import numpy as np from core import * import timeit def egm(): h_g_avr_sag = 11.67 * 2 / 3 h_c_avr_sag = 14.43 * 2 / 3 h_whole = 40 # 杆塔全高 voltage_n = 3 # 工作电压分成多少份来计算 td = 20 # 雷暴日 insulator_c_len = 6.8 # 串子绝缘长度 string_c_len = 9.2 string_g_len = 0.5 gc_x = [17.9, 17, 15, 17] # 以后考虑地形角度,地面线 def ground_surface(x): return 0 gc_y = [ h_whole - string_g_len - h_g_avr_sag, # 地线对地平均高 h_whole - string_c_len - h_c_avr_sag - 2.7, # 导线对地平均高 h_whole - string_c_len - h_c_avr_sag - 20, # 导线对地平均高 h_whole - string_c_len - h_c_avr_sag - 35.7, # 导线对地平均高 ] if len(gc_y) > 2: # 双回路 phase_n = 3 # 边相导线数量 else: phase_n = 1 ######################################################### rg_type = None # 以上是需要设置的参数 avr_n_sf = 0 # 考虑电压的影响计算的跳闸率 rg_x = None rg_y = None cad = Draw() # 跳闸率 利用Q╱GDW 11452-2015 架空输电线路防雷导则的公式 Ng=0.023*Td^(1.3) 20天雷暴日地闪密度为1.13 ng = func_ng(td) n_sf_phases = np.zeros((phase_n, voltage_n)) # 计算每一相的跳闸率 if np.any(np.array(gc_y) < 0): print("导线可能掉地面了,程序退出。") return 0 for phase_conductor_foo in range(phase_n): exposed_curve_shielded = False rs_x = gc_x[phase_conductor_foo] rs_y = gc_y[phase_conductor_foo] rc_x = gc_x[phase_conductor_foo + 1] rc_y = gc_y[phase_conductor_foo + 1] if phase_n == 1: rg_type = "g" if phase_n > 1: # 多回路 if phase_conductor_foo < 2: rg_type = "c" rg_x = gc_x[phase_conductor_foo + 2] rg_y = gc_y[phase_conductor_foo + 2] else: rg_type = "g" # TODO 保护角公式可能有问题,后面改 shield_angle = ( math.atan((rc_x - rs_x) / ((rs_y - rc_y) + string_c_len)) * 180 / math.pi ) # 保护角 print(f"保护角{shield_angle:.3f}°") print(f"最低相防护标识{rg_type}") for u_bar in range(voltage_n): u_ph = ( math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732 ) # 运行相电压 print(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV") # 迭代法计算最大电流 i_max = 0 i_min = min_i(insulator_c_len, u_ph / 1.732) _min_i = i_min # 尝试的最小电流 _max_i = 200 # 尝试的最大电流 # cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2) for i_bar in np.linspace( _min_i, _max_i, int((_max_i - _min_i) / 0.1) ): # 雷电流 # print(f"尝试计算电流为{i_bar:.2f}") rs = rs_fun(i_bar) rc = rc_fun(i_bar, u_ph) rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type) ####### # cccCount += 1 # if cccCount % 30 == 0: # import core # # core.gMSP.add_circle((0, h_gav), rs) # core.gMSP.add_circle( # (dgc, h_cav), rc_fun(i_bar, -u_ph), dxfattribs={"color": 4} # ) # core.gMSP.add_circle((dgc, h_cav), rc) ####### rg_rc_circle_intersection = solve_circle_intersection( rs, rc, rs_x, rs_y, rc_x, rc_y ) i_max = i_bar if not rg_rc_circle_intersection: # if circle_intersection is [] print("保护弧和暴露弧无交点,检查设置参数。") continue circle_rc_line_or_rg_intersection = None if rg_type == "g": circle_rc_line_or_rg_intersection = solve_circle_line_intersection( rc, rg, rc_x, rc_y ) elif rg_type == "c": circle_rc_line_or_rg_intersection = solve_circle_intersection( rg, rc, rg_x, rg_y, rc_x, rc_y ) if not circle_rc_line_or_rg_intersection: # 暴露弧和捕捉弧无交点 if rg_type == "g": if rg > rc_y: i_min = i_bar print(f"捕捉弧在暴露弧之上,设置最小电流为{i_min:.2f}") else: print("暴露弧和捕捉弧无交点,检查设置参数。") continue else: print("暴露弧和捕捉弧无交点,检查设置参数。") continue min_distance_intersection = ( np.sum( ( np.array(rg_rc_circle_intersection) - np.array(circle_rc_line_or_rg_intersection) ) ** 2 ) ** 0.5 ) # 计算两圆交点和地面直线交点的最小距离 if min_distance_intersection < 0.1: break # 判断是否以完全被保护 if rg_rc_circle_intersection[1] < circle_rc_line_or_rg_intersection[1]: circle_rs_line_or_rg_intersection = None if rg_type == "g": circle_rs_line_or_rg_intersection = ( solve_circle_line_intersection(rs, rg, rs_x, rs_y) ) if rg_type == "c": circle_rs_line_or_rg_intersection = solve_circle_intersection( rs, rg, rs_x, rs_y, rg_x, rg_y ) # 判断与保护弧的交点是否在暴露弧外面 distance = ( np.sum( ( np.array(circle_rs_line_or_rg_intersection) - np.array([rc_x, rc_y]) ) ** 2 ) ** 0.5 ) if distance > rc: print("暴露弧已经完全被屏蔽") exposed_curve_shielded = True break # if phase_conductor_foo == 2: cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2) cad.draw(i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 6) cad.saveas(f"egm{phase_conductor_foo+1}.dxf") # 判断是否导线已经被完全保护 if abs(i_max - _max_i) < 1e-5: print("无法找到最大电流,可能是杆塔较高。") print(f"最大电流设置为自然界最大电流{i_max}kA") print(f"最大电流为{i_max:.2f}") print(f"最小电流为{i_min:.2f}") if exposed_curve_shielded: print("暴露弧已经完全被屏蔽,不会跳闸。") continue curt_fineness = 0.1 # 电流积分细度 if i_min > i_max or abs(i_min - i_max) < curt_fineness: print("最大电流小于最小电流,没有暴露弧。") continue # 开始积分 curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份 i_curt_samples, d_curt = np.linspace( i_min, i_max, curt_segment_n + 1, retstep=True ) bd_area_vec = np.vectorize(bd_area) cal_bd_np = ( bd_area_vec( i_curt_samples, u_ph, rc_x, rc_y, rs_x, rs_y, rg_x, rg_y, ground_surface, rg_type, ) * thunder_density(i_curt_samples) ) calculus = np.sum(cal_bd_np[:-1] + cal_bd_np[1:]) / 2 * d_curt # for i_curt in i_curt_samples[:-1]: # cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav) # cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav) # cal_thunder_density_first = thunder_density(i_curt) # cal_thunder_density_second = thunder_density(i_curt + d_curt) # calculus += ( # ( # cal_bd_first * cal_thunder_density_first # + cal_bd_second * cal_thunder_density_second # ) # / 2 # * d_curt # ) # if abs(calculus-0.05812740052770032)<1e-5: # abc=123 # pass n_sf = (2 * ng / 10 * calculus) * arc_possibility(750, insulator_c_len) avr_n_sf += n_sf / voltage_n n_sf_phases[phase_conductor_foo][u_bar] = n_sf print(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}") print(f"跳闸率是{avr_n_sf:.6f}") print(f"不同相跳闸率是{np.mean(n_sf_phases,axis=1)}") def speed(): a = 0 for bar in range(100000000): a += bar if __name__ == "__main__": run_time = timeit.timeit("egm()", globals=globals(), number=1) print(f"运行时间:{run_time:.2f}s") print("Finished.")