import numpy as np import pandas as pd from scipy.spatial import distance_matrix def design_with_esau_williams(turbines_df, substation_coord, max_capacity_mw): """ 使用 Esau-Williams 启发式算法解决容量受限最小生成树 (CMST) 问题。 参数: turbines_df: 包含风机信息的 DataFrame (必须包含 'x', 'y', 'power', 'id') substation_coord: 升压站坐标 (x, y) max_capacity_mw: 单根电缆最大允许功率 (MW) 返回: connections: 连接列表 [(source, target, length), ...] turbines_with_cluster: 带有 'cluster' 列的 turbines DataFrame (用于兼容性) """ # 数据准备 n_turbines = len(turbines_df) coords = turbines_df[['x', 'y']].values powers = turbines_df['power'].values ids = turbines_df['id'].values # 升压站坐标 if substation_coord.ndim > 1: sx, sy = substation_coord[0][0], substation_coord[0][1] else: sx, sy = substation_coord[0], substation_coord[1] # 1. 计算距离矩阵 # 风机到风机 dist_matrix = distance_matrix(coords, coords) # 风机到升压站 dists_to_sub = np.sqrt((coords[:, 0] - sx)**2 + (coords[:, 1] - sy)**2) # 2. 初始化组件 (Components) # 初始状态下,每个风机是一个独立的组件,直接连接到升压站 # 为了方便查找,我们维护一个 components 字典 # key: component_root_id (代表该组件的唯一标识) # value: { # 'members': {node_idx, ...}, # 'total_power': float, # 'gate_node': int (连接到升压站的节点索引), # 'gate_cost': float (gate_node 到升压站的距离) # } components = {} for i in range(n_turbines): components[i] = { 'members': {i}, 'total_power': powers[i], 'gate_node': i, 'gate_cost': dists_to_sub[i] } # 记录已经建立的连接 (不包括通往升压站的默认连接) # 格式: (u, v, length) established_edges = [] # 记录已建立连接的坐标,用于交叉检查: [((x1, y1), (x2, y2)), ...] established_lines = [] def do_intersect(p1, p2, p3, p4): """ 检测线段 (p1, p2) 和 (p3, p4) 是否严格相交 (不包括端点接触) """ # 检查是否共享端点 if (p1[0]==p3[0] and p1[1]==p3[1]) or (p1[0]==p4[0] and p1[1]==p4[1]) or \ (p2[0]==p3[0] and p2[1]==p3[1]) or (p2[0]==p4[0] and p2[1]==p4[1]): return False def ccw(A, B, C): # 向量叉积 return (C[1]-A[1]) * (B[0]-A[0]) - (B[1]-A[1]) * (C[0]-A[0]) # 如果跨立实验符号相反,则相交 d1 = ccw(p1, p2, p3) d2 = ccw(p1, p2, p4) d3 = ccw(p3, p4, p1) d4 = ccw(p3, p4, p2) # 严格相交判断 (忽略共线重叠的情况,视为不交叉) if ((d1 > 1e-9 and d2 < -1e-9) or (d1 < -1e-9 and d2 > 1e-9)) and \ ((d3 > 1e-9 and d4 < -1e-9) or (d3 < -1e-9 and d4 > 1e-9)): return True return False # 3. 迭代优化 while True: # 预先收集当前所有组件的 Gate Edges (连接升压站的线段) # 格式: {cid: (gate_node_coord, substation_coord)} current_gate_lines = {} sub_coord_tuple = (sx, sy) for cid, data in components.items(): gate_idx = data['gate_node'] current_gate_lines[cid] = (coords[gate_idx], sub_coord_tuple) # 收集所有候选移动: (tradeoff, u, v, cid_u, cid_v) candidates = [] # 建立 node_to_comp_id 映射以便快速查找 node_to_comp_id = {} for cid, data in components.items(): for member in data['members']: node_to_comp_id[member] = cid # 遍历所有边 (i, j) for i in range(n_turbines): cid_i = node_to_comp_id[i] gate_cost_i = components[cid_i]['gate_cost'] for j in range(n_turbines): if i == j: continue cid_j = node_to_comp_id[j] # 必须是不同组件 if cid_i == cid_j: continue # 检查容量约束 if components[cid_i]['total_power'] + components[cid_j]['total_power'] > max_capacity_mw: continue # 计算 Tradeoff dist_ij = dist_matrix[i, j] tradeoff = dist_ij - gate_cost_i # 只有当 tradeoff < 0 时,合并才是有益的 if tradeoff < -1e-9: candidates.append((tradeoff, i, j, cid_i, cid_j)) # 按 tradeoff 排序 (从小到大,越小越好) candidates.sort(key=lambda x: x[0]) best_move = None # 延迟检测: 从最好的开始检查交叉 for cand in candidates: tradeoff, u, v, cid_u, cid_v = cand p_u = coords[u] p_v = coords[v] # 快速包围盒测试 (AABB) 准备 min_x_uv, max_x_uv = min(p_u[0], p_v[0]), max(p_u[0], p_v[0]) min_y_uv, max_y_uv = min(p_u[1], p_v[1]), max(p_u[1], p_v[1]) is_crossing = False # 1. 检查与已固定的内部边的交叉 for line in established_lines: p_a, p_b = line[0], line[1] if max(p_a[0], p_b[0]) < min_x_uv or min(p_a[0], p_b[0]) > max_x_uv or \ max(p_a[1], p_b[1]) < min_y_uv or min(p_a[1], p_b[1]) > max_y_uv: continue if do_intersect(p_u, p_v, p_a, p_b): is_crossing = True break if is_crossing: continue # 2. 检查与所有活跃 Gate Edges 的交叉 (排除被移除的那个) # 正在合并 cid_u -> cid_v,意味着 cid_u 的 Gate 将被移除。 # 但 cid_v 的 Gate 以及其他所有组件的 Gate 仍然存在。 for cid, gate_line in current_gate_lines.items(): if cid == cid_u: continue # 这个 Gate 即将移除,不构成障碍 p_a, p_b = gate_line[0], gate_line[1] if max(p_a[0], p_b[0]) < min_x_uv or min(p_a[0], p_b[0]) > max_x_uv or \ max(p_a[1], p_b[1]) < min_y_uv or min(p_a[1], p_b[1]) > max_y_uv: continue if do_intersect(p_u, p_v, p_a, p_b): is_crossing = True break if not is_crossing: best_move = (u, v, cid_u, cid_v) break # 如果没有找到有益的合并,或者所有可行合并都会增加成本,则停止 if best_move is None: break # 执行合并 u, v, cid_u, cid_v = best_move # 将 cid_u 并入 cid_v # 1. 记录新边 established_edges.append((u, v, dist_matrix[u, v])) established_lines.append((coords[u], coords[v])) # 2. 更新组件信息 comp_u = components[cid_u] comp_v = components[cid_v] # 合并成员 comp_v['members'].update(comp_u['members']) comp_v['total_power'] += comp_u['total_power'] # Gate 节点和 Cost 保持 cid_v 的不变 # (因为我们将 U 接到了 V 上,U 的原 gate 被移除,V 的 gate 仍是通往升压站的路径) # 3. 删除旧组件 del components[cid_u] # 4. 构建最终结果 connections = [] # 添加内部边 (风机间) for u, v, length in established_edges: source = f'turbine_{u}' target = f'turbine_{v}' connections.append((source, target, length)) # 添加 Gate 边 (风机到升压站) # 此时 components 中剩下的每个组件都有一个 gate_node 连接到 Substation cluster_mapping = {} # node_id -> cluster_id (0..N-1) for idx, (cid, data) in enumerate(components.items()): gate_node = data['gate_node'] gate_cost = data['gate_cost'] connections.append((f'turbine_{gate_node}', 'substation', gate_cost)) # 记录 cluster id for member in data['members']: cluster_mapping[member] = idx # 更新 turbines DataFrame turbines_with_cluster = turbines_df.copy() turbines_with_cluster['cluster'] = turbines_with_cluster['id'].map(cluster_mapping) return connections, turbines_with_cluster