534 lines
23 KiB
Python
534 lines
23 KiB
Python
"""
|
||
多能互补系统储能容量优化计算程序使用示例
|
||
|
||
该文件展示了如何使用储能优化程序处理不同的实际场景。
|
||
|
||
作者: iFlow CLI
|
||
创建日期: 2025-12-25
|
||
"""
|
||
|
||
import sys
|
||
import os
|
||
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'src'))
|
||
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
from storage_optimization import optimize_storage_capacity, SystemParameters
|
||
|
||
# 配置matplotlib支持中文显示
|
||
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'DejaVu Sans']
|
||
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
|
||
|
||
|
||
def example_1_basic_scenario():
|
||
"""示例1: 基础场景"""
|
||
print("=== 示例1: 基础场景 ===")
|
||
|
||
# 基础数据 - 夏日典型日
|
||
solar_output = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 2.0, 4.0, 6.0, 8.0, 9.0,
|
||
8.0, 6.0, 4.0, 2.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
||
|
||
wind_output = [4.0, 4.5, 5.0, 5.5, 5.0, 4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5,
|
||
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 5.0, 4.5, 4.0]
|
||
|
||
thermal_output = [8.0] * 24 # 火电基荷
|
||
|
||
load_demand = [6.0, 5.5, 5.0, 5.0, 5.5, 7.0, 9.0, 12.0, 15.0, 18.0, 20.0, 19.0,
|
||
18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 10.0, 8.0, 7.0, 6.0, 6.0]
|
||
|
||
# 系统参数
|
||
params = SystemParameters(
|
||
max_curtailment_wind=0.1, # 最大弃风率10%
|
||
max_curtailment_solar=0.05, # 最大弃光率5%
|
||
max_grid_ratio=0.15, # 最大上网电量比例15%
|
||
storage_efficiency=0.9, # 储能效率90%
|
||
discharge_rate=1.0, # 1C放电
|
||
charge_rate=1.0 # 1C充电
|
||
)
|
||
|
||
# 计算最优储能容量
|
||
result = optimize_storage_capacity(solar_output, wind_output, thermal_output, load_demand, params)
|
||
|
||
# 打印结果
|
||
print(f"所需储能容量: {result['required_storage_capacity']:.2f} MWh")
|
||
print(f"实际弃风率: {result['total_curtailment_wind_ratio']:.3f} (约束: {params.max_curtailment_wind})")
|
||
print(f"实际弃光率: {result['total_curtailment_solar_ratio']:.3f} (约束: {params.max_curtailment_solar})")
|
||
print(f"实际上网电量比例: {result['total_grid_feed_in_ratio']:.3f} (约束: {params.max_grid_ratio})")
|
||
print(f"能量平衡校验: {'通过' if result['energy_balance_check'] else '未通过'}")
|
||
|
||
return {
|
||
'result': result,
|
||
'solar_output': solar_output,
|
||
'wind_output': wind_output,
|
||
'thermal_output': thermal_output,
|
||
'load_demand': load_demand
|
||
}
|
||
|
||
|
||
def example_2_high_renewable_scenario():
|
||
"""示例2: 高可再生能源渗透场景"""
|
||
print("\n=== 示例2: 高可再生能源渗透场景 ===")
|
||
|
||
# 高可再生能源数据
|
||
solar_output = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 3.0, 6.0, 10.0, 14.0, 18.0, 20.0,
|
||
18.0, 14.0, 10.0, 6.0, 3.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
||
|
||
wind_output = [8.0, 9.0, 10.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0,
|
||
3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 10.0, 9.0, 8.0]
|
||
|
||
thermal_output = [4.0] * 24 # 较低的火电基荷
|
||
|
||
load_demand = [8.0, 7.5, 7.0, 7.0, 7.5, 9.0, 11.0, 14.0, 17.0, 20.0, 22.0, 21.0,
|
||
20.0, 19.0, 18.0, 17.0, 16.0, 15.0, 14.0, 12.0, 10.0, 9.0, 8.0, 8.0]
|
||
|
||
# 系统参数 - 较高的弃风弃光容忍度
|
||
params = SystemParameters(
|
||
max_curtailment_wind=0.2, # 最大弃风率20%
|
||
max_curtailment_solar=0.15, # 最大弃光率15%
|
||
max_grid_ratio=0.25, # 最大上网电量比例25%
|
||
storage_efficiency=0.85, # 较低的储能效率
|
||
discharge_rate=1.0,
|
||
charge_rate=1.0
|
||
)
|
||
|
||
result = optimize_storage_capacity(solar_output, wind_output, thermal_output, load_demand, params)
|
||
|
||
print(f"所需储能容量: {result['required_storage_capacity']:.2f} MWh")
|
||
print(f"实际弃风率: {result['total_curtailment_wind_ratio']:.3f}")
|
||
print(f"实际弃光率: {result['total_curtailment_solar_ratio']:.3f}")
|
||
print(f"实际上网电量比例: {result['total_grid_feed_in_ratio']:.3f}")
|
||
print(f"能量平衡校验: {'通过' if result['energy_balance_check'] else '未通过'}")
|
||
|
||
return {
|
||
'result': result,
|
||
'solar_output': solar_output,
|
||
'wind_output': wind_output,
|
||
'thermal_output': thermal_output,
|
||
'load_demand': load_demand
|
||
}
|
||
|
||
|
||
def example_3_winter_scenario():
|
||
"""示例3: 冬季场景"""
|
||
print("\n=== 示例3: 冬季场景 ===")
|
||
|
||
# 冬季数据 - 光照弱,风电强,负荷高
|
||
solar_output = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.8, 1.5, 2.0, 2.5, 2.8,
|
||
2.5, 2.0, 1.5, 0.8, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
||
|
||
wind_output = [12.0, 13.0, 14.0, 15.0, 14.0, 13.0, 12.0, 11.0, 10.0, 9.0, 8.0, 7.0,
|
||
7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 14.0, 13.0, 12.0]
|
||
|
||
thermal_output = [12.0] * 24 # 高火电基荷
|
||
|
||
load_demand = [12.0, 11.5, 11.0, 11.0, 11.5, 13.0, 15.0, 18.0, 21.0, 24.0, 26.0, 25.0,
|
||
24.0, 23.0, 22.0, 21.0, 20.0, 19.0, 18.0, 16.0, 14.0, 13.0, 12.0, 12.0]
|
||
|
||
# 系统参数 - 严格的弃风弃光控制
|
||
params = SystemParameters(
|
||
max_curtailment_wind=0.05, # 严格的弃风控制
|
||
max_curtailment_solar=0.02, # 严格的弃光控制
|
||
max_grid_ratio=0.1, # 低上网电量比例
|
||
storage_efficiency=0.92, # 高储能效率
|
||
discharge_rate=1.0,
|
||
charge_rate=1.0
|
||
)
|
||
|
||
result = optimize_storage_capacity(solar_output, wind_output, thermal_output, load_demand, params)
|
||
|
||
print(f"所需储能容量: {result['required_storage_capacity']:.2f} MWh")
|
||
print(f"实际弃风率: {result['total_curtailment_wind_ratio']:.3f}")
|
||
print(f"实际弃光率: {result['total_curtailment_solar_ratio']:.3f}")
|
||
print(f"实际上网电量比例: {result['total_grid_feed_in_ratio']:.3f}")
|
||
print(f"能量平衡校验: {'通过' if result['energy_balance_check'] else '未通过'}")
|
||
|
||
return {
|
||
'result': result,
|
||
'solar_output': solar_output,
|
||
'wind_output': wind_output,
|
||
'thermal_output': thermal_output,
|
||
'load_demand': load_demand
|
||
}
|
||
|
||
|
||
def plot_results(result, title, solar_output, wind_output, thermal_output, load_demand):
|
||
"""绘制结果图表"""
|
||
hours = list(range(24))
|
||
|
||
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3, 2, figsize=(16, 12))
|
||
fig.suptitle(title, fontsize=16)
|
||
|
||
# 发电与负荷对比
|
||
ax1.plot(hours, load_demand, 'r-', linewidth=2, label='负荷需求')
|
||
ax1.plot(hours, thermal_output, 'b-', linewidth=2, label='火电出力')
|
||
ax1.plot(hours, wind_output, 'g-', linewidth=2, label='风电出力')
|
||
ax1.plot(hours, solar_output, 'orange', linewidth=2, label='光伏出力')
|
||
|
||
# 计算总发电量
|
||
total_generation = [thermal_output[i] + wind_output[i] + solar_output[i] for i in range(24)]
|
||
ax1.plot(hours, total_generation, 'k--', linewidth=1.5, alpha=0.7, label='总发电量')
|
||
|
||
ax1.set_title('发电与负荷曲线')
|
||
ax1.set_xlabel('时间 (小时)')
|
||
ax1.set_ylabel('功率 (MW)')
|
||
ax1.legend()
|
||
ax1.grid(True)
|
||
|
||
# 储能状态
|
||
ax2.plot(hours, result['storage_profile'], 'b-', linewidth=2)
|
||
ax2.set_title('储能状态 (MWh)')
|
||
ax2.set_xlabel('时间 (小时)')
|
||
ax2.set_ylabel('储能容量 (MWh)')
|
||
ax2.grid(True)
|
||
|
||
# 充放电功率
|
||
ax3.plot(hours, result['charge_profile'], 'g-', label='充电', linewidth=2)
|
||
ax3.plot(hours, [-p for p in result['discharge_profile']], 'r-', label='放电', linewidth=2)
|
||
ax3.set_title('储能充放电功率 (MW)')
|
||
ax3.set_xlabel('时间 (小时)')
|
||
ax3.set_ylabel('功率 (MW)')
|
||
ax3.legend()
|
||
ax3.grid(True)
|
||
|
||
# 弃风弃光
|
||
ax4.plot(hours, result['curtailed_wind'], 'c-', label='弃风', linewidth=2)
|
||
ax4.plot(hours, result['curtailed_solar'], 'm-', label='弃光', linewidth=2)
|
||
ax4.set_title('弃风弃光量 (MW)')
|
||
ax4.set_xlabel('时间 (小时)')
|
||
ax4.set_ylabel('功率 (MW)')
|
||
ax4.legend()
|
||
ax4.grid(True)
|
||
|
||
# 上网电量/购电量
|
||
ax5.plot(hours, result['grid_feed_in'], 'orange', linewidth=2)
|
||
ax5.axhline(y=0, color='black', linestyle='-', linewidth=0.5, alpha=0.5)
|
||
ax5.fill_between(hours, 0, result['grid_feed_in'],
|
||
where=[x >= 0 for x in result['grid_feed_in']],
|
||
alpha=0.3, color='green', label='上网')
|
||
ax5.fill_between(hours, 0, result['grid_feed_in'],
|
||
where=[x < 0 for x in result['grid_feed_in']],
|
||
alpha=0.3, color='red', label='购电')
|
||
|
||
# 动态设置标题
|
||
total_grid = sum(result['grid_feed_in'])
|
||
if total_grid < 0:
|
||
ax5.set_title(f'购电量 (总计: {abs(total_grid):.1f} MWh)')
|
||
else:
|
||
ax5.set_title(f'上网电量 (总计: {total_grid:.1f} MWh)')
|
||
|
||
ax5.set_xlabel('时间 (小时)')
|
||
ax5.set_ylabel('功率 (MW)')
|
||
ax5.legend()
|
||
ax5.grid(True)
|
||
|
||
# 能量平衡分析
|
||
total_gen = sum(thermal_output) + sum(wind_output) + sum(solar_output)
|
||
total_load = sum(load_demand)
|
||
total_curtailed = sum(result['curtailed_wind']) + sum(result['curtailed_solar'])
|
||
total_grid = sum(result['grid_feed_in'])
|
||
total_charge = sum(result['charge_profile'])
|
||
total_discharge = sum(result['discharge_profile'])
|
||
|
||
# 创建能量平衡柱状图
|
||
categories = ['总发电量', '总负荷', '弃风弃光', '上网电量', '储能充电', '储能放电']
|
||
values = [total_gen, total_load, total_curtailed, total_grid, total_charge, total_discharge]
|
||
colors = ['blue', 'red', 'orange', 'green', 'cyan', 'magenta']
|
||
|
||
bars = ax6.bar(categories, values, color=colors, alpha=0.7)
|
||
ax6.set_title('能量平衡分析')
|
||
ax6.set_ylabel('能量 (MWh)')
|
||
ax6.grid(True, axis='y', alpha=0.3)
|
||
|
||
# 在柱状图上添加数值标签
|
||
for bar, value in zip(bars, values):
|
||
height = bar.get_height()
|
||
ax6.text(bar.get_x() + bar.get_width()/2., height,
|
||
f'{value:.1f}', ha='center', va='bottom', fontsize=9)
|
||
|
||
plt.tight_layout()
|
||
plt.show()
|
||
|
||
|
||
def example_5_high_load_grid_purchase_scenario():
|
||
"""示例5: 高负荷购电场景"""
|
||
print("\n=== 示例5: 高负荷购电场景 ===")
|
||
|
||
# 高负荷场景数据 - 有充电和放电时段
|
||
solar_output = [0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 9.0, 8.0,
|
||
7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
||
|
||
wind_output = [5.0, 5.5, 6.0, 6.5, 6.0, 5.5, 5.0, 4.5, 4.0, 3.5, 3.0, 2.5,
|
||
2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 5.5, 5.0, 5.0]
|
||
|
||
thermal_output = [8.0] * 24 # 火电基荷
|
||
|
||
# 负荷曲线:夜间低负荷(充电时段),白天高负荷(放电和购电时段)
|
||
load_demand = [10.0, 9.0, 8.0, 7.0, 8.0, 12.0, 18.0, 25.0, 35.0, 42.0, 45.0, 43.0,
|
||
40.0, 38.0, 35.0, 30.0, 25.0, 20.0, 15.0, 12.0, 11.0, 10.0, 10.0, 10.0]
|
||
|
||
# 系统参数 - max_grid_ratio只限制上网电量比例,不限制购电
|
||
params = SystemParameters(
|
||
max_curtailment_wind=0.05, # 严格的弃风控制
|
||
max_curtailment_solar=0.02, # 严格的弃光控制
|
||
max_grid_ratio=0.3, # 上网电量比例限制为30%,但不限制购电
|
||
storage_efficiency=0.9, # 储能效率90%
|
||
discharge_rate=2.0, # 2C放电,满足高峰需求
|
||
charge_rate=1.0, # 1C充电
|
||
max_storage_capacity=8.0 # 限制储能容量为8MWh,确保储能被充分利用
|
||
)
|
||
|
||
result = optimize_storage_capacity(solar_output, wind_output, thermal_output, load_demand, params, tolerance=0.1)
|
||
|
||
print(f"所需储能容量: {result['required_storage_capacity']:.2f} MWh")
|
||
print(f"储能容量上限: {result['max_storage_limit']:.2f} MWh")
|
||
print(f"是否达到容量上限: {'是' if result['capacity_limit_reached'] else '否'}")
|
||
print(f"实际弃风率: {result['total_curtailment_wind_ratio']:.3f} (约束: {params.max_curtailment_wind})")
|
||
print(f"实际弃光率: {result['total_curtailment_solar_ratio']:.3f} (约束: {params.max_curtailment_solar})")
|
||
print(f"实际上网电量比例: {result['total_grid_feed_in_ratio']:.3f} (负值表示购电,正值表示上网)")
|
||
print(f"能量平衡校验: {'通过' if result['energy_balance_check'] else '未通过'}")
|
||
|
||
# 调试信息
|
||
total_gen = sum(solar_output) + sum(wind_output) + sum(thermal_output)
|
||
total_load = sum(load_demand)
|
||
total_charge = sum(result['charge_profile'])
|
||
total_discharge = sum(result['discharge_profile'])
|
||
|
||
print(f"\n=== 调试信息 ===")
|
||
print(f"总发电量: {total_gen:.2f} MWh")
|
||
print(f"总负荷: {total_load:.2f} MWh")
|
||
print(f"负荷-发电差: {total_load - total_gen:.2f} MWh")
|
||
print(f"总充电量: {total_charge:.2f} MWh")
|
||
print(f"总放电量: {total_discharge:.2f} MWh")
|
||
print(f"储能净变化: {total_discharge - total_charge:.2f} MWh")
|
||
|
||
# 计算购电量统计
|
||
total_grid_feed = sum(result['grid_feed_in'])
|
||
if total_grid_feed < 0:
|
||
print(f"总购电量: {abs(total_grid_feed):.2f} MWh")
|
||
|
||
# 显示前几个小时的详细情况
|
||
print(f"\n前6小时详细情况:")
|
||
print(f"小时 | 发电 | 负荷 | 储能充电 | 储能放电 | 购电")
|
||
print("-" * 55)
|
||
for i in range(6):
|
||
gen = solar_output[i] + wind_output[i] + thermal_output[i]
|
||
charge = result['charge_profile'][i]
|
||
discharge = result['discharge_profile'][i]
|
||
grid = result['grid_feed_in'][i]
|
||
print(f"{i:2d} | {gen:4.1f} | {load_demand[i]:4.1f} | {charge:7.2f} | {discharge:7.2f} | {grid:5.2f}")
|
||
|
||
# 计算最大缺电功率
|
||
max_deficit = 0
|
||
for hour in range(24):
|
||
total_gen = solar_output[hour] + wind_output[hour] + thermal_output[hour]
|
||
deficit = max(0, load_demand[hour] - total_gen - result['discharge_profile'][hour])
|
||
max_deficit = max(max_deficit, deficit)
|
||
|
||
if max_deficit > 0:
|
||
print(f"\n最大缺电功率: {max_deficit:.2f} MW")
|
||
|
||
return {
|
||
'result': result,
|
||
'solar_output': solar_output,
|
||
'wind_output': wind_output,
|
||
'thermal_output': thermal_output,
|
||
'load_demand': load_demand
|
||
}
|
||
|
||
|
||
def example_6_grid_ratio_limited_scenario():
|
||
"""示例6: 上网电量比例限制场景"""
|
||
print("\n=== 示例6: 上网电量比例限制场景 ===")
|
||
|
||
# 高可再生能源场景 - 有大量盈余电力
|
||
solar_output = [0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 5.0, 8.0, 12.0, 16.0, 20.0, 18.0,
|
||
15.0, 12.0, 8.0, 5.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
||
|
||
wind_output = [8.0, 9.0, 10.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0,
|
||
3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 10.0, 9.0, 8.0]
|
||
|
||
thermal_output = [6.0] * 24 # 中等火电出力
|
||
|
||
# 低负荷场景 - 有大量盈余电力
|
||
load_demand = [8.0, 7.0, 6.0, 6.0, 7.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 18.0,
|
||
16.0, 14.0, 12.0, 10.0, 9.0, 8.0, 7.0, 6.0, 6.0, 7.0, 8.0, 8.0]
|
||
|
||
# 系统参数 - 限制上网电量比例
|
||
params = SystemParameters(
|
||
max_curtailment_wind=0.15, # 允许一定弃风
|
||
max_curtailment_solar=0.1, # 允许一定弃光
|
||
max_grid_ratio=0.15, # 限制上网电量比例为15%
|
||
storage_efficiency=0.9, # 储能效率90%
|
||
discharge_rate=1.0, # 1C放电
|
||
charge_rate=1.0, # 1C充电
|
||
max_storage_capacity=100.0 # 足够大的储能容量
|
||
)
|
||
|
||
result = optimize_storage_capacity(solar_output, wind_output, thermal_output, load_demand, params)
|
||
|
||
print(f"所需储能容量: {result['required_storage_capacity']:.2f} MWh")
|
||
print(f"上网电量比例限制: {params.max_grid_ratio:.1%}")
|
||
print(f"实际上网电量比例: {result['total_grid_feed_in_ratio']:.3f}")
|
||
print(f"实际弃风率: {result['total_curtailment_wind_ratio']:.3f} (约束: {params.max_curtailment_wind})")
|
||
print(f"实际弃光率: {result['total_curtailment_solar_ratio']:.3f} (约束: {params.max_curtailment_solar})")
|
||
print(f"能量平衡校验: {'通过' if result['energy_balance_check'] else '未通过'}")
|
||
|
||
# 检查是否达到上网电量比例限制
|
||
if result['total_grid_feed_in_ratio'] >= params.max_grid_ratio - 0.01:
|
||
print("注意:已达到上网电量比例限制")
|
||
|
||
return {
|
||
'result': result,
|
||
'solar_output': solar_output,
|
||
'wind_output': wind_output,
|
||
'thermal_output': thermal_output,
|
||
'load_demand': load_demand
|
||
}
|
||
|
||
|
||
def example_4_capacity_limited_scenario():
|
||
"""示例4: 储能容量限制场景"""
|
||
print("\n=== 示例4: 储能容量限制场景 ===")
|
||
|
||
# 使用基础场景的数据
|
||
solar_output = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 2.0, 4.0, 6.0, 8.0, 9.0,
|
||
8.0, 6.0, 4.0, 2.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
||
|
||
wind_output = [4.0, 4.5, 5.0, 5.5, 5.0, 4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5,
|
||
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 5.0, 4.5, 4.0]
|
||
|
||
thermal_output = [8.0] * 24
|
||
|
||
load_demand = [6.0, 5.5, 5.0, 5.0, 5.5, 7.0, 9.0, 12.0, 15.0, 18.0, 20.0, 19.0,
|
||
18.0, 17.0, 16.0, 15.0, 14.0, 13.0, 12.0, 10.0, 8.0, 7.0, 6.0, 6.0]
|
||
|
||
# 系统参数 - 设置储能容量上限为10 MWh
|
||
params = SystemParameters(
|
||
max_curtailment_wind=0.1,
|
||
max_curtailment_solar=0.05,
|
||
max_grid_ratio=0.15,
|
||
storage_efficiency=0.9,
|
||
discharge_rate=1.0,
|
||
charge_rate=1.0,
|
||
max_storage_capacity=10.0 # 限制储能容量上限为10 MWh
|
||
)
|
||
|
||
result = optimize_storage_capacity(solar_output, wind_output, thermal_output, load_demand, params)
|
||
|
||
print(f"所需储能容量: {result['required_storage_capacity']:.2f} MWh")
|
||
print(f"储能容量上限: {result['max_storage_limit']:.2f} MWh")
|
||
print(f"是否达到容量上限: {'是' if result['capacity_limit_reached'] else '否'}")
|
||
print(f"实际弃风率: {result['total_curtailment_wind_ratio']:.3f} (约束: {params.max_curtailment_wind})")
|
||
print(f"实际弃光率: {result['total_curtailment_solar_ratio']:.3f} (约束: {params.max_curtailment_solar})")
|
||
print(f"实际上网电量比例: {result['total_grid_feed_in_ratio']:.3f} (约束: {params.max_grid_ratio})")
|
||
print(f"能量平衡校验: {'通过' if result['energy_balance_check'] else '未通过'}")
|
||
|
||
return {
|
||
'result': result,
|
||
'solar_output': solar_output,
|
||
'wind_output': wind_output,
|
||
'thermal_output': thermal_output,
|
||
'load_demand': load_demand
|
||
}
|
||
|
||
|
||
def compare_scenarios():
|
||
"""比较不同场景的结果"""
|
||
print("\n=== 场景比较 ===")
|
||
|
||
# 运行六个场景
|
||
data1 = example_1_basic_scenario()
|
||
data2 = example_2_high_renewable_scenario()
|
||
data3 = example_3_winter_scenario()
|
||
data4 = example_4_capacity_limited_scenario()
|
||
data5 = example_5_high_load_grid_purchase_scenario()
|
||
data6 = example_6_grid_ratio_limited_scenario()
|
||
|
||
# 比较结果
|
||
scenarios = ['基础场景', '高可再生能源场景', '冬季场景', '容量限制场景', '高负荷购电场景', '上网电量比例限制场景']
|
||
storage_capacities = [
|
||
data1['result']['required_storage_capacity'],
|
||
data2['result']['required_storage_capacity'],
|
||
data3['result']['required_storage_capacity'],
|
||
data4['result']['required_storage_capacity'],
|
||
data5['result']['required_storage_capacity'],
|
||
data6['result']['required_storage_capacity']
|
||
]
|
||
curtailment_wind = [
|
||
data1['result']['total_curtailment_wind_ratio'],
|
||
data2['result']['total_curtailment_wind_ratio'],
|
||
data3['result']['total_curtailment_wind_ratio'],
|
||
data4['result']['total_curtailment_wind_ratio'],
|
||
data5['result']['total_curtailment_wind_ratio'],
|
||
data6['result']['total_curtailment_wind_ratio']
|
||
]
|
||
curtailment_solar = [
|
||
data1['result']['total_curtailment_solar_ratio'],
|
||
data2['result']['total_curtailment_solar_ratio'],
|
||
data3['result']['total_curtailment_solar_ratio'],
|
||
data4['result']['total_curtailment_solar_ratio'],
|
||
data5['result']['total_curtailment_solar_ratio'],
|
||
data6['result']['total_curtailment_solar_ratio']
|
||
]
|
||
grid_feed_in = [
|
||
data1['result']['total_grid_feed_in_ratio'],
|
||
data2['result']['total_grid_feed_in_ratio'],
|
||
data3['result']['total_grid_feed_in_ratio'],
|
||
data4['result']['total_grid_feed_in_ratio'],
|
||
data5['result']['total_grid_feed_in_ratio'],
|
||
data6['result']['total_grid_feed_in_ratio']
|
||
]
|
||
capacity_limit = [
|
||
'无',
|
||
'无',
|
||
'无',
|
||
f"{data4['result']['max_storage_limit']:.1f}MWh",
|
||
f"{data5['result']['max_storage_limit']:.1f}MWh",
|
||
f"{data6['result']['max_storage_limit']:.1f}MWh"
|
||
]
|
||
|
||
print("\n场景比较结果:")
|
||
print(f"{'场景':<15} {'储能容量(MWh)':<12} {'容量限制':<10} {'弃风率':<8} {'弃光率':<8} {'上网比例':<8}")
|
||
print("-" * 80)
|
||
for i, scenario in enumerate(scenarios):
|
||
grid_text = f"{grid_feed_in[i]:.3f}" if grid_feed_in[i] >= 0 else f"{abs(grid_feed_in[i]):.3f}↓"
|
||
limit_reached = "*" if (data4['result']['capacity_limit_reached'] and i == 3) or (data5['result']['capacity_limit_reached'] and i == 4) or (data6['result']['max_storage_limit'] and i == 5) else ""
|
||
print(f"{scenario:<15} {storage_capacities[i]:<12.2f} {capacity_limit[i]:<10} {curtailment_wind[i]:<8.3f} "
|
||
f"{curtailment_solar[i]:<8.3f} {grid_text:<8} {limit_reached}")
|
||
|
||
return data1, data2, data3, data4, data5, data6
|
||
|
||
|
||
if __name__ == "__main__":
|
||
print("多能互补系统储能容量优化计算程序示例")
|
||
print("=" * 50)
|
||
|
||
# 运行示例
|
||
data1, data2, data3, data4, data5, data6 = compare_scenarios()
|
||
|
||
# 绘制图表(如果matplotlib可用)
|
||
try:
|
||
plot_results(data1['result'], "基础场景储能运行情况",
|
||
data1['solar_output'], data1['wind_output'],
|
||
data1['thermal_output'], data1['load_demand'])
|
||
plot_results(data2['result'], "高可再生能源场景储能运行情况",
|
||
data2['solar_output'], data2['wind_output'],
|
||
data2['thermal_output'], data2['load_demand'])
|
||
plot_results(data3['result'], "冬季场景储能运行情况",
|
||
data3['solar_output'], data3['wind_output'],
|
||
data3['thermal_output'], data3['load_demand'])
|
||
plot_results(data4['result'], "容量限制场景储能运行情况",
|
||
data4['solar_output'], data4['wind_output'],
|
||
data4['thermal_output'], data4['load_demand'])
|
||
plot_results(data5['result'], "高负荷购电场景储能运行情况",
|
||
data5['solar_output'], data5['wind_output'],
|
||
data5['thermal_output'], data5['load_demand'])
|
||
plot_results(data6['result'], "上网电量比例限制场景储能运行情况",
|
||
data6['solar_output'], data6['wind_output'],
|
||
data6['thermal_output'], data6['load_demand'])
|
||
except ImportError:
|
||
print("\n注意: matplotlib未安装,无法绘制图表")
|
||
print("要安装matplotlib,请运行: pip install matplotlib")
|
||
|
||
print("\n示例运行完成!")
|