准备进行jit改造

This commit is contained in:
facat 2021-09-26 21:25:08 +08:00
parent 476c8de80f
commit 2251966b7e
3 changed files with 104 additions and 29 deletions

View File

@ -58,7 +58,7 @@ class Draw:
doc = self._doc doc = self._doc
doc.saveas("egm.dxf") doc.saveas("egm.dxf")
def saveas(self, file_name): def save_as(self, file_name):
doc = self._doc doc = self._doc
doc.saveas(file_name) doc.saveas(file_name)

59
main.py
View File

@ -1,5 +1,6 @@
import numpy as np import sys
from loguru import logger
from core import * from core import *
import timeit import timeit
@ -7,13 +8,13 @@ import timeit
def egm(): def egm():
h_g_avr_sag = 11.67 * 2 / 3 h_g_avr_sag = 11.67 * 2 / 3
h_c_avr_sag = 14.43 * 2 / 3 h_c_avr_sag = 14.43 * 2 / 3
h_whole = 40 # 杆塔全高 h_whole = 130 # 杆塔全高
voltage_n = 3 # 工作电压分成多少份来计算 voltage_n = 3 # 工作电压分成多少份来计算
td = 20 # 雷暴日 td = 20 # 雷暴日
insulator_c_len = 6.8 # 串子绝缘长度 insulator_c_len = 6.6 # 串子绝缘长度
string_c_len = 9.2 string_c_len = 9.2
string_g_len = 0.5 string_g_len = 0.5
gc_x = [17.9, 17, 15, 17] gc_x = [17.9, 17, 15, 17.0]
# 以后考虑地形角度,地面线 # 以后考虑地形角度,地面线
def ground_surface(x): def ground_surface(x):
@ -21,9 +22,9 @@ def egm():
gc_y = [ gc_y = [
h_whole - string_g_len - h_g_avr_sag, # 地线对地平均高 h_whole - string_g_len - h_g_avr_sag, # 地线对地平均高
h_whole - string_c_len - h_c_avr_sag - 2.7, # 导线对地平均高 # h_whole - string_c_len - h_c_avr_sag - 2.7, # 导线对地平均高
h_whole - string_c_len - h_c_avr_sag - 20, # 导线对地平均高 h_whole - string_c_len - h_c_avr_sag - 20, # 导线对地平均高
h_whole - string_c_len - h_c_avr_sag - 35.7, # 导线对地平均高 # h_whole - string_c_len - h_c_avr_sag - 35.7, # 导线对地平均高
] ]
if len(gc_y) > 2: # 双回路 if len(gc_y) > 2: # 双回路
phase_n = 3 # 边相导线数量 phase_n = 3 # 边相导线数量
@ -40,7 +41,7 @@ def egm():
ng = func_ng(td) ng = func_ng(td)
n_sf_phases = np.zeros((phase_n, voltage_n)) # 计算每一相的跳闸率 n_sf_phases = np.zeros((phase_n, voltage_n)) # 计算每一相的跳闸率
if np.any(np.array(gc_y) < 0): if np.any(np.array(gc_y) < 0):
print("导线可能掉地面了,程序退出。") logger.info("导线可能掉地面了,程序退出。")
return 0 return 0
for phase_conductor_foo in range(phase_n): for phase_conductor_foo in range(phase_n):
exposed_curve_shielded = False exposed_curve_shielded = False
@ -61,13 +62,13 @@ def egm():
shield_angle = ( shield_angle = (
math.atan((rc_x - rs_x) / ((rs_y - rc_y) + string_c_len)) * 180 / math.pi math.atan((rc_x - rs_x) / ((rs_y - rc_y) + string_c_len)) * 180 / math.pi
) # 保护角 ) # 保护角
print(f"保护角{shield_angle:.3f}°") logger.info(f"保护角{shield_angle:.3f}°")
print(f"最低相防护标识{rg_type}") logger.debug(f"最低相防护标识{rg_type}")
for u_bar in range(voltage_n): for u_bar in range(voltage_n):
u_ph = ( u_ph = (
math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732 -math.sqrt(2) * 750 * math.cos(2 * math.pi / voltage_n * u_bar) / 1.732
) # 运行相电压 ) # 运行相电压
print(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV") logger.info(f"计算第{phase_conductor_foo + 1}相,电压为{u_ph:.2f}kV")
# 迭代法计算最大电流 # 迭代法计算最大电流
i_max = 0 i_max = 0
i_min = min_i(insulator_c_len, u_ph / 1.732) i_min = min_i(insulator_c_len, u_ph / 1.732)
@ -77,7 +78,7 @@ def egm():
for i_bar in np.linspace( for i_bar in np.linspace(
_min_i, _max_i, int((_max_i - _min_i) / 0.1) _min_i, _max_i, int((_max_i - _min_i) / 0.1)
): # 雷电流 ): # 雷电流
# print(f"尝试计算电流为{i_bar:.2f}") # logger.info(f"尝试计算电流为{i_bar:.2f}")
rs = rs_fun(i_bar) rs = rs_fun(i_bar)
rc = rc_fun(i_bar, u_ph) rc = rc_fun(i_bar, u_ph)
rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type) rg = rg_fun(i_bar, rc_y, u_ph, typ=rg_type)
@ -97,7 +98,7 @@ def egm():
) )
i_max = i_bar i_max = i_bar
if not rg_rc_circle_intersection: # if circle_intersection is [] if not rg_rc_circle_intersection: # if circle_intersection is []
print("保护弧和暴露弧无交点,检查设置参数。") logger.debug("保护弧和暴露弧无交点,检查设置参数。")
continue continue
circle_rc_line_or_rg_intersection = None circle_rc_line_or_rg_intersection = None
if rg_type == "g": if rg_type == "g":
@ -113,12 +114,12 @@ def egm():
if rg_type == "g": if rg_type == "g":
if rg > rc_y: if rg > rc_y:
i_min = i_bar i_min = i_bar
print(f"捕捉弧在暴露弧之上,设置最小电流为{i_min:.2f}") logger.info(f"捕捉弧在暴露弧之上,设置最小电流为{i_min:.2f}")
else: else:
print("暴露弧和捕捉弧无交点,检查设置参数。") logger.info("暴露弧和捕捉弧无交点,检查设置参数。")
continue continue
else: else:
print("暴露弧和捕捉弧无交点,检查设置参数。") logger.info("暴露弧和捕捉弧无交点,检查设置参数。")
continue continue
min_distance_intersection = ( min_distance_intersection = (
np.sum( np.sum(
@ -155,25 +156,25 @@ def egm():
** 0.5 ** 0.5
) )
if distance > rc: if distance > rc:
print("暴露弧已经完全被屏蔽") logger.info("暴露弧已经完全被屏蔽")
exposed_curve_shielded = True exposed_curve_shielded = True
break break
# if phase_conductor_foo == 2: # if phase_conductor_foo == 2:
cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2) cad.draw(i_min, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 2)
cad.draw(i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 6) cad.draw(i_max, u_ph, rs_x, rs_y, rc_x, rc_y, rg_x, rg_y, rg_type, 6)
cad.saveas(f"egm{phase_conductor_foo+1}.dxf") cad.save_as(f"egm{phase_conductor_foo + 1}.dxf")
# 判断是否导线已经被完全保护 # 判断是否导线已经被完全保护
if abs(i_max - _max_i) < 1e-5: if abs(i_max - _max_i) < 1e-5:
print("无法找到最大电流,可能是杆塔较高。") logger.info("无法找到最大电流,可能是杆塔较高。")
print(f"最大电流设置为自然界最大电流{i_max}kA") logger.info(f"最大电流设置为自然界最大电流{i_max}kA")
print(f"最大电流为{i_max:.2f}") logger.info(f"最大电流为{i_max:.2f}")
print(f"最小电流为{i_min:.2f}") logger.info(f"最小电流为{i_min:.2f}")
if exposed_curve_shielded: if exposed_curve_shielded:
print("暴露弧已经完全被屏蔽,不会跳闸。") logger.info("暴露弧已经完全被屏蔽,不会跳闸。")
continue continue
curt_fineness = 0.1 # 电流积分细度 curt_fineness = 0.1 # 电流积分细度
if i_min > i_max or abs(i_min - i_max) < curt_fineness: if i_min > i_max or abs(i_min - i_max) < curt_fineness:
print("最大电流小于最小电流,没有暴露弧。") logger.info("最大电流小于最小电流,没有暴露弧。")
continue continue
# 开始积分 # 开始积分
curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份 curt_segment_n = int((i_max - i_min) / curt_fineness) # 分成多少份
@ -213,12 +214,12 @@ def egm():
# if abs(calculus-0.05812740052770032)<1e-5: # if abs(calculus-0.05812740052770032)<1e-5:
# abc=123 # abc=123
# pass # pass
n_sf = (2 * ng / 10 * calculus) * arc_possibility(750, insulator_c_len) n_sf = 2 * ng / 10 * calculus * arc_possibility(750, insulator_c_len)
avr_n_sf += n_sf / voltage_n avr_n_sf += n_sf / voltage_n
n_sf_phases[phase_conductor_foo][u_bar] = n_sf n_sf_phases[phase_conductor_foo][u_bar] = n_sf
print(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}") logger.info(f"工作电压为{u_ph:.2f}kV时,跳闸率是{n_sf:.6}")
print(f"跳闸率是{avr_n_sf:.6f}") logger.info(f"跳闸率是{avr_n_sf:.6f}")
print(f"不同相跳闸率是{np.mean(n_sf_phases,axis=1)}") logger.info(f"不同相跳闸率是{np.array2string(np.mean(n_sf_phases,axis=1),precision=6)}")
def speed(): def speed():
@ -228,6 +229,8 @@ def speed():
if __name__ == "__main__": if __name__ == "__main__":
logger.remove()
logger.add(sys.stderr, level="DEBUG")
run_time = timeit.timeit("egm()", globals=globals(), number=1) run_time = timeit.timeit("egm()", globals=globals(), number=1)
print(f"运行时间:{run_time:.2f}s") print(f"运行时间:{run_time:.2f}s")
print("Finished.") print("Finished.")

72
plot_data.py Normal file
View File

@ -0,0 +1,72 @@
import numpy as np
category_names_7欧电阻_随塔高变化 = ["100", "110", "120", "130", "140", "150"]
# 第1列反击 第2列绕击
data_7欧电阻_随塔高变化 = np.array(
[
[0.000002, 0.019094],
[0.000003, 0.043287],
[0.000006, 0.073033],
[0.000010, 0.103132],
[0.000019, 0.130923],
[0.000032, 0.155414],
]
)
category_names_15欧电阻_随塔高变化 = ["100", "110", "120", "130", "140", "150"]
data_15欧电阻_随塔高变化 = np.array(
[
[0.000039, 0.019094],
[0.000064, 0.043287],
[0.000098, 0.073033],
[0.000170, 0.103132],
[0.000287, 0.130923],
[0.000440, 0.155414],
]
)
category_names_130m塔高_不同接地电阻 = ["7", "10", "15", "20", "25", "30"]
data_130m塔高_不同接地电阻 = np.array(
[
[0.000010, 0.103132],
[0.000101, 0.103132],
[0.000171, 0.103132],
[0.000333, 0.103132],
[0.000563, 0.103132],
[0.000950, 0.103132],
]
)
category_names_130m塔高_不同地线保护角 = ["-1", "-3", "-6"]
data_130m塔高_不同地线保护角 = np.array(
[
[0.000170, 0.103132],
[0.000168, 0.079659],
[0.000167, 0.055598],
]
)
category_names_66m串长_不同塔高 = ['100', '120', '140']
data_66m串长_不同塔高 = np.array(
[
[0.000053 , 0.023285],
[0.000139 , 0.083229],
[0.000470 , 0.145586],
]
)
category_names_68m串长_不同塔高 = [100, 120, 140]
data_68m串长_不同塔高 = np.array(
[
[0.000039 , 0.019094],
[0.000098 , 0.073033],
[0.000287 , 0.130923],
]
)