egm/core.py

280 lines
9.4 KiB
Python
Raw Normal View History

2021-09-20 20:51:09 +08:00
import math
import ezdxf
import numpy as np
gCAD = None
gMSP = None
gCount = 1
class Draw:
def __init__(self):
self._doc = ezdxf.new(dxfversion="R2010")
self._doc.layers.add("EGM", color=2)
global gCAD
gCAD = self
def draw(self, i_curt, u_ph, h_gav, h_cav, dgc, color):
doc = self._doc
msp = doc.modelspace()
global gMSP
gMSP = msp
rs = rs_fun(i_curt)
rc = rc_fun(i_curt, u_ph)
rg = rg_fun(i_curt, h_cav)
msp.add_circle((0, h_gav), rs, dxfattribs={"color": color})
msp.add_line((0, 0), (0, h_gav)) # 地线
msp.add_circle((dgc, h_cav), rc, dxfattribs={"color": color})
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
msp.add_line((0, h_gav), (dgc, h_cav))
msp.add_line((0, rg), (2000, rg), dxfattribs={"color": color})
# 计算圆交点
# circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
# msp.add_line((0, h_gav), circle_intersection) # 地线
# msp.add_line((dgc, h_cav), circle_intersection) # 导线
# circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
# msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
def save(self):
doc = self._doc
doc.saveas("egm.dxf")
# 圆交点
def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
# 用牛顿法求解
x = rc # 初始值
y = rc # 初始值
for bar in range(0, 10):
A = [[-2 * x, -2 * (y - hgav)], [-2 * (x - dgc), -2 * (y - hcav)]]
b = [
x ** 2 + (y - hgav) ** 2 - rs ** 2,
(x - dgc) ** 2 + (y - hcav) ** 2 - rc ** 2,
]
X_set = np.linalg.solve(A, b)
x += X_set[0]
y += X_set[1]
if np.all(np.abs(X_set) < 1e-5):
return [x, y]
return []
# 圆与地面线交点
def solve_circle_line_intersection(radius, rg, center_x, center_y):
distance = distance_point_line(center_x, center_y, 0, rg, 0) # 捕雷线到暴露圆中点的距离
if distance > radius:
return []
else:
r = (radius ** 2 - (rg - center_y) ** 2) ** 0.5 + center_x
return [r, rg]
def min_i(string_len, u_ph):
u_50 = 530 * string_len + 35
z_0 = 300 # 雷电波阻抗
z_c = 251 # 导线波阻抗
r = (u_50 + 2 * z_0 / (2 * z_0 + z_c) * u_ph) * (2 * z_0 + z_c) / (z_0 * z_c)
return r
def thunder_density(i): # l雷电流幅值密度函数
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44)
return r
def angel_density(angle): # 入射角密度函数 angle单位是弧度
2021-09-21 01:35:42 +08:00
r = 0.75 * (np.cos(angle - math.pi / 2) ** 3)
2021-09-20 20:51:09 +08:00
return r
def rs_fun(i):
r = 10 * (i ** 0.65)
return r
def rc_fun(i, u_ph):
r = 1.63 * ((5.015 * (i ** 0.578) - 0.001 * u_ph) ** 1.125)
# r=14.7*(i**0.42)
return r
def rg_fun(i_curt, h_cav):
if h_cav < 40:
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) * (i_curt ** 0.65)
else:
rg = 5.5 * (i_curt ** 0.65)
return rg
def intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度
rs = rs_fun(i_curt)
rc = rc_fun(i_curt, u_ph)
rg = rg_fun(i_curt, h_cav)
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) # 两圆的交点
circle_line_intersection = solve_circle_line_intersection(
rc, rg, dgc, h_cav
) # 暴露圆和补雷线的交点
np_circle_intersection = np.array(circle_intersection)
2021-09-21 00:36:09 +08:00
# TODO to be removed
2021-09-20 20:51:09 +08:00
if not circle_intersection:
abc = 123
theta2_line = np_circle_intersection - np.array([dgc, h_cav])
theta2 = math.atan(theta2_line[1] / theta2_line[0])
np_circle_line_intersection = np.array(circle_line_intersection)
theta1_line = np_circle_line_intersection - np.array([dgc, h_cav])
theta1 = math.atan(theta1_line[1] / theta1_line[0])
return np.array([theta1, theta2])
2021-09-21 01:35:42 +08:00
def distance_point_line(point_x, point_y, line_x, line_y, k) -> float:
2021-09-20 20:51:09 +08:00
d = abs(k * point_x - point_y - k * line_x + line_y) / ((k ** 2 + 1) ** 0.5)
return d
2021-09-21 00:36:09 +08:00
def func_calculus_pw(theta, max_w):
2021-09-20 20:51:09 +08:00
w_fineness = 0.01
r_pw = 0
2021-09-21 00:36:09 +08:00
# TODO to be removed
2021-09-20 20:51:09 +08:00
if int(max_w / w_fineness) < 0:
abc = 123
pass
2021-09-21 00:36:09 +08:00
w_samples, d_w = np.linspace(0, max_w, int(max_w / w_fineness), retstep=True)
2021-09-21 01:35:42 +08:00
cal_w_np = abs(angel_density(w_samples)) * np.sin(theta - (w_samples - math.pi / 2))
r_pw = np.sum((cal_w_np[:-1] + cal_w_np[1:])) / 2 * d_w
2021-09-20 20:51:09 +08:00
return r_pw
def calculus_bd(theta, rc, rs, rg, dgc, h_cav, h_gav): # 对θ进行积分
max_w = 0
2021-09-20 20:51:09 +08:00
# 求暴露弧上一点的切线
line_x = math.cos(theta) * rc + dgc
line_y = math.sin(theta) * rc + h_cav
k = math.tan(theta + math.pi / 2) # 入射角
# 求保护弧到直线的距离,判断是否相交
d_to_rs = distance_point_line(0, h_gav, line_x, line_y, k)
if d_to_rs < rs: # 相交
# 要用过直线上一点到暴露弧的切线
new_k = tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
2021-09-21 00:36:09 +08:00
# TODO to be removed
2021-09-20 20:51:09 +08:00
if not new_k:
a = 12
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
if new_k >= 0:
max_w = math.atan(new_k) # 用于保护弧相切的角度
elif new_k < 0:
max_w = math.atan(new_k) + math.pi
2021-09-21 00:36:09 +08:00
# TODO to be removed
2021-09-20 20:51:09 +08:00
if max_w < 0:
abc = 123
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
2021-09-21 00:36:09 +08:00
# TODO to be removed
2021-09-21 01:35:42 +08:00
# global gCount
# gCount = gCount+1
# if gCount % 100 == 0:
# gMSP.add_circle((0, h_gav), rs)
# gMSP.add_circle((dgc, h_cav), rc)
# gMSP.add_line((dgc, h_cav), (line_x, line_y))
# gMSP.add_line(
# (-500, new_k * (-500 - line_x) + line_y),
# (500, new_k * (500 - line_x) + line_y),
# )
# gCAD.save()
# pass
2021-09-20 20:51:09 +08:00
else:
max_w = theta + math.pi / 2 # 入射角
2021-09-21 00:36:09 +08:00
# TODO to be removed
2021-09-20 20:51:09 +08:00
if gCount % 200 == 0:
# # intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
# gMSP.add_circle((0, h_gav), rs)
# gMSP.add_circle((dgc, h_cav), rc)
# gMSP.add_line((dgc, h_cav), (line_x, line_y))
# gMSP.add_line(
# (-500, k * (-500 - line_x) + line_y),
# (500, k * (500 - line_x) + line_y),
# )
# gCAD.save()
pass
2021-09-21 00:36:09 +08:00
r = rc / math.cos(theta) * func_calculus_pw(theta, max_w)
2021-09-20 20:51:09 +08:00
return r
def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
theta1, theta2 = intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph) # θ角度
theta_fineness = 0.01
rc = rc_fun(i_curt, u_ph)
rs = rs_fun(i_curt)
rg = rg_fun(i_curt, h_cav)
r_bd = 0
theta_sample, d_theta = np.linspace(
2021-09-21 00:36:09 +08:00
theta1, theta2, int((theta2 - theta1) / theta_fineness), retstep=True
2021-09-20 20:51:09 +08:00
)
2021-09-21 01:35:42 +08:00
if len(theta_sample) < 2:
return 0
vec_calculus_bd = np.vectorize(calculus_bd)
calculus_bd_np = vec_calculus_bd(theta_sample, rc, rs, rg, dgc, h_cav, h_gav)
r_bd = np.sum(calculus_bd_np[:-1] + calculus_bd_np[1:]) / 2 * d_theta
# for calculus_theta in theta_sample[:-1]:
# r_bd += (
# (
# calculus_bd(calculus_theta, rc, rs, rg, dgc, h_cav, h_gav)
# + calculus_bd(calculus_theta + d_theta, rc, rs, rg, dgc, h_cav, h_gav)
# )
# / 2
# * d_theta
# )
2021-09-20 20:51:09 +08:00
return r_bd
def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
# 直线方程为 y-y0=k(x-x0)x0和y0为经过直线的任意一点
# 牛顿法求解k
# f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心
k_candidate = [-100, 100]
if abs(center_y - line_y) < 1 and abs(line_x - center_x - radius) < 1:
# k不存在
k_candidate = [99999999, 99999999]
else:
for ind, k_cdi in enumerate(list(k_candidate)):
k = k_candidate[ind]
k_candidate[ind] = None
for bar in range(0, 30):
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (
radius ** 2
) * (k ** 2 + 1)
d_fk = (
2
* (k * center_x - center_y - k * line_x + line_y)
* (center_x - line_x)
- 2 * (radius ** 2) * k
)
if abs(d_fk) < 1e-5 and abs(line_x - center_x - radius) < 1e-5:
# k不存在角度为90°k取一个很大的正数
k_candidate[ind] = 99999999999999
break
d_k = -fk / d_fk
k += d_k
if abs(d_k) < 1e-3:
dd = distance_point_line(center_x, center_y, line_x, line_y, k)
if abs(dd - radius) < 1:
k_candidate[ind] = k
break
# 把k转化成相应的角度从x开始逆时针为正
k_angle = []
for kk in k_candidate:
if kk is None:
abc = 123
# tangent_line_k(line_x, line_y, center_x, center_y, radius)
pass
if kk >= 0:
k_angle.append(math.atan(kk))
if kk < 0:
k_angle.append(math.pi + math.atan(kk))
# 返回相对x轴最大的角度k
return np.array(k_candidate)[np.max(k_angle) == k_angle].tolist()[-1]
2021-09-20 22:41:40 +08:00
def func_ng(td): # 地闪密度
return 0.023 * (td ** 1.3)