考虑了切线的k为负的情况
This commit is contained in:
parent
db2788f116
commit
b98d2534ab
167
main.py
167
main.py
|
|
@ -26,7 +26,7 @@ class Draw:
|
||||||
msp.add_circle((dgc, h_cav), rc, dxfattribs={"color": color})
|
msp.add_circle((dgc, h_cav), rc, dxfattribs={"color": color})
|
||||||
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
|
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
|
||||||
msp.add_line((0, h_gav), (dgc, h_cav))
|
msp.add_line((0, h_gav), (dgc, h_cav))
|
||||||
msp.add_line((0, rg), (200, rg), dxfattribs={"color": color})
|
msp.add_line((0, rg), (2000, rg), dxfattribs={"color": color})
|
||||||
# 计算圆交点
|
# 计算圆交点
|
||||||
# circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
# circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||||
# msp.add_line((0, h_gav), circle_intersection) # 地线
|
# msp.add_line((0, h_gav), circle_intersection) # 地线
|
||||||
|
|
@ -42,8 +42,8 @@ class Draw:
|
||||||
# 圆交点
|
# 圆交点
|
||||||
def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
|
def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
|
||||||
# 用牛顿法求解
|
# 用牛顿法求解
|
||||||
x = 300
|
x = rc # 初始值
|
||||||
y = 300
|
y = rc # 初始值
|
||||||
for bar in range(0, 10):
|
for bar in range(0, 10):
|
||||||
A = [[-2 * x, -2 * (y - hgav)], [-2 * (x - dgc), -2 * (y - hcav)]]
|
A = [[-2 * x, -2 * (y - hgav)], [-2 * (x - dgc), -2 * (y - hcav)]]
|
||||||
b = [
|
b = [
|
||||||
|
|
@ -79,7 +79,7 @@ def thunder_density(i): # l雷电流幅值密度函数
|
||||||
|
|
||||||
|
|
||||||
def angel_density(angle): # 入射角密度函数 angle单位是弧度
|
def angel_density(angle): # 入射角密度函数 angle单位是弧度
|
||||||
r = 0.75 * (math.cos(angle) ** 3)
|
r = 0.75 * (math.cos(angle - math.pi / 2) ** 3)
|
||||||
return r
|
return r
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -110,6 +110,8 @@ def intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度
|
||||||
rc, rg, h_cav, dgc
|
rc, rg, h_cav, dgc
|
||||||
) # 暴露圆和补雷线的交点
|
) # 暴露圆和补雷线的交点
|
||||||
np_circle_intersection = np.array(circle_intersection)
|
np_circle_intersection = np.array(circle_intersection)
|
||||||
|
if not circle_intersection:
|
||||||
|
abc = 123
|
||||||
theta2_line = np_circle_intersection - np.array([dgc, h_cav])
|
theta2_line = np_circle_intersection - np.array([dgc, h_cav])
|
||||||
theta2 = math.atan(theta2_line[1] / theta2_line[0])
|
theta2 = math.atan(theta2_line[1] / theta2_line[0])
|
||||||
np_circle_line_intersection = np.array(circle_line_intersection)
|
np_circle_line_intersection = np.array(circle_line_intersection)
|
||||||
|
|
@ -127,39 +129,83 @@ def distance_point_line(point_x, point_y, line_x, line_y, k):
|
||||||
return d
|
return d
|
||||||
|
|
||||||
|
|
||||||
def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
|
def fun_calculus_pw(theta, max_w):
|
||||||
theta1, theta2 = intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
|
w_fineness = 0.01
|
||||||
rc = rc_fun(i_curt, u_ph)
|
r_pw = 0
|
||||||
rs = rs_fun(i_curt)
|
if int(max_w / w_fineness) < 0:
|
||||||
rg = rg_fun(i_curt, h_cav)
|
abc = 123
|
||||||
|
pass
|
||||||
|
w_samples, d_w = np.linspace(0, max_w, int(max_w / w_fineness) + 1, retstep=True)
|
||||||
|
for cal_w in w_samples:
|
||||||
|
r_pw += (
|
||||||
|
(
|
||||||
|
abs(angel_density(cal_w)) * math.sin(theta - cal_w + math.pi)
|
||||||
|
+ abs(angel_density(cal_w + d_w))
|
||||||
|
* math.sin(theta - cal_w + math.pi - d_w)
|
||||||
|
)
|
||||||
|
/ 2
|
||||||
|
) * d_w
|
||||||
|
return r_pw
|
||||||
|
|
||||||
|
|
||||||
|
def cal_bd(theta, rc, rs, rg, dgc, h_cav, h_gav):
|
||||||
# 求暴露弧上一点的切线
|
# 求暴露弧上一点的切线
|
||||||
line_x = math.cos(theta1) * rc + dgc
|
line_x = math.cos(theta) * rc + dgc
|
||||||
line_y = math.sin(theta1) * rc + h_cav
|
line_y = math.sin(theta) * rc + h_cav
|
||||||
max_w = 0 # 入射角
|
max_w = theta + math.pi / 2 # 入射角
|
||||||
if theta1 < 0:
|
|
||||||
max_w = theta1 + math.pi / 2
|
|
||||||
k = math.tan(max_w)
|
k = math.tan(max_w)
|
||||||
# 求保护弧到直线的距离,判断是否相交
|
# 求保护弧到直线的距离,判断是否相交
|
||||||
d_to_rs = distance_point_line(0, h_gav, line_x, line_y, k)
|
d_to_rs = distance_point_line(0, h_gav, line_x, line_y, k)
|
||||||
if d_to_rs < rs: # 相交
|
if d_to_rs < rs: # 相交
|
||||||
# 要用过直线上一点到暴露弧的切线
|
# 要用过直线上一点到暴露弧的切线
|
||||||
new_k = tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
new_k = tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
||||||
|
if not new_k:
|
||||||
|
a = 12
|
||||||
|
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
||||||
|
if new_k >= 0:
|
||||||
max_w = math.atan(new_k) # 用于保护弧相切的角度
|
max_w = math.atan(new_k) # 用于保护弧相切的角度
|
||||||
intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
|
elif new_k < 0:
|
||||||
gMSP.add_circle((0, h_gav), rs)
|
max_w = math.atan(new_k) + math.pi
|
||||||
gMSP.add_circle((dgc, h_cav), rc)
|
if max_w < 0:
|
||||||
gMSP.add_line((dgc, h_cav), (line_x, line_y))
|
abc = 123
|
||||||
gMSP.add_line(
|
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
||||||
(-500, k * (-500 - line_x) + line_y), (500, k * (500 - line_x) + line_y)
|
# intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
|
||||||
)
|
# gMSP.add_circle((0, h_gav), rs)
|
||||||
gMSP.add_line((0, rg), (1000, rg))
|
# gMSP.add_circle((dgc, h_cav), rc)
|
||||||
gCAD.save()
|
# gMSP.add_line((dgc, h_cav), (line_x, line_y))
|
||||||
pass
|
# gMSP.add_line(
|
||||||
|
# (-500, k * (-500 - line_x) + line_y), (500, k * (500 - line_x) + line_y)
|
||||||
|
# )
|
||||||
|
# gMSP.add_line((0, rg), (1000, rg))
|
||||||
|
# gCAD.save()
|
||||||
|
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
||||||
|
|
||||||
# k=tangent_line_k(point_x, point_y, dgc, h_cav,rc)
|
pass
|
||||||
# 暂时不考虑雷电入射角的影响
|
r = rc / math.cos(theta) * fun_calculus_pw(theta, max_w)
|
||||||
r = (math.cos(theta1) - math.cos(theta2)) * rc
|
|
||||||
return r
|
return r
|
||||||
|
|
||||||
|
|
||||||
|
def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
|
||||||
|
theta1, theta2 = intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
|
||||||
|
theta_fineness = 0.01
|
||||||
|
rc = rc_fun(i_curt, u_ph)
|
||||||
|
rs = rs_fun(i_curt)
|
||||||
|
rg = rg_fun(i_curt, h_cav)
|
||||||
|
r_bd = 0
|
||||||
|
theta_sample, d_theta = np.linspace(
|
||||||
|
theta1, theta2, int((theta2 - theta1) / theta_fineness) + 1, retstep=True
|
||||||
|
)
|
||||||
|
for cal_theta in theta_sample[:-1]:
|
||||||
|
r_bd += (
|
||||||
|
(
|
||||||
|
cal_bd(cal_theta, rc, rs, rg, dgc, h_cav, h_gav)
|
||||||
|
+ cal_bd(cal_theta + d_theta, rc, rs, rg, dgc, h_cav, h_gav)
|
||||||
|
)
|
||||||
|
/ 2
|
||||||
|
* d_theta
|
||||||
|
)
|
||||||
|
return r_bd
|
||||||
|
|
||||||
# r1=rc*(-math.cos(thyta2)+math.cos(thyta1))
|
# r1=rc*(-math.cos(thyta2)+math.cos(thyta1))
|
||||||
# 入射角密度函数积分
|
# 入射角密度函数积分
|
||||||
# arrival_angle_fineness=0.0001
|
# arrival_angle_fineness=0.0001
|
||||||
|
|
@ -170,15 +216,20 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
||||||
# 直线方程为 y-y0=k(x-x0),x0和y0为经过直线的任意一点
|
# 直线方程为 y-y0=k(x-x0),x0和y0为经过直线的任意一点
|
||||||
# 牛顿法求解k
|
# 牛顿法求解k
|
||||||
# f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心
|
# f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心
|
||||||
# TODO:应该找到两个角度值后再比较
|
# TODO:需要检验k值不存在的情况
|
||||||
k = init_k
|
k_candidate = [-100, 100]
|
||||||
|
for ind, k_cdi in enumerate(list(k_candidate)):
|
||||||
|
k = k_candidate[ind]
|
||||||
|
k_candidate[ind] = None
|
||||||
for bar in range(0, 30):
|
for bar in range(0, 30):
|
||||||
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (radius ** 2) * (
|
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (
|
||||||
k ** 2 + 1
|
radius ** 2
|
||||||
)
|
) * (k ** 2 + 1)
|
||||||
|
|
||||||
d_fk = (
|
d_fk = (
|
||||||
2 * (k * center_x - center_y - k * line_x + line_y) * (center_x - line_x)
|
2
|
||||||
|
* (k * center_x - center_y - k * line_x + line_y)
|
||||||
|
* (center_x - line_x)
|
||||||
- 2 * (radius ** 2) * k
|
- 2 * (radius ** 2) * k
|
||||||
)
|
)
|
||||||
d_k = -fk / d_fk
|
d_k = -fk / d_fk
|
||||||
|
|
@ -186,34 +237,46 @@ def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
||||||
if abs(d_k) < 1e-5:
|
if abs(d_k) < 1e-5:
|
||||||
dd = distance_point_line(center_x, center_y, line_x, line_y, k)
|
dd = distance_point_line(center_x, center_y, line_x, line_y, k)
|
||||||
if abs(dd - radius) < 1e-5:
|
if abs(dd - radius) < 1e-5:
|
||||||
return k
|
k_candidate[ind] = k
|
||||||
return None
|
break
|
||||||
|
# 把k转化成相应的角度,从x开始,逆时针为正
|
||||||
|
k_angle = []
|
||||||
|
for kk in k_candidate:
|
||||||
|
if kk >= 0:
|
||||||
|
k_angle.append(math.atan(kk))
|
||||||
|
if kk < 0:
|
||||||
|
k_angle.append(math.pi + math.atan(kk))
|
||||||
|
# 返回相对x轴最大的角度k
|
||||||
|
return np.array(k_candidate)[np.max(k_angle) == k_angle].tolist()[-1]
|
||||||
|
|
||||||
|
|
||||||
def egm():
|
def egm():
|
||||||
u_ph = 750 / 1.732 # 运行相电压
|
for u_bar in range(1):
|
||||||
h_cav = 160 # 导线对地平均高
|
u_ph = math.sqrt(2) * 750 * math.cos(2 * math.pi / 6 * 0) / 1.732 # 运行相电压
|
||||||
|
h_cav = 90 # 导线对地平均高
|
||||||
h_gav = h_cav + 9.5 + 2.7
|
h_gav = h_cav + 9.5 + 2.7
|
||||||
dgc = -2 # 导地线水平距离
|
dgc = 2.9 # 导地线水平距离
|
||||||
# 迭代法计算最大电流
|
# 迭代法计算最大电流
|
||||||
i_max = 0
|
i_max = 0
|
||||||
_min_i = 20 # 尝试的最小电流
|
_min_i = 20 # 尝试的最小电流
|
||||||
_max_i = 80 # 尝试的最大电流
|
_max_i = 300 # 尝试的最大电流
|
||||||
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.01)): # 雷电流
|
for i_bar in np.linspace(_min_i, _max_i, int((_max_i - _min_i) / 0.1)): # 雷电流
|
||||||
print(f"尝试计算电流为{i_bar:.2f}")
|
print(f"尝试计算电流为{i_bar:.2f}")
|
||||||
rs = rs_fun(i_bar)
|
rs = rs_fun(i_bar)
|
||||||
if not np.isreal(rs):
|
# if not np.isreal(rs):
|
||||||
continue
|
# continue
|
||||||
rc = rc_fun(i_bar, u_ph)
|
rc = rc_fun(i_bar, u_ph)
|
||||||
if not np.isreal(rc):
|
# if not np.isreal(rc):
|
||||||
continue
|
# continue
|
||||||
rg = rg_fun(i_bar, h_cav)
|
rg = rg_fun(i_bar, h_cav)
|
||||||
if not np.isreal(rg):
|
# if not np.isreal(rg):
|
||||||
continue
|
# continue
|
||||||
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
||||||
if not circle_intersection: # if circle_intersection is []
|
if not circle_intersection: # if circle_intersection is []
|
||||||
continue
|
continue
|
||||||
circle_line_intersection = solve_circle_line_intersection(rc, rg, h_cav, dgc)
|
circle_line_intersection = solve_circle_line_intersection(
|
||||||
|
rc, rg, h_cav, dgc
|
||||||
|
)
|
||||||
min_distance_intersection = (
|
min_distance_intersection = (
|
||||||
np.sum(
|
np.sum(
|
||||||
(np.array(circle_intersection) - np.array(circle_line_intersection))
|
(np.array(circle_intersection) - np.array(circle_line_intersection))
|
||||||
|
|
@ -224,7 +287,7 @@ def egm():
|
||||||
i_max = i_bar
|
i_max = i_bar
|
||||||
if min_distance_intersection < 0.1:
|
if min_distance_intersection < 0.1:
|
||||||
break
|
break
|
||||||
i_min = min_i(6.78, 750 / 1.732)
|
i_min = min_i(6.78, u_ph / 1.732)
|
||||||
cad = Draw()
|
cad = Draw()
|
||||||
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
|
cad.draw(i_min, u_ph, h_gav, h_cav, dgc, 2)
|
||||||
cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6)
|
cad.draw(i_max, u_ph, h_gav, h_cav, dgc, 6)
|
||||||
|
|
@ -235,14 +298,16 @@ def egm():
|
||||||
print(f"最大电流设置为自然界最大电流{i_max}kA")
|
print(f"最大电流设置为自然界最大电流{i_max}kA")
|
||||||
print(f"最大电流为{i_max:.2f}")
|
print(f"最大电流为{i_max:.2f}")
|
||||||
print(f"最小电流为{i_min:.2f}")
|
print(f"最小电流为{i_min:.2f}")
|
||||||
if i_min > i_max:
|
curt_fineness = 0.1 # 电流积分细度
|
||||||
|
if i_min > i_max or abs(i_min - i_max) < curt_fineness:
|
||||||
print("最大电流小于最小电流,没有暴露弧,程序结束。")
|
print("最大电流小于最小电流,没有暴露弧,程序结束。")
|
||||||
return
|
return
|
||||||
# 开始积分
|
# 开始积分
|
||||||
curt_fineness = 0.1 # 电流积分细度
|
|
||||||
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
|
||||||
calculus = 0
|
calculus = 0
|
||||||
i_curt_samples, d_curt = np.linspace(i_min, i_max, curt_segment_n + 1, retstep=True)
|
i_curt_samples, d_curt = np.linspace(
|
||||||
|
i_min, i_max, curt_segment_n + 1, retstep=True
|
||||||
|
)
|
||||||
for i_curt in i_curt_samples:
|
for i_curt in i_curt_samples:
|
||||||
cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
cal_bd_first = bd_area(i_curt, u_ph, dgc, h_gav, h_cav)
|
||||||
cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
|
cal_bd_second = bd_area(i_curt + d_curt, u_ph, dgc, h_gav, h_cav)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue