(PG-PD)/PQstandard; % 求取节点注入有功功率的标幺值
|
||||
Q0=(QG-QD)/PQstandard; % 求取节点注入无功功率的标幺值
|
||||
%% 平启动赋电压初值
|
||||
U=ones(1,Busnum); % 按照平启动给电压幅值赋值
|
||||
Uangle=zeros(1,Busnum); % 按照平启动给电压相角赋值
|
||||
end
|
||||
|
|
@ -0,0 +1,38 @@
|
|||
function [Jacob,PQ,U,Uangle]=jacobian(Busnum,Balance,PVi,PVu,U,Uangle,Y,Angle,P0,Q0,r,c)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
||||
U(PVi) = PVu;
|
||||
temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % 计算雅克比矩阵可利用的中间变量
|
||||
temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
||||
temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
||||
temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
||||
temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
||||
H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
||||
L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
||||
N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
|
||||
Q = Q0+temp2'; %求有功分量P
|
||||
P = P0+temp3'; %求无功分量Q
|
||||
%% 处理平衡节点和pv节点
|
||||
H(:,Balance) = 0;
|
||||
H(Balance,:) = 0;
|
||||
H(Balance,Balance) = 100; % 平衡节点对应的对角元素置一个有限数
|
||||
L(:,PVi) = 0;
|
||||
L(PVi,:) = 0;
|
||||
L = L+sparse(PVi,PVi,ones(1,length(PVi)),Busnum,Busnum); % PV节点对应的对角元素置为1
|
||||
J(:,Balance) = 0;
|
||||
J(PVi,:) = 0;
|
||||
N(:,PVi) = 0;
|
||||
N(Balance,:) = 0;
|
||||
Q(PVi) = 0; % 将pv节点的无功不平衡分量置零
|
||||
P(Balance) = 0; % 平衡节点的有功功率不平衡分量置零
|
||||
%% 合成PQ和雅可比矩阵
|
||||
PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
end
|
||||
|
|
@ -0,0 +1,61 @@
|
|||
function Jacob=jacobian_M(Busnum,Volt,Y,Angle,AngleIJMat)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
temp1=-Volt'*Volt.*Y;
|
||||
AngleIJ=AngleIJMat-Angle;
|
||||
temp11=Volt'*ones(1,Busnum).*Y;
|
||||
temp2=sum(temp1.*sin(AngleIJ),2);
|
||||
temp22 = sum(temp11.*sin(AngleIJ),2);
|
||||
temp3 = sum(temp1.*cos(AngleIJ),2);
|
||||
temp33 = sum(temp11.*cos(AngleIJ),2);
|
||||
temp4=diag(temp2);
|
||||
temp44=diag(temp22);
|
||||
temp5=diag(temp3);
|
||||
temp55=diag(temp33);
|
||||
%计算Lii的累加项
|
||||
t1=ones(Busnum,1)*Volt.*Y;
|
||||
t2=sum(t1.*sin(AngleIJ),2);
|
||||
t3=sum(t1.*cos(AngleIJ),2);
|
||||
t4=diag(t2);
|
||||
t5=diag(t3);
|
||||
H = temp1.*sin(AngleIJ)-temp4;%
|
||||
L = -temp11.*sin(AngleIJ);%
|
||||
%L(1:Busnum,1:Busnum)=-temp44+;
|
||||
L=L-t4;
|
||||
N=-temp11.*cos(AngleIJ);%
|
||||
%N(1:Busnum,1:Busnum)=-temp55-diag(diag(temp11.*cos(Angle) ) );
|
||||
N=N-t5;
|
||||
J = -temp1.*cos(AngleIJ)+temp5;%
|
||||
%%
|
||||
|
||||
|
||||
%Q = Q0+temp2'; %求有功分量P
|
||||
%P = P0+temp3'; %求无功分量Q
|
||||
%% 处理平衡节点和pv节点
|
||||
% H(:,Balance) = 0;
|
||||
% H(Balance,:) = 0;
|
||||
% H(Balance,Balance) = 100; % 平衡节点对应的对角元素置一个有限数
|
||||
% L(:,PVi) = 0;
|
||||
% L(PVi,:) = 0;
|
||||
% L = L+sparse(PVi,PVi,ones(1,length(PVi)),Busnum,Busnum); % PV节点对应的对角元素置为1
|
||||
% J(:,Balance) = 0;
|
||||
% J(PVi,:) = 0;
|
||||
% N(:,PVi) = 0;
|
||||
% N(Balance,:) = 0;
|
||||
% Q(PVi) = 0; % 将pv节点的无功不平衡分量置零
|
||||
% P(Balance) = 0; % 平衡节点的有功功率不平衡分量置零
|
||||
%% 合成PQ和雅可比矩阵
|
||||
t1=zeros(2*Busnum);
|
||||
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
% t1(1:)
|
||||
% PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
%Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
Jacob=t1;
|
||||
end
|
||||
|
|
@ -0,0 +1,84 @@
|
|||
function [Jacob]=jacobian_M1(Busnum,Volt,Y,Angle,AngleIJMat)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
%Volt(PVi) = PVu;
|
||||
temp1=Volt'*Volt.*Y;
|
||||
AngleIJ=AngleIJMat-Angle;
|
||||
temp2=sum(temp1.*sin(AngleIJ),2);
|
||||
temp3 = sum(temp1.*cos(AngleIJ),2);
|
||||
temp4=diag(temp2);
|
||||
temp5=diag(temp3);
|
||||
%t1=Volt'*ones(1,Busnum).*Y;
|
||||
t1=ones(Busnum,1)*Volt.*Y;
|
||||
%t1=Volt'*Volt.*Y;
|
||||
t2=sum(t1.*sin(AngleIJ),2);
|
||||
t3=sum(t1.*cos(AngleIJ),2);
|
||||
t4=diag(t2);
|
||||
t5=diag(t3);
|
||||
H = -temp1.*sin(AngleIJ)+temp4;%
|
||||
L = -t1.*sin(AngleIJ);%
|
||||
%L(1:Busnum,1:Busnum)=-temp44+;
|
||||
L=L-t4;
|
||||
N=-t1.*cos(AngleIJ);%
|
||||
%N(1:Busnum,1:Busnum)=-temp55-diag(diag(temp11.*cos(Angle) ) );
|
||||
N=N-t5;
|
||||
J = temp1.*cos(AngleIJ)-temp5;%
|
||||
|
||||
|
||||
%%%%
|
||||
%t=diag(Volt);
|
||||
%N=t*N;%*t;
|
||||
%L=t*L;%*t;
|
||||
|
||||
|
||||
%%%%
|
||||
%%
|
||||
%求无功分量Q
|
||||
% 平衡节点的有功功率不平衡分量置零
|
||||
%% 合成PQ和雅可比矩阵
|
||||
|
||||
% t1(1:)
|
||||
% 形成功率不平衡分量列向量
|
||||
%Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
|
||||
|
||||
t1=zeros(2*Busnum);
|
||||
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
Jacob=t1;
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
% function Jacob=jacobian_M1(Busnum,PVi,PVu,U,Uangle,Y,Angle,r,c)
|
||||
% AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
||||
% U(PVi) = PVu;
|
||||
% temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % 计算雅克比矩阵可利用的中间变量
|
||||
% temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
||||
% temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
||||
% temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
||||
% temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
||||
% H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
||||
% L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
||||
% N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
% J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
%
|
||||
%
|
||||
% t1=zeros(2*Busnum);
|
||||
% t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
% t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
% t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
% t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
% % t1(1:)
|
||||
% % PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
% %Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
% Jacob=t1;
|
||||
%
|
||||
% end
|
||||
|
|
@ -0,0 +1,84 @@
|
|||
function [Jacob]=jacobian_M2(Busnum,Volt,Y,Angle,AngleIJMat)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
temp1=Volt'*Volt.*Y;
|
||||
AngleIJ=AngleIJMat-Angle;
|
||||
temp2=sum(temp1.*sin(AngleIJ),2);
|
||||
temp3 = sum(temp1.*cos(AngleIJ),2);
|
||||
temp4=diag(temp2);
|
||||
temp5=diag(temp3);
|
||||
%t1=Volt'*ones(1,Busnum).*Y;
|
||||
t1=ones(Busnum,1)*Volt.*Y;
|
||||
t11=Volt'*ones(1,Busnum).*Y;
|
||||
%t1=Volt'*Volt.*Y;
|
||||
t2=sum(t1.*sin(AngleIJ),2);
|
||||
t3=sum(t1.*cos(AngleIJ),2);
|
||||
t4=diag(t2);
|
||||
t5=diag(t3);
|
||||
H = -temp1.*sin(AngleIJ)+temp4;%
|
||||
L = -t11.*sin(AngleIJ);%
|
||||
%L(1:Busnum,1:Busnum)=-temp44+;
|
||||
L=L-t4;
|
||||
N=-t11.*cos(AngleIJ);%
|
||||
%N(1:Busnum,1:Busnum)=-temp55-diag(diag(temp11.*cos(Angle) ) );
|
||||
N=N-t5;
|
||||
J = temp1.*cos(AngleIJ)-temp5;%
|
||||
|
||||
|
||||
%%%%
|
||||
%t=diag(Volt);
|
||||
%N=t*N;%*t;
|
||||
%L=t*L;%*t;
|
||||
|
||||
|
||||
%%%%
|
||||
%%
|
||||
%求无功分量Q
|
||||
% 平衡节点的有功功率不平衡分量置零
|
||||
%% 合成PQ和雅可比矩阵
|
||||
|
||||
% t1(1:)
|
||||
% 形成功率不平衡分量列向量
|
||||
%Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
|
||||
|
||||
t1=zeros(2*Busnum);
|
||||
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
Jacob=t1;
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
% function Jacob=jacobian_M1(Busnum,PVi,PVu,U,Uangle,Y,Angle,r,c)
|
||||
% AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
||||
% U(PVi) = PVu;
|
||||
% temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % 计算雅克比矩阵可利用的中间变量
|
||||
% temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
||||
% temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
||||
% temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
||||
% temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
||||
% H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
||||
% L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
||||
% N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
% J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
%
|
||||
%
|
||||
% t1=zeros(2*Busnum);
|
||||
% t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
% t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
% t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
% t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
% % t1(1:)
|
||||
% % PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
% %Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
% Jacob=t1;
|
||||
%
|
||||
% end
|
||||
|
|
@ -0,0 +1,49 @@
|
|||
function [Jacob]=jacobian_M3(Busnum,Volt,Y,Angle,AngleIJMat,UAngel,r,c)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%%参照图书馆6楼的书编写
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
AngleIJ=UAngel(r)-UAngel(c)-Angle';
|
||||
mat_AngleIJ=sparse(r,c,AngleIJ,Busnum,Busnum);
|
||||
mat_IvAngleIJ=mat_AngleIJ';
|
||||
H=diag(Volt)*Y.*sin(mat_IvAngleIJ)*diag(Volt)-diag(Y.*sin(mat_AngleIJ)*Volt')*diag(Volt);
|
||||
N=-diag(Volt)*Y.*cos(mat_IvAngleIJ)*diag(Volt)+diag(Y.*cos(mat_AngleIJ)*Volt')*diag(Volt);
|
||||
J=diag(Y.*cos(mat_AngleIJ)*Volt')+Y.*cos(mat_IvAngleIJ)*diag(Volt);
|
||||
L=diag(Y.*sin(mat_AngleIJ)*Volt')+Y.*sin(mat_IvAngleIJ)*diag(Volt);
|
||||
t1=[J,L;
|
||||
H,N;
|
||||
]';
|
||||
Jacob=-t1;
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
% function Jacob=jacobian_M1(Busnum,PVi,PVu,U,Uangle,Y,Angle,r,c)
|
||||
% AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
||||
% U(PVi) = PVu;
|
||||
% temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % 计算雅克比矩阵可利用的中间变量
|
||||
% temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
||||
% temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
||||
% temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
||||
% temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
||||
% H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
||||
% L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
||||
% N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
% J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
%
|
||||
%
|
||||
% t1=zeros(2*Busnum);
|
||||
% t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
% t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
% t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
% t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
% % t1(1:)
|
||||
% % PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
% %Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
% Jacob=t1;
|
||||
%
|
||||
% end
|
||||
|
|
@ -0,0 +1,77 @@
|
|||
function [Jacob]=jacobian_M4(Busnum,Volt,Y,Angle,AngleIJMat)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成雅可比矩阵Jacobian
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 分别求雅克比矩阵的子阵H,L,N,J及有功无功分量P,Q
|
||||
temp1=Volt'*Volt.*Y;
|
||||
AngleIJ=AngleIJMat-Angle;
|
||||
tt1=temp1.*sin(AngleIJ);
|
||||
tt2=temp1.*cos(AngleIJ);
|
||||
tt3=diag(tt1);
|
||||
tt4=diag(tt2);
|
||||
tt5=tt1-diag(tt3);
|
||||
tt6=tt2-diag(tt4);
|
||||
temp2=sum(tt5,2);
|
||||
temp3 = sum(tt6,2);
|
||||
HH=temp2;
|
||||
JJ=-temp3;
|
||||
t1=ones(Busnum,1)*Volt.*Y;
|
||||
t11=Volt'*ones(1,Busnum).*Y;
|
||||
t2=sum(t1.*sin(AngleIJ),2);
|
||||
t3=sum(t1.*cos(AngleIJ),2);
|
||||
t4=diag(t1.*sin(AngleIJ));
|
||||
t5=diag(t1.*cos(AngleIJ));
|
||||
NN=-diag(t3)-diag(t5);
|
||||
LL=-diag(t2)+diag(t4);
|
||||
H = -temp1.*sin(AngleIJ);
|
||||
L = -t11.*sin(AngleIJ);%
|
||||
N=-t11.*cos(AngleIJ);%
|
||||
J = temp1.*cos(AngleIJ);%
|
||||
H=H-diag(diag(H));
|
||||
N=N-diag(diag(N));
|
||||
J=J-diag(diag(J));
|
||||
L=L-diag(diag(L));
|
||||
H=H+diag(HH);
|
||||
N=N+NN;
|
||||
J=J+diag(JJ);
|
||||
L=L+LL;
|
||||
|
||||
|
||||
t1=zeros(2*Busnum);
|
||||
t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
Jacob=t1;
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
% function Jacob=jacobian_M1(Busnum,PVi,PVu,U,Uangle,Y,Angle,r,c)
|
||||
% AngleIJ = Uangle(r) - Uangle(c)- Angle';
|
||||
% U(PVi) = PVu;
|
||||
% temp1= -sparse(1:Busnum,1:Busnum,U,Busnum,Busnum)*Y*sparse(1:Busnum,1:Busnum,U,Busnum,Busnum); % 计算雅克比矩阵可利用的中间变量
|
||||
% temp2 = sum(temp1.*sparse(r,c,sin(AngleIJ)),2);
|
||||
% temp3 = sum(temp1.*sparse(r,c,cos(AngleIJ)),2);
|
||||
% temp4=sparse(1:Busnum,1:Busnum,temp2,Busnum,Busnum);
|
||||
% temp5=sparse(1:Busnum,1:Busnum,temp3,Busnum,Busnum);
|
||||
% H = temp1.*sparse(r,c,sin(AngleIJ))-temp4;
|
||||
% L = temp1.*sparse(r,c,sin(AngleIJ))+temp4;
|
||||
% N = temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
% J = -temp1.*sparse(r,c,cos(AngleIJ))+temp5;
|
||||
%
|
||||
%
|
||||
% t1=zeros(2*Busnum);
|
||||
% t1(1:2:2*Busnum,1:2:2*Busnum)=H;
|
||||
% t1(1:2:2*Busnum,2:2:2*Busnum)=N;
|
||||
% t1(2:2:2*Busnum,1:2:2*Busnum)=J;
|
||||
% t1(2:2:2*Busnum,2:2:2*Busnum)=L;
|
||||
% % t1(1:)
|
||||
% % PQ = cat(2,P,Q); % 形成功率不平衡分量列向量
|
||||
% %Jacob = cat(1,cat(2,H,N),cat(2,J,L)); % 形成Jacobian矩阵
|
||||
% Jacob=t1;
|
||||
%
|
||||
% end
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
function [new_G,new_B,GB,Y,r,c,Angle] = modifyadmmatrix(ii,jj,G,B)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——形成节点导纳矩阵Y
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 支路导纳计算
|
||||
new_G=G;
|
||||
new_G(ii,jj)=new_G(ii,jj)-G(ii,jj);
|
||||
new_G(jj,ii)=new_G(jj,ii)-G(jj,ii);
|
||||
new_G(ii,ii)=new_G(ii,ii)+G(ii,jj);
|
||||
new_G(jj,jj)=new_G(jj,jj)+G(ii,jj);
|
||||
new_B=B;
|
||||
new_B(ii,jj)=new_B(ii,jj)-B(ii,jj);
|
||||
new_B(jj,ii)=new_B(jj,ii)-B(jj,ii);
|
||||
new_B(ii,ii)=new_B(ii,ii)+B(ii,jj);
|
||||
new_B(jj,jj)=new_B(jj,jj)+B(ii,jj);
|
||||
|
||||
%% 化作极坐标形式
|
||||
GB = new_G+new_B.*1i; %将电导,电纳合并,写成复数形式
|
||||
Y = abs(GB); %求节点导纳幅值
|
||||
[r,c] = find(Y);
|
||||
Angle = angle(GB(GB~=0)); %求节点导纳角度
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
function [Busnum,Balance,PQstandard,Precision,Linei,Linej,Liner,Linex,Lineb,kmax,Transfori ,...
|
||||
Transforj,Transforr,Transforx,Transfork0,Branchi,Branchb,Pointpoweri,PG,QG,PD,QD,PVi,PVu,Gen,GenU,GenL,GenC,CenterA,PGi,PVQU,PVQL] = openfile(FileName)
|
||||
%**************************************************************************
|
||||
% 程序简介 : 子函数——读取潮流计算所需数据
|
||||
% 编 者:
|
||||
% 编制时间 :2010.12
|
||||
%**************************************************************************
|
||||
data = dlmread(FileName); % 一次读入全部数据
|
||||
Busnum= data(1,1); % 节点数
|
||||
PQstandard = data(1,3); % 基准容量
|
||||
kmax = data(1,4); %最大迭代次数
|
||||
Precision = data(2,1); % 精度
|
||||
Balance = data(3,2); % 生成1到节点号的列向量
|
||||
CenterA=data(1,5); %中心参数
|
||||
LineNum=data(1,2); %支路数
|
||||
Base=data(1,3);
|
||||
%% 各参数矩阵分块
|
||||
zeroRow = find(data(:,1)==0); %查找第一列元素为零的行号
|
||||
line = data(zeroRow(1)+1:zeroRow(2)-1,:); % 形成线路参数矩阵
|
||||
ground = data(zeroRow(2)+1:zeroRow(3)-1,:); % 形成对地支路参数矩阵
|
||||
tran = data(zeroRow(3)+1:zeroRow(4)-1,:); % 形成变压器参数矩阵
|
||||
buspq = data(zeroRow(4)+1:zeroRow(5)-1,:); % 形成节点功率参数矩阵
|
||||
PV = data(zeroRow(5)+1:zeroRow(6)-1,:); % 形成pv节点功率参数矩阵
|
||||
Gen=data(zeroRow(6)+1:zeroRow(7)-1,:);
|
||||
%% 线路参数矩阵分块
|
||||
Linei = line(:,2); % 节点i
|
||||
Linej= line(:,3); % 节点j
|
||||
Liner = line(:,4); % 线路电阻
|
||||
Linex = line(:,5); % 线路电抗
|
||||
Lineb = line(:,6); % b/2
|
||||
%% 对地支路参数矩阵
|
||||
Branchi = ground(:,1); % 对地支路节点号
|
||||
Branchb = ground(:,2); % 对地支路的导纳
|
||||
%% 变压器参数矩阵
|
||||
Transfori = tran(:,2); % 节点i
|
||||
Transforj= tran(:,3); % 节点j
|
||||
Transforr = tran(:,4); % 变压器电阻
|
||||
Transforx= tran(:,5); % 变压器电抗
|
||||
Transfork0 = tran(:,6); % 变压器变比
|
||||
%% 节点功率参数矩阵
|
||||
Pointpoweri = buspq(:,1);
|
||||
PG=buspq(:,2); % 发电机有功
|
||||
QG=buspq(:,3); % 发电机无功
|
||||
PD=buspq(:,4); % 负荷有功
|
||||
QD=buspq(:,5); % 负荷无功
|
||||
%%除以基值
|
||||
PG=PG/Base;
|
||||
QG=QG/Base;
|
||||
PD=PD/Base;
|
||||
QD=QD/Base;
|
||||
%% pv节点功率参数矩阵
|
||||
PVi = PV(:,1); % PV节点的节点号
|
||||
PVu = PV(:,2); % PV节点电压
|
||||
PVQL=PV(:,3);%PV节点无功下限
|
||||
PVQL=PVQL/Base;
|
||||
PVQU=PV(:,4); %PV节点无功上限
|
||||
PVQU=PVQU/Base;
|
||||
%% 发电机参数
|
||||
%GenU=Gen(:,[1 5 6]);
|
||||
%GenL=Gen(:,[1 7 8]);
|
||||
GenC=Gen(:,[1 2:4]);
|
||||
t=GenC(:,2);
|
||||
GenC(:,2)=GenC(:,4);
|
||||
GenC(:,4)=t;
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
%GenC(:,2:4)=100*GenC(:,2:4);
|
||||
t=Gen(:,[1 5]);
|
||||
%GenL=[t,PVQL(PVi)];
|
||||
GenL=t;%有功下界
|
||||
GenL(:,2)=GenL(:,2)/Base;
|
||||
t=Gen(:,[1 6]);
|
||||
%GenU=[t,PVQU(PVi)];
|
||||
GenU=t;%有功上届
|
||||
GenU(:,2)=GenU(:,2)/Base;
|
||||
PGi=Gen(:,1);%发电机节点号
|
||||
end
|
||||
|
|
@ -0,0 +1,35 @@
|
|||
function [kmax,Precision,Uangle,U,Busnum,PVi,PVu,Balance,Y,Angle,P0,Q0,r,c,GB,Linei,Linej,Transfori,Transforj,GenU,GenL,GenC,PG,QG,PD,QD,CenterA,PGi,PVQU,PVQL]=pf(FileName)
|
||||
%**************************************************************************
|
||||
% 程序名称:电力系统潮流计算程序
|
||||
% 程序算法:极坐标下的牛顿-拉夫逊法
|
||||
% 程序功能:主函数
|
||||
% 程序编者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
clc;
|
||||
tic;
|
||||
%% 读取数据文件
|
||||
[Busnum,Balance,PQstandard,Precision,Linei,Linej,Liner,Linex,Lineb,kmax,Transfori ,...
|
||||
Transforj,Transforr,Transforx,Transfork0,Branchi,Branchb,Pointpoweri,PG,QG,PD,QD,PVi,PVu,Gen,GenU,GenL,GenC,CenterA,PGi,PVQU,PVQL]= openfile(FileName);
|
||||
%% 形成节点导纳矩阵
|
||||
[G,B,GB,Y,r,c,Angle] = admmatrix(Busnum,Linei,Linej,Liner,Linex,Lineb,Transfori,Transforj,Transforr,...
|
||||
Transforx,Transfork0,Branchi,Branchb);
|
||||
[P0,Q0,U,Uangle] = Initial(PG,PD,PQstandard,Pointpoweri,QG,QD,Busnum); %求功率不平衡量
|
||||
disp('迭代次数i 最大不平衡量');
|
||||
%% 循环体计算
|
||||
for i = 0:kmax
|
||||
[Jacob,PQ,U,Uangle] = jacobian(Busnum,Balance,PVi,PVu,U,Uangle,Y,Angle,P0,Q0,r,c); %形成雅克比矩阵
|
||||
% disp('第一次雅克比');
|
||||
%full(Jacob);
|
||||
m = max(abs(PQ));
|
||||
m = full(m);
|
||||
fprintf(' %u %.8f \n',i,m);
|
||||
if m > Precision %判断不平衡量是否满足精度要求
|
||||
[Uangle,U] = solvefun(Busnum,Jacob,PQ,Uangle,U); %求解修正方程,更新电压变量
|
||||
else
|
||||
disp(['收敛,迭代次数为',num2str(i),'次']);
|
||||
break %若满足精度要求,则计算收敛
|
||||
end
|
||||
end
|
||||
toc;
|
||||
end
|
||||
|
|
@ -0,0 +1,13 @@
|
|||
function[Uangle,U] = solvefun(Busnum,Jacob,PQ,Uangle,U)
|
||||
%**************************************************************************
|
||||
% 程序功能 : 子函数——求解修正方程
|
||||
% 编 者:
|
||||
% 编制时间:2010.12
|
||||
%**************************************************************************
|
||||
%% 计算修正方程
|
||||
PQ = sparse(PQ);
|
||||
X = (Jacob\-PQ')';
|
||||
%% 更新电压变量
|
||||
Uangle = Uangle+X(1:Busnum); % 更新电压相角
|
||||
U = U+U.*X(Busnum+1:end); % 更新电压幅值
|
||||
end
|
||||
|
|
@ -0,0 +1,14 @@
|
|||
clear
|
||||
clc
|
||||
syms T11 T12 T21 T22;
|
||||
syms V1 V2;
|
||||
syms Y11 Y12 Y21 Y22;
|
||||
yP=ones(1,2);
|
||||
AngleIJ=[T11,T12;T21,T22];
|
||||
Volt=[V1,V2];
|
||||
Y=[Y11,Y12;Y21,Y22];
|
||||
t1=-diag(Y.*cos(AngleIJ')*diag(Volt)*yP');
|
||||
t2=diag(diag(Volt)*yP')*Y.*cos(AngleIJ);
|
||||
t3=(t1+t2)*diag(Volt);
|
||||
t4=-(diag(Y.*cos(AngleIJ)*Volt') -diag(Volt)*Y.*cos(AngleIJ') )*diag(diag(Volt)*yP');
|
||||
ddPdTdT=t1+t2+t3+t4
|
||||
Loading…
Reference in New Issue