Files
multi_energy_complementarity/excel_reader.py
dmy 02b2fdc309 1.可以读excel文件
2.可以计算8760小时
2025-12-25 19:56:21 +08:00

267 lines
8.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
"""
Excel数据读取模块
该模块提供从Excel文件中读取8760小时负荷和发电曲线数据的功能。
作者: iFlow CLI
创建日期: 2025-12-25
"""
import pandas as pd
import numpy as np
from typing import Dict, List, Optional, Tuple
import os
def validate_excel_data(df: pd.DataFrame, data_type: str = "8760") -> bool:
"""
验证Excel数据格式是否正确
Args:
df: pandas DataFrame对象
data_type: 数据类型,"24""8760"
Returns:
bool: 验证是否通过
"""
expected_length = 8760 if data_type == "8760" else 24
# 检查行数
if len(df) != expected_length:
print(f"错误:数据行数应为{expected_length},实际为{len(df)}")
return False
# 检查必需的列
required_columns = ['光伏出力(MW)', '风电出力(MW)', '火电出力(MW)', '负荷需求(MW)']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
print(f"错误:缺少必需的列:{missing_columns}")
return False
# 检查数据类型和非负值
for col in required_columns:
if not pd.api.types.is_numeric_dtype(df[col]):
print(f"错误:列'{col}'必须为数值类型")
return False
if (df[col] < 0).any():
print(f"错误:列'{col}'包含负值")
return False
return True
def read_excel_data(file_path: str, sheet_name: str = 0) -> Dict[str, List[float]]:
"""
从Excel文件读取8760小时数据
Args:
file_path: Excel文件路径
sheet_name: 工作表名称或索引,默认为第一个工作表
Returns:
包含所有数据的字典
Raises:
FileNotFoundError: 文件不存在
ValueError: 数据格式错误
"""
# 检查文件是否存在
if not os.path.exists(file_path):
raise FileNotFoundError(f"文件不存在:{file_path}")
try:
# 读取Excel文件
df = pd.read_excel(file_path, sheet_name=sheet_name)
# 自动检测数据类型
data_type = "8760" if len(df) >= 8760 else "24"
# 验证数据格式
if not validate_excel_data(df, data_type):
raise ValueError("Excel数据格式验证失败")
# 提取数据并转换为列表
solar_output = df['光伏出力(MW)'].tolist()
wind_output = df['风电出力(MW)'].tolist()
thermal_output = df['火电出力(MW)'].tolist()
load_demand = df['负荷需求(MW)'].tolist()
# 如果是24小时数据扩展到8760小时重复365天
if data_type == "24" and len(df) == 24:
print("检测到24小时数据自动扩展到8760小时重复365天")
solar_output = solar_output * 365
wind_output = wind_output * 365
thermal_output = thermal_output * 365
load_demand = load_demand * 365
return {
'solar_output': solar_output,
'wind_output': wind_output,
'thermal_output': thermal_output,
'load_demand': load_demand,
'data_type': data_type,
'original_length': len(df)
}
except Exception as e:
raise ValueError(f"读取Excel文件失败{str(e)}")
def create_excel_template(file_path: str, data_type: str = "8760"):
"""
创建Excel数据模板文件
Args:
file_path: 保存路径
data_type: 数据类型,"24""8760"
"""
# 生成示例数据
if data_type == "24":
hours = 24
# 24小时典型日数据
solar = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
wind = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
thermal = [5.0] * 24
load = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
description = "24小时典型日数据模板"
else:
hours = 8760
# 生成8760小时的模拟数据基于日模式加季节变化
daily_solar = [0.0] * 6 + [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0] + [0.0] * 6
daily_wind = [2.0, 3.0, 4.0, 3.0, 2.0, 1.0] * 4
daily_thermal = [5.0] * 24
daily_load = [3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
16.0, 14.0, 12.0, 10.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 2.0]
solar = []
wind = []
thermal = []
load = []
np.random.seed(42) # 确保可重复性
for day in range(365):
# 季节性因子
season_factor = 1.0 + 0.3 * np.sin(2 * np.pi * day / 365)
for hour in range(24):
# 添加随机变化
solar_variation = 1.0 + 0.2 * (np.random.random() - 0.5)
wind_variation = 1.0 + 0.3 * (np.random.random() - 0.5)
load_variation = 1.0 + 0.1 * (np.random.random() - 0.5)
solar.append(daily_solar[hour] * season_factor * solar_variation)
wind.append(daily_wind[hour] * wind_variation)
thermal.append(daily_thermal[hour])
load.append(daily_load[hour] * (2.0 - season_factor) * load_variation)
description = "8760小时全年数据模板"
# 创建DataFrame
df = pd.DataFrame({
'小时': range(1, hours + 1),
'光伏出力(MW)': solar,
'风电出力(MW)': wind,
'火电出力(MW)': thermal,
'负荷需求(MW)': load
})
# 保存到Excel
with pd.ExcelWriter(file_path, engine='openpyxl') as writer:
df.to_excel(writer, sheet_name='数据', index=False)
# 添加说明工作表
description_df = pd.DataFrame({
'项目': ['数据说明', '数据类型', '时间范围', '单位', '注意事项'],
'内容': [
description,
f'{data_type}小时电力数据',
f'1-{hours}小时',
'MW (兆瓦)',
'所有数值必须为非负数'
]
})
description_df.to_excel(writer, sheet_name='说明', index=False)
print(f"Excel模板已创建{file_path}")
def analyze_excel_data(file_path: str) -> Dict[str, float]:
"""
分析Excel数据的基本统计信息
Args:
file_path: Excel文件路径
Returns:
包含统计信息的字典
"""
try:
data = read_excel_data(file_path)
solar = data['solar_output']
wind = data['wind_output']
thermal = data['thermal_output']
load = data['load_demand']
return {
'data_length': len(solar),
'total_solar': sum(solar),
'total_wind': sum(wind),
'total_thermal': sum(thermal),
'total_generation': sum(solar) + sum(wind) + sum(thermal),
'total_load': sum(load),
'max_solar': max(solar),
'max_wind': max(wind),
'max_thermal': max(thermal),
'max_load': max(load),
'avg_solar': np.mean(solar),
'avg_wind': np.mean(wind),
'avg_thermal': np.mean(thermal),
'avg_load': np.mean(load)
}
except Exception as e:
print(f"分析数据失败:{str(e)}")
return {}
def main():
"""主函数演示Excel数据读取功能"""
print("=== Excel数据读取模块演示 ===")
# 创建模板文件
template_8760 = "data_template_8760.xlsx"
template_24 = "data_template_24.xlsx"
print("\n1. 创建Excel模板文件...")
create_excel_template(template_8760, "8760")
create_excel_template(template_24, "24")
# 分析模板数据
print(f"\n2. 分析{template_8760}数据...")
stats = analyze_excel_data(template_8760)
if stats:
print("数据统计信息:")
for key, value in stats.items():
print(f" {key}: {value:.2f}")
print(f"\n3. 演示读取{template_24}数据...")
try:
data = read_excel_data(template_24)
print(f"成功读取数据,类型:{data['data_type']}")
print(f"光伏出力前10小时{data['solar_output'][:10]}")
print(f"风电出力前10小时{data['wind_output'][:10]}")
print(f"负荷需求前10小时{data['load_demand'][:10]}")
except Exception as e:
print(f"读取失败:{str(e)}")
print("\n=== 演示完成 ===")
print("模板文件已创建您可以根据实际数据修改Excel文件。")
if __name__ == "__main__":
main()