2021-09-20 20:51:09 +08:00
|
|
|
|
import math
|
|
|
|
|
|
import ezdxf
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
gCAD = None
|
|
|
|
|
|
gMSP = None
|
|
|
|
|
|
gCount = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Draw:
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self._doc = ezdxf.new(dxfversion="R2010")
|
|
|
|
|
|
self._doc.layers.add("EGM", color=2)
|
|
|
|
|
|
global gCAD
|
|
|
|
|
|
gCAD = self
|
|
|
|
|
|
|
|
|
|
|
|
def draw(self, i_curt, u_ph, h_gav, h_cav, dgc, color):
|
|
|
|
|
|
doc = self._doc
|
|
|
|
|
|
msp = doc.modelspace()
|
|
|
|
|
|
global gMSP
|
|
|
|
|
|
gMSP = msp
|
|
|
|
|
|
rs = rs_fun(i_curt)
|
|
|
|
|
|
rc = rc_fun(i_curt, u_ph)
|
|
|
|
|
|
rg = rg_fun(i_curt, h_cav)
|
|
|
|
|
|
msp.add_circle((0, h_gav), rs, dxfattribs={"color": color})
|
|
|
|
|
|
msp.add_line((0, 0), (0, h_gav)) # 地线
|
|
|
|
|
|
msp.add_circle((dgc, h_cav), rc, dxfattribs={"color": color})
|
|
|
|
|
|
msp.add_line((dgc, 0), (dgc, h_cav)) # 导线
|
|
|
|
|
|
msp.add_line((0, h_gav), (dgc, h_cav))
|
|
|
|
|
|
msp.add_line((0, rg), (2000, rg), dxfattribs={"color": color})
|
|
|
|
|
|
# 计算圆交点
|
|
|
|
|
|
# circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc)
|
|
|
|
|
|
# msp.add_line((0, h_gav), circle_intersection) # 地线
|
|
|
|
|
|
# msp.add_line((dgc, h_cav), circle_intersection) # 导线
|
|
|
|
|
|
# circle_line_section = solve_circle_line_intersection(rc, rg, h_cav, dgc)
|
|
|
|
|
|
# msp.add_line((0, 0), circle_line_section) # 导线和圆的交点
|
|
|
|
|
|
|
|
|
|
|
|
def save(self):
|
|
|
|
|
|
doc = self._doc
|
|
|
|
|
|
doc.saveas("egm.dxf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 圆交点
|
|
|
|
|
|
def solve_circle_intersection(rs, rc, hgav, hcav, dgc):
|
|
|
|
|
|
# 用牛顿法求解
|
|
|
|
|
|
x = rc # 初始值
|
|
|
|
|
|
y = rc # 初始值
|
|
|
|
|
|
for bar in range(0, 10):
|
|
|
|
|
|
A = [[-2 * x, -2 * (y - hgav)], [-2 * (x - dgc), -2 * (y - hcav)]]
|
|
|
|
|
|
b = [
|
|
|
|
|
|
x ** 2 + (y - hgav) ** 2 - rs ** 2,
|
|
|
|
|
|
(x - dgc) ** 2 + (y - hcav) ** 2 - rc ** 2,
|
|
|
|
|
|
]
|
|
|
|
|
|
X_set = np.linalg.solve(A, b)
|
|
|
|
|
|
x += X_set[0]
|
|
|
|
|
|
y += X_set[1]
|
|
|
|
|
|
if np.all(np.abs(X_set) < 1e-5):
|
|
|
|
|
|
return [x, y]
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 圆与地面线交点
|
|
|
|
|
|
def solve_circle_line_intersection(radius, rg, center_x, center_y):
|
|
|
|
|
|
distance = distance_point_line(center_x, center_y, 0, rg, 0) # 捕雷线到暴露圆中点的距离
|
|
|
|
|
|
if distance > radius:
|
|
|
|
|
|
return []
|
|
|
|
|
|
else:
|
|
|
|
|
|
r = (radius ** 2 - (rg - center_y) ** 2) ** 0.5 + center_x
|
|
|
|
|
|
return [r, rg]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def min_i(string_len, u_ph):
|
|
|
|
|
|
u_50 = 530 * string_len + 35
|
|
|
|
|
|
z_0 = 300 # 雷电波阻抗
|
|
|
|
|
|
z_c = 251 # 导线波阻抗
|
|
|
|
|
|
r = (u_50 + 2 * z_0 / (2 * z_0 + z_c) * u_ph) * (2 * z_0 + z_c) / (z_0 * z_c)
|
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def thunder_density(i): # l雷电流幅值密度函数
|
|
|
|
|
|
r = -(10 ** (-i / 44)) * math.log(10) * (-1 / 44)
|
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def angel_density(angle): # 入射角密度函数 angle单位是弧度
|
|
|
|
|
|
r = 0.75 * (math.cos(angle - math.pi / 2) ** 3)
|
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rs_fun(i):
|
|
|
|
|
|
r = 10 * (i ** 0.65)
|
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rc_fun(i, u_ph):
|
|
|
|
|
|
r = 1.63 * ((5.015 * (i ** 0.578) - 0.001 * u_ph) ** 1.125)
|
|
|
|
|
|
# r=14.7*(i**0.42)
|
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rg_fun(i_curt, h_cav):
|
|
|
|
|
|
if h_cav < 40:
|
|
|
|
|
|
rg = (3.6 + 1.7 ** math.log(43 - h_cav)) * (i_curt ** 0.65)
|
|
|
|
|
|
else:
|
|
|
|
|
|
rg = 5.5 * (i_curt ** 0.65)
|
|
|
|
|
|
return rg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph): # 暴露弧的角度
|
|
|
|
|
|
rs = rs_fun(i_curt)
|
|
|
|
|
|
rc = rc_fun(i_curt, u_ph)
|
|
|
|
|
|
rg = rg_fun(i_curt, h_cav)
|
|
|
|
|
|
circle_intersection = solve_circle_intersection(rs, rc, h_gav, h_cav, dgc) # 两圆的交点
|
|
|
|
|
|
circle_line_intersection = solve_circle_line_intersection(
|
|
|
|
|
|
rc, rg, dgc, h_cav
|
|
|
|
|
|
) # 暴露圆和补雷线的交点
|
|
|
|
|
|
np_circle_intersection = np.array(circle_intersection)
|
|
|
|
|
|
if not circle_intersection:
|
|
|
|
|
|
abc = 123
|
|
|
|
|
|
theta2_line = np_circle_intersection - np.array([dgc, h_cav])
|
|
|
|
|
|
theta2 = math.atan(theta2_line[1] / theta2_line[0])
|
|
|
|
|
|
np_circle_line_intersection = np.array(circle_line_intersection)
|
|
|
|
|
|
theta1_line = np_circle_line_intersection - np.array([dgc, h_cav])
|
|
|
|
|
|
theta1 = math.atan(theta1_line[1] / theta1_line[0])
|
|
|
|
|
|
# 考虑雷电入射角度,所以theta1可以小于0,即计算从侧面击中的雷
|
|
|
|
|
|
# if theta1 < 0:
|
|
|
|
|
|
# # print(f"θ_1角度为负数{theta1:.4f},人为设置为0")
|
|
|
|
|
|
# theta1 = 0
|
|
|
|
|
|
return np.array([theta1, theta2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def distance_point_line(point_x, point_y, line_x, line_y, k):
|
|
|
|
|
|
d = abs(k * point_x - point_y - k * line_x + line_y) / ((k ** 2 + 1) ** 0.5)
|
|
|
|
|
|
return d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fun_calculus_pw(theta, max_w):
|
|
|
|
|
|
w_fineness = 0.01
|
|
|
|
|
|
r_pw = 0
|
|
|
|
|
|
if int(max_w / w_fineness) < 0:
|
|
|
|
|
|
abc = 123
|
|
|
|
|
|
pass
|
|
|
|
|
|
w_samples, d_w = np.linspace(0, max_w, int(max_w / w_fineness) + 1, retstep=True)
|
2021-09-20 22:33:11 +08:00
|
|
|
|
for cal_w in w_samples[:-1]:
|
2021-09-20 20:51:09 +08:00
|
|
|
|
r_pw += (
|
|
|
|
|
|
(
|
2021-09-20 22:33:11 +08:00
|
|
|
|
abs(angel_density(cal_w)) * math.sin(theta - (cal_w - math.pi / 2))
|
2021-09-20 20:51:09 +08:00
|
|
|
|
+ abs(angel_density(cal_w + d_w))
|
2021-09-20 22:33:11 +08:00
|
|
|
|
* math.sin(theta - (cal_w + d_w - math.pi / 2))
|
2021-09-20 20:51:09 +08:00
|
|
|
|
)
|
|
|
|
|
|
/ 2
|
|
|
|
|
|
) * d_w
|
|
|
|
|
|
return r_pw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calculus_bd(theta, rc, rs, rg, dgc, h_cav, h_gav): # 对θ进行积分
|
2021-09-20 22:33:11 +08:00
|
|
|
|
max_w = 0
|
2021-09-20 20:51:09 +08:00
|
|
|
|
# 求暴露弧上一点的切线
|
|
|
|
|
|
line_x = math.cos(theta) * rc + dgc
|
|
|
|
|
|
line_y = math.sin(theta) * rc + h_cav
|
|
|
|
|
|
k = math.tan(theta + math.pi / 2) # 入射角
|
|
|
|
|
|
# 求保护弧到直线的距离,判断是否相交
|
|
|
|
|
|
d_to_rs = distance_point_line(0, h_gav, line_x, line_y, k)
|
|
|
|
|
|
if d_to_rs < rs: # 相交
|
|
|
|
|
|
# 要用过直线上一点到暴露弧的切线
|
|
|
|
|
|
new_k = tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
|
|
|
|
|
|
|
|
|
|
|
if not new_k:
|
|
|
|
|
|
a = 12
|
|
|
|
|
|
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
|
|
|
|
|
if new_k >= 0:
|
|
|
|
|
|
max_w = math.atan(new_k) # 用于保护弧相切的角度
|
|
|
|
|
|
elif new_k < 0:
|
|
|
|
|
|
max_w = math.atan(new_k) + math.pi
|
|
|
|
|
|
if max_w < 0:
|
|
|
|
|
|
abc = 123
|
|
|
|
|
|
tangent_line_k(line_x, line_y, 0, h_gav, rs, init_k=k)
|
|
|
|
|
|
global gCount
|
|
|
|
|
|
gCount += 1
|
|
|
|
|
|
if gCount % 100 == 0:
|
|
|
|
|
|
# gMSP.add_circle((0, h_gav), rs)
|
|
|
|
|
|
# gMSP.add_circle((dgc, h_cav), rc)
|
|
|
|
|
|
# gMSP.add_line((dgc, h_cav), (line_x, line_y))
|
|
|
|
|
|
# gMSP.add_line(
|
|
|
|
|
|
# (-500, new_k * (-500 - line_x) + line_y),
|
|
|
|
|
|
# (500, new_k * (500 - line_x) + line_y),
|
|
|
|
|
|
# )
|
|
|
|
|
|
# gCAD.save()
|
|
|
|
|
|
pass
|
|
|
|
|
|
else:
|
|
|
|
|
|
max_w = theta + math.pi / 2 # 入射角
|
|
|
|
|
|
if gCount % 200 == 0:
|
|
|
|
|
|
# # intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph)
|
|
|
|
|
|
# gMSP.add_circle((0, h_gav), rs)
|
|
|
|
|
|
# gMSP.add_circle((dgc, h_cav), rc)
|
|
|
|
|
|
# gMSP.add_line((dgc, h_cav), (line_x, line_y))
|
|
|
|
|
|
# gMSP.add_line(
|
|
|
|
|
|
# (-500, k * (-500 - line_x) + line_y),
|
|
|
|
|
|
# (500, k * (500 - line_x) + line_y),
|
|
|
|
|
|
# )
|
|
|
|
|
|
# gCAD.save()
|
|
|
|
|
|
pass
|
|
|
|
|
|
r = rc / math.cos(theta) * fun_calculus_pw(theta, max_w)
|
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def bd_area(i_curt, u_ph, dgc, h_gav, h_cav): # 暴露弧的投影面积
|
|
|
|
|
|
theta1, theta2 = intersection_angle(dgc, h_gav, h_cav, i_curt, u_ph) # θ角度
|
|
|
|
|
|
theta_fineness = 0.01
|
|
|
|
|
|
rc = rc_fun(i_curt, u_ph)
|
|
|
|
|
|
rs = rs_fun(i_curt)
|
|
|
|
|
|
rg = rg_fun(i_curt, h_cav)
|
|
|
|
|
|
r_bd = 0
|
|
|
|
|
|
theta_sample, d_theta = np.linspace(
|
|
|
|
|
|
theta1, theta2, int((theta2 - theta1) / theta_fineness) + 1, retstep=True
|
|
|
|
|
|
)
|
|
|
|
|
|
for calculus_theta in theta_sample[:-1]:
|
|
|
|
|
|
r_bd += (
|
|
|
|
|
|
(
|
|
|
|
|
|
calculus_bd(calculus_theta, rc, rs, rg, dgc, h_cav, h_gav)
|
|
|
|
|
|
+ calculus_bd(calculus_theta + d_theta, rc, rs, rg, dgc, h_cav, h_gav)
|
|
|
|
|
|
)
|
|
|
|
|
|
/ 2
|
|
|
|
|
|
* d_theta
|
|
|
|
|
|
)
|
|
|
|
|
|
return r_bd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def tangent_line_k(line_x, line_y, center_x, center_y, radius, init_k=10.0):
|
|
|
|
|
|
# 直线方程为 y-y0=k(x-x0),x0和y0为经过直线的任意一点
|
|
|
|
|
|
# 牛顿法求解k
|
|
|
|
|
|
# f(k)=(k*x1-y1-k*x0+y0)**2-R**2*(k**2+1) x1,y1是圆心
|
|
|
|
|
|
|
|
|
|
|
|
k_candidate = [-100, 100]
|
|
|
|
|
|
if abs(center_y - line_y) < 1 and abs(line_x - center_x - radius) < 1:
|
|
|
|
|
|
# k不存在
|
|
|
|
|
|
k_candidate = [99999999, 99999999]
|
|
|
|
|
|
else:
|
|
|
|
|
|
for ind, k_cdi in enumerate(list(k_candidate)):
|
|
|
|
|
|
k = k_candidate[ind]
|
|
|
|
|
|
k_candidate[ind] = None
|
|
|
|
|
|
for bar in range(0, 30):
|
|
|
|
|
|
fk = (k * center_x - center_y - k * line_x + line_y) ** 2 - (
|
|
|
|
|
|
radius ** 2
|
|
|
|
|
|
) * (k ** 2 + 1)
|
|
|
|
|
|
|
|
|
|
|
|
d_fk = (
|
|
|
|
|
|
2
|
|
|
|
|
|
* (k * center_x - center_y - k * line_x + line_y)
|
|
|
|
|
|
* (center_x - line_x)
|
|
|
|
|
|
- 2 * (radius ** 2) * k
|
|
|
|
|
|
)
|
|
|
|
|
|
if abs(d_fk) < 1e-5 and abs(line_x - center_x - radius) < 1e-5:
|
|
|
|
|
|
# k不存在,角度为90°,k取一个很大的正数
|
|
|
|
|
|
k_candidate[ind] = 99999999999999
|
|
|
|
|
|
break
|
|
|
|
|
|
d_k = -fk / d_fk
|
|
|
|
|
|
k += d_k
|
|
|
|
|
|
if abs(d_k) < 1e-3:
|
|
|
|
|
|
dd = distance_point_line(center_x, center_y, line_x, line_y, k)
|
|
|
|
|
|
if abs(dd - radius) < 1:
|
|
|
|
|
|
k_candidate[ind] = k
|
|
|
|
|
|
break
|
|
|
|
|
|
# 把k转化成相应的角度,从x开始,逆时针为正
|
|
|
|
|
|
k_angle = []
|
|
|
|
|
|
for kk in k_candidate:
|
|
|
|
|
|
if kk is None:
|
|
|
|
|
|
abc = 123
|
|
|
|
|
|
# tangent_line_k(line_x, line_y, center_x, center_y, radius)
|
|
|
|
|
|
pass
|
|
|
|
|
|
if kk >= 0:
|
|
|
|
|
|
k_angle.append(math.atan(kk))
|
|
|
|
|
|
if kk < 0:
|
|
|
|
|
|
k_angle.append(math.pi + math.atan(kk))
|
|
|
|
|
|
# 返回相对x轴最大的角度k
|
|
|
|
|
|
return np.array(k_candidate)[np.max(k_angle) == k_angle].tolist()[-1]
|