Compare commits
10 Commits
2f70b2fc72
...
d563905f28
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d563905f28 | ||
|
|
b5718a0cc2 | ||
|
|
6cac8806f0 | ||
|
|
34b0d70309 | ||
|
|
6454a2c01e | ||
|
|
2d50ab0df0 | ||
|
|
41e3cf355c | ||
|
|
e6d98297b1 | ||
|
|
e7e12745d1 | ||
|
|
4db9d138b8 |
9
GEMINI.md
Normal file
9
GEMINI.md
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
运行shell时使用powershell模式。
|
||||||
|
运行python代码前加载uv环境。
|
||||||
|
编写代码时,尽可能多加注释。
|
||||||
|
|
||||||
|
修改工程下的任何代码不需要询问我的同意。
|
||||||
|
在工程下执行shell,不需要我的同意。
|
||||||
|
在工程下执行任何命令,不需要我的同意。
|
||||||
|
|
||||||
|
Please talk to me in Chinese.
|
||||||
146
README.md
146
README.md
@@ -1,85 +1,73 @@
|
|||||||
# 海上风电场集电线路设计优化工具
|
# 海上风电场集电系统设计工具
|
||||||
|
|
||||||
## 项目简介
|
一个用于设计和优化海上风电场集电系统的Python工具,支持多种布局算法和电缆优化方案。
|
||||||
|
|
||||||
这是一个用于海上风电场集电线路拓扑设计和优化的Python工具。它专注于解决大规模海上风电场的集电系统规划问题,通过算法比较不同设计方案的经济性和技术指标。
|
## 功能特性
|
||||||
|
|
||||||
本项目特别针对**海上风电**场景进行了优化,考虑了海缆的高昂成本、大功率风机(6-10MW)以及严格的电缆载流量约束。
|
- 🌊 多种风机布局生成(随机分布、规则网格)
|
||||||
|
- 🔌 多种集电系统设计算法:
|
||||||
|
- 最小生成树(MST)算法
|
||||||
|
- K-means聚类算法
|
||||||
|
- 容量扫描算法(Capacitated Sweep)
|
||||||
|
- 旋转优化算法(Rotational Sweep)
|
||||||
|
- 📊 多方案对比分析和可视化
|
||||||
|
- 📋 自动导出DXF图纸和Excel报告
|
||||||
|
- 🔧 智能电缆规格选择和成本优化
|
||||||
|
|
||||||
## 核心功能
|
## 安装依赖
|
||||||
|
|
||||||
### 1. 多种布局生成与导入
|
|
||||||
- **自动生成**:支持生成规则的矩阵式(Grid)风机布局,模拟海上风电场常见排布。
|
|
||||||
- **Excel导入**:支持从 `coordinates.xlsx` 导入自定义的风机和升压站坐标。
|
|
||||||
- 格式要求:包含 `Type` (Turbine/Substation), `ID`, `X`, `Y`, `Power` 列。
|
|
||||||
|
|
||||||
### 2. 智能拓扑优化算法
|
|
||||||
- **最小生成树 (MST)**:
|
|
||||||
- 计算全局最短路径长度。
|
|
||||||
- *注意*:在大规模风电场中,纯MST往往会导致根部电缆严重过载,仅作为理论最短路径参考。
|
|
||||||
- **扇区聚类 (Angular K-means)**:
|
|
||||||
- **无交叉设计**:基于角度(扇区)进行聚类,从几何上杜绝不同回路间的电缆交叉。
|
|
||||||
- **容量约束**:自动计算所需的最小回路数(Clusters),确保每条集电线路的总功率不超过海缆极限。
|
|
||||||
|
|
||||||
### 3. 精细化电气计算与选型
|
|
||||||
- **动态电缆选型**:
|
|
||||||
- 基于实际潮流计算(Power Flow),为每一段线路选择最经济且满足载流量的电缆。
|
|
||||||
- 规格库:覆盖 35mm² 至 400mm² 海缆。
|
|
||||||
- 参数:电压等级 **66kV**,功率因数 0.95。
|
|
||||||
- **成本与损耗评估**:
|
|
||||||
- 考虑海缆材料及敷设成本(约为陆缆的5倍)。
|
|
||||||
- 计算全场集电线路的 $I^2R$ 损耗。
|
|
||||||
|
|
||||||
### 4. 工程级可视化与输出
|
|
||||||
- **可视化图表**:
|
|
||||||
- 生成直观的拓扑连接图。
|
|
||||||
- **颜色编码**:使用不同颜色和粗细区分不同截面的电缆(如绿色细线为35mm²,红色粗线为400mm²)。
|
|
||||||
- 自动保存为高清 PNG 图片。
|
|
||||||
- **CAD (DXF) 导出**:
|
|
||||||
- 使用 `ezdxf` 生成 `.dxf` 文件。
|
|
||||||
- 分层管理:风机、升压站、各规格电缆分层显示,可直接导入 AutoCAD 进行后续工程设计。
|
|
||||||
|
|
||||||
## 安装说明
|
|
||||||
|
|
||||||
### 环境要求
|
|
||||||
- Python >= 3.10
|
|
||||||
- 推荐使用 [uv](https://github.com/astral-sh/uv) 进行依赖管理。
|
|
||||||
|
|
||||||
### 安装依赖
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# 使用 uv (推荐)
|
pip install numpy pandas matplotlib scikit-learn scipy networkx
|
||||||
uv add numpy pandas matplotlib scipy scikit-learn networkx ezdxf openpyxl
|
|
||||||
|
|
||||||
# 或使用 pip
|
|
||||||
pip install numpy pandas matplotlib scipy scikit-learn networkx ezdxf openpyxl
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## 使用方法
|
## 使用方法
|
||||||
|
|
||||||
### 1. 运行主程序
|
### 基本用法
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# 使用 uv
|
|
||||||
uv run main.py
|
|
||||||
|
|
||||||
# 或直接运行
|
|
||||||
python main.py
|
python main.py
|
||||||
```
|
```
|
||||||
|
|
||||||
### 2. 数据输入模式
|
### 指定数据文件
|
||||||
|
|
||||||
程序会自动检测当前目录下是否存在 `coordinates.xlsx`:
|
```bash
|
||||||
|
python main.py --excel wind_farm_coordinates.xlsx
|
||||||
|
```
|
||||||
|
|
||||||
- **存在**:优先读取 Excel 文件中的坐标数据进行计算。
|
### 覆盖默认簇数
|
||||||
- **不存在**:自动生成 30 台风机的规则布局(Grid Layout)进行演示。
|
|
||||||
|
|
||||||
### 3. 结果输出
|
```bash
|
||||||
|
python main.py --clusters 20
|
||||||
|
```
|
||||||
|
|
||||||
程序运行结束后会:
|
## 算法说明
|
||||||
1. 在终端打印详细的成本、损耗及电缆统计数据。
|
|
||||||
2. 弹窗显示拓扑对比图,并保存为 `wind_farm_design_imported.png` (或 `offshore_...png`)。
|
### 1. MST Method(最小生成树)
|
||||||
3. 生成 CAD 图纸文件 `wind_farm_design.dxf`。
|
- 使用最小生成树连接所有风机到海上变电站
|
||||||
|
- 简单高效,适合初步设计
|
||||||
|
|
||||||
|
### 2. K-means Clustering
|
||||||
|
- 将风机分组到多个回路中
|
||||||
|
- 平衡每回路的功率分配
|
||||||
|
|
||||||
|
### 3. Capacitated Sweep(容量扫描)
|
||||||
|
- 考虑电缆容量约束的智能分组
|
||||||
|
- 支持多种电缆规格自动选择
|
||||||
|
|
||||||
|
### 4. Rotational Sweep(旋转优化)
|
||||||
|
- 在容量扫描基础上进行旋转优化
|
||||||
|
- 进一步降低总成本和损耗
|
||||||
|
|
||||||
|
## 输出文件
|
||||||
|
|
||||||
|
1. **可视化图片**:`wind_farm_design_comparison.png`
|
||||||
|
- 不同算法的设计方案对比图
|
||||||
|
|
||||||
|
2. **CAD图纸**:`wind_farm_design.dxf`
|
||||||
|
- 可导入CAD软件的详细设计图纸
|
||||||
|
|
||||||
|
3. **数据报告**:`wind_farm_design.xlsx`
|
||||||
|
- 包含所有方案的详细技术参数和成本分析
|
||||||
|
|
||||||
## 关键参数说明
|
## 关键参数说明
|
||||||
|
|
||||||
@@ -91,18 +79,36 @@ POWER_FACTOR = 0.95 # 功率因数
|
|||||||
cost_multiplier = 5.0 # 海缆相对于陆缆的成本倍数
|
cost_multiplier = 5.0 # 海缆相对于陆缆的成本倍数
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## 电缆规格配置
|
||||||
|
|
||||||
|
项目支持多种电缆规格,可在 `generate_template.py` 中配置:
|
||||||
|
|
||||||
|
| 截面积(mm²) | 容量(MW) | 电阻(Ω/km) | 成本(元/m) |
|
||||||
|
|-------------|----------|------------|------------|
|
||||||
|
| 35 | 150 | 0.524 | 80 |
|
||||||
|
| 70 | 215 | 0.268 | 120 |
|
||||||
|
| 95 | 260 | 0.193 | 150 |
|
||||||
|
| 120 | 295 | 0.153 | 180 |
|
||||||
|
| 150 | 330 | 0.124 | 220 |
|
||||||
|
| 185 | 370 | 0.0991 | 270 |
|
||||||
|
| 240 | 425 | 0.0754 | 350 |
|
||||||
|
| 300 | 500 | 0.0601 | 450 |
|
||||||
|
| 400 | 580 | 0.0470 | 600 |
|
||||||
|
|
||||||
## 输出示例
|
## 输出示例
|
||||||
|
|
||||||
```text
|
```text
|
||||||
系统设计参数: 总功率 2000.0 MW, 单回路最大容量 50.4 MW
|
===== 开始比较电缆方案 =====
|
||||||
计算建议回路数(簇数): 48 (最小需求 40)
|
|
||||||
|
|
||||||
[Sector Clustering] 电缆统计:
|
--- All Cables (Base) ---
|
||||||
70mm²: 48 条
|
[Base] Cost: ¥12,456,789.12 | Loss: 234.56 kW
|
||||||
185mm²: 37 条
|
[Rotational] Cost: ¥12,234,567.89 | Loss: 223.45 kW
|
||||||
400mm²: 40 条
|
|
||||||
|
|
||||||
成功导出DXF文件: wind_farm_design.dxf
|
--- High Current (Base) ---
|
||||||
|
[Base] Cost: ¥11,987,654.32 | Loss: 245.67 kW
|
||||||
|
[Rotational] Cost: ¥11,876,543.21 | Loss: 234.56 kW
|
||||||
|
|
||||||
|
推荐方案: High Current (Rotational) (默认)
|
||||||
```
|
```
|
||||||
|
|
||||||
## 许可证
|
## 许可证
|
||||||
|
|||||||
241
esau_williams.py
Normal file
241
esau_williams.py
Normal file
@@ -0,0 +1,241 @@
|
|||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from scipy.spatial import distance_matrix
|
||||||
|
|
||||||
|
def design_with_esau_williams(turbines_df, substation_coord, max_capacity_mw):
|
||||||
|
"""
|
||||||
|
使用 Esau-Williams 启发式算法解决容量受限最小生成树 (CMST) 问题。
|
||||||
|
|
||||||
|
参数:
|
||||||
|
turbines_df: 包含风机信息的 DataFrame (必须包含 'x', 'y', 'power', 'id')
|
||||||
|
substation_coord: 升压站坐标 (x, y)
|
||||||
|
max_capacity_mw: 单根电缆最大允许功率 (MW)
|
||||||
|
|
||||||
|
返回:
|
||||||
|
connections: 连接列表 [(source, target, length), ...]
|
||||||
|
turbines_with_cluster: 带有 'cluster' 列的 turbines DataFrame (用于兼容性)
|
||||||
|
"""
|
||||||
|
|
||||||
|
# 数据准备
|
||||||
|
n_turbines = len(turbines_df)
|
||||||
|
coords = turbines_df[['x', 'y']].values
|
||||||
|
powers = turbines_df['power'].values
|
||||||
|
ids = turbines_df['id'].values
|
||||||
|
|
||||||
|
# 升压站坐标
|
||||||
|
if substation_coord.ndim > 1:
|
||||||
|
sx, sy = substation_coord[0][0], substation_coord[0][1]
|
||||||
|
else:
|
||||||
|
sx, sy = substation_coord[0], substation_coord[1]
|
||||||
|
|
||||||
|
# 1. 计算距离矩阵
|
||||||
|
# 风机到风机
|
||||||
|
dist_matrix = distance_matrix(coords, coords)
|
||||||
|
# 风机到升压站
|
||||||
|
dists_to_sub = np.sqrt((coords[:, 0] - sx)**2 + (coords[:, 1] - sy)**2)
|
||||||
|
|
||||||
|
# 2. 初始化组件 (Components)
|
||||||
|
# 初始状态下,每个风机是一个独立的组件,直接连接到升压站
|
||||||
|
# 为了方便查找,我们维护一个 components 字典
|
||||||
|
# key: component_root_id (代表该组件的唯一标识)
|
||||||
|
# value: {
|
||||||
|
# 'members': {node_idx, ...},
|
||||||
|
# 'total_power': float,
|
||||||
|
# 'gate_node': int (连接到升压站的节点索引),
|
||||||
|
# 'gate_cost': float (gate_node 到升压站的距离)
|
||||||
|
# }
|
||||||
|
|
||||||
|
components = {}
|
||||||
|
for i in range(n_turbines):
|
||||||
|
components[i] = {
|
||||||
|
'members': {i},
|
||||||
|
'total_power': powers[i],
|
||||||
|
'gate_node': i,
|
||||||
|
'gate_cost': dists_to_sub[i]
|
||||||
|
}
|
||||||
|
|
||||||
|
# 记录已经建立的连接 (不包括通往升压站的默认连接)
|
||||||
|
# 格式: (u, v, length)
|
||||||
|
established_edges = []
|
||||||
|
# 记录已建立连接的坐标,用于交叉检查: [((x1, y1), (x2, y2)), ...]
|
||||||
|
established_lines = []
|
||||||
|
|
||||||
|
def do_intersect(p1, p2, p3, p4):
|
||||||
|
"""
|
||||||
|
检测线段 (p1, p2) 和 (p3, p4) 是否严格相交 (不包括端点接触)
|
||||||
|
"""
|
||||||
|
# 检查是否共享端点
|
||||||
|
if (p1[0]==p3[0] and p1[1]==p3[1]) or (p1[0]==p4[0] and p1[1]==p4[1]) or \
|
||||||
|
(p2[0]==p3[0] and p2[1]==p3[1]) or (p2[0]==p4[0] and p2[1]==p4[1]):
|
||||||
|
return False
|
||||||
|
|
||||||
|
def ccw(A, B, C):
|
||||||
|
# 向量叉积
|
||||||
|
return (C[1]-A[1]) * (B[0]-A[0]) - (B[1]-A[1]) * (C[0]-A[0])
|
||||||
|
|
||||||
|
# 如果跨立实验符号相反,则相交
|
||||||
|
d1 = ccw(p1, p2, p3)
|
||||||
|
d2 = ccw(p1, p2, p4)
|
||||||
|
d3 = ccw(p3, p4, p1)
|
||||||
|
d4 = ccw(p3, p4, p2)
|
||||||
|
|
||||||
|
# 严格相交判断 (忽略共线重叠的情况,视为不交叉)
|
||||||
|
if ((d1 > 1e-9 and d2 < -1e-9) or (d1 < -1e-9 and d2 > 1e-9)) and \
|
||||||
|
((d3 > 1e-9 and d4 < -1e-9) or (d3 < -1e-9 and d4 > 1e-9)):
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
# 3. 迭代优化
|
||||||
|
while True:
|
||||||
|
# 预先收集当前所有组件的 Gate Edges (连接升压站的线段)
|
||||||
|
# 格式: {cid: (gate_node_coord, substation_coord)}
|
||||||
|
current_gate_lines = {}
|
||||||
|
sub_coord_tuple = (sx, sy)
|
||||||
|
for cid, data in components.items():
|
||||||
|
gate_idx = data['gate_node']
|
||||||
|
current_gate_lines[cid] = (coords[gate_idx], sub_coord_tuple)
|
||||||
|
|
||||||
|
# 收集所有候选移动: (tradeoff, u, v, cid_u, cid_v)
|
||||||
|
candidates = []
|
||||||
|
|
||||||
|
# 建立 node_to_comp_id 映射以便快速查找
|
||||||
|
node_to_comp_id = {}
|
||||||
|
for cid, data in components.items():
|
||||||
|
for member in data['members']:
|
||||||
|
node_to_comp_id[member] = cid
|
||||||
|
|
||||||
|
# 遍历所有边 (i, j)
|
||||||
|
for i in range(n_turbines):
|
||||||
|
cid_i = node_to_comp_id[i]
|
||||||
|
gate_cost_i = components[cid_i]['gate_cost']
|
||||||
|
|
||||||
|
for j in range(n_turbines):
|
||||||
|
if i == j: continue
|
||||||
|
|
||||||
|
cid_j = node_to_comp_id[j]
|
||||||
|
|
||||||
|
# 必须是不同组件
|
||||||
|
if cid_i == cid_j:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 检查容量约束
|
||||||
|
if components[cid_i]['total_power'] + components[cid_j]['total_power'] > max_capacity_mw:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 计算 Tradeoff
|
||||||
|
dist_ij = dist_matrix[i, j]
|
||||||
|
tradeoff = dist_ij - gate_cost_i
|
||||||
|
|
||||||
|
# 只有当 tradeoff < 0 时,合并才是有益的
|
||||||
|
if tradeoff < -1e-9:
|
||||||
|
candidates.append((tradeoff, i, j, cid_i, cid_j))
|
||||||
|
|
||||||
|
# 按 tradeoff 排序 (从小到大,越小越好)
|
||||||
|
candidates.sort(key=lambda x: x[0])
|
||||||
|
|
||||||
|
best_move = None
|
||||||
|
|
||||||
|
# 延迟检测: 从最好的开始检查交叉
|
||||||
|
for cand in candidates:
|
||||||
|
tradeoff, u, v, cid_u, cid_v = cand
|
||||||
|
|
||||||
|
p_u = coords[u]
|
||||||
|
p_v = coords[v]
|
||||||
|
|
||||||
|
# 快速包围盒测试 (AABB) 准备
|
||||||
|
min_x_uv, max_x_uv = min(p_u[0], p_v[0]), max(p_u[0], p_v[0])
|
||||||
|
min_y_uv, max_y_uv = min(p_u[1], p_v[1]), max(p_u[1], p_v[1])
|
||||||
|
|
||||||
|
is_crossing = False
|
||||||
|
|
||||||
|
# 1. 检查与已固定的内部边的交叉
|
||||||
|
for line in established_lines:
|
||||||
|
p_a, p_b = line[0], line[1]
|
||||||
|
|
||||||
|
if max(p_a[0], p_b[0]) < min_x_uv or min(p_a[0], p_b[0]) > max_x_uv or \
|
||||||
|
max(p_a[1], p_b[1]) < min_y_uv or min(p_a[1], p_b[1]) > max_y_uv:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if do_intersect(p_u, p_v, p_a, p_b):
|
||||||
|
is_crossing = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if is_crossing:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 2. 检查与所有活跃 Gate Edges 的交叉 (排除被移除的那个)
|
||||||
|
# 正在合并 cid_u -> cid_v,意味着 cid_u 的 Gate 将被移除。
|
||||||
|
# 但 cid_v 的 Gate 以及其他所有组件的 Gate 仍然存在。
|
||||||
|
for cid, gate_line in current_gate_lines.items():
|
||||||
|
if cid == cid_u:
|
||||||
|
continue # 这个 Gate 即将移除,不构成障碍
|
||||||
|
|
||||||
|
p_a, p_b = gate_line[0], gate_line[1]
|
||||||
|
|
||||||
|
if max(p_a[0], p_b[0]) < min_x_uv or min(p_a[0], p_b[0]) > max_x_uv or \
|
||||||
|
max(p_a[1], p_b[1]) < min_y_uv or min(p_a[1], p_b[1]) > max_y_uv:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if do_intersect(p_u, p_v, p_a, p_b):
|
||||||
|
is_crossing = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if not is_crossing:
|
||||||
|
best_move = (u, v, cid_u, cid_v)
|
||||||
|
break
|
||||||
|
|
||||||
|
# 如果没有找到有益的合并,或者所有可行合并都会增加成本,则停止
|
||||||
|
if best_move is None:
|
||||||
|
break
|
||||||
|
|
||||||
|
# 执行合并
|
||||||
|
u, v, cid_u, cid_v = best_move
|
||||||
|
|
||||||
|
# 将 cid_u 并入 cid_v
|
||||||
|
# 1. 记录新边
|
||||||
|
established_edges.append((u, v, dist_matrix[u, v]))
|
||||||
|
established_lines.append((coords[u], coords[v]))
|
||||||
|
|
||||||
|
# 2. 更新组件信息
|
||||||
|
comp_u = components[cid_u]
|
||||||
|
comp_v = components[cid_v]
|
||||||
|
|
||||||
|
# 合并成员
|
||||||
|
comp_v['members'].update(comp_u['members'])
|
||||||
|
comp_v['total_power'] += comp_u['total_power']
|
||||||
|
|
||||||
|
# Gate 节点和 Cost 保持 cid_v 的不变
|
||||||
|
# (因为我们将 U 接到了 V 上,U 的原 gate 被移除,V 的 gate 仍是通往升压站的路径)
|
||||||
|
|
||||||
|
# 3. 删除旧组件
|
||||||
|
del components[cid_u]
|
||||||
|
|
||||||
|
# 4. 构建最终结果
|
||||||
|
connections = []
|
||||||
|
|
||||||
|
# 添加内部边 (风机间)
|
||||||
|
for u, v, length in established_edges:
|
||||||
|
source = f'turbine_{u}'
|
||||||
|
target = f'turbine_{v}'
|
||||||
|
connections.append((source, target, length))
|
||||||
|
|
||||||
|
# 添加 Gate 边 (风机到升压站)
|
||||||
|
# 此时 components 中剩下的每个组件都有一个 gate_node 连接到 Substation
|
||||||
|
cluster_mapping = {} # node_id -> cluster_id (0..N-1)
|
||||||
|
|
||||||
|
for idx, (cid, data) in enumerate(components.items()):
|
||||||
|
gate_node = data['gate_node']
|
||||||
|
gate_cost = data['gate_cost']
|
||||||
|
|
||||||
|
connections.append((f'turbine_{gate_node}', 'substation', gate_cost))
|
||||||
|
|
||||||
|
# 记录 cluster id
|
||||||
|
for member in data['members']:
|
||||||
|
cluster_mapping[member] = idx
|
||||||
|
|
||||||
|
# 更新 turbines DataFrame
|
||||||
|
turbines_with_cluster = turbines_df.copy()
|
||||||
|
turbines_with_cluster['cluster'] = turbines_with_cluster['id'].map(cluster_mapping)
|
||||||
|
|
||||||
|
return connections, turbines_with_cluster
|
||||||
@@ -11,7 +11,8 @@ def create_template():
|
|||||||
'ID': 'Sub1',
|
'ID': 'Sub1',
|
||||||
'X': 4000,
|
'X': 4000,
|
||||||
'Y': -800,
|
'Y': -800,
|
||||||
'Power': 0
|
'Power': 0,
|
||||||
|
'PlatformHeight': 0
|
||||||
})
|
})
|
||||||
|
|
||||||
# Add Turbines (Grid layout)
|
# Add Turbines (Grid layout)
|
||||||
@@ -29,15 +30,32 @@ def create_template():
|
|||||||
'ID': i,
|
'ID': i,
|
||||||
'X': x,
|
'X': x,
|
||||||
'Y': y,
|
'Y': y,
|
||||||
'Power': np.random.uniform(6.0, 10.0)
|
'Power': np.random.uniform(6.0, 10.0),
|
||||||
|
'PlatformHeight': 0
|
||||||
})
|
})
|
||||||
|
|
||||||
df = pd.DataFrame(data)
|
df = pd.DataFrame(data)
|
||||||
|
|
||||||
|
# Create Cable data
|
||||||
|
cable_data = [
|
||||||
|
{'CrossSection': 35, 'Capacity': 150, 'Resistance': 0.524, 'Cost': 80, 'Optional': ''},
|
||||||
|
{'CrossSection': 70, 'Capacity': 215, 'Resistance': 0.268, 'Cost': 120, 'Optional': ''},
|
||||||
|
{'CrossSection': 95, 'Capacity': 260, 'Resistance': 0.193, 'Cost': 150, 'Optional': ''},
|
||||||
|
{'CrossSection': 120, 'Capacity': 295, 'Resistance': 0.153, 'Cost': 180, 'Optional': ''},
|
||||||
|
{'CrossSection': 150, 'Capacity': 330, 'Resistance': 0.124, 'Cost': 220, 'Optional': ''},
|
||||||
|
{'CrossSection': 185, 'Capacity': 370, 'Resistance': 0.0991, 'Cost': 270, 'Optional': ''},
|
||||||
|
{'CrossSection': 240, 'Capacity': 425, 'Resistance': 0.0754, 'Cost': 350, 'Optional': ''},
|
||||||
|
{'CrossSection': 300, 'Capacity': 500, 'Resistance': 0.0601, 'Cost': 450, 'Optional': ''},
|
||||||
|
{'CrossSection': 400, 'Capacity': 580, 'Resistance': 0.0470, 'Cost': 600, 'Optional': ''}
|
||||||
|
]
|
||||||
|
df_cables = pd.DataFrame(cable_data)
|
||||||
|
|
||||||
# Save to Excel
|
# Save to Excel
|
||||||
output_file = 'coordinates.xlsx'
|
output_file = 'coordinates.xlsx'
|
||||||
df.to_excel(output_file, index=False)
|
with pd.ExcelWriter(output_file) as writer:
|
||||||
print(f"Created sample file: {output_file}")
|
df.to_excel(writer, sheet_name='Coordinates', index=False)
|
||||||
|
df_cables.to_excel(writer, sheet_name='Cables', index=False)
|
||||||
|
print(f"Created sample file: {output_file} with sheets 'Coordinates' and 'Cables'")
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
create_template()
|
create_template()
|
||||||
61
project_context.md
Normal file
61
project_context.md
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
# Project Context: Wind Farm Layout Optimization
|
||||||
|
|
||||||
|
**Last Updated:** 2025-12-30
|
||||||
|
**Project Path:** `D:\code\windfarm`
|
||||||
|
**Current Goal:** Optimize offshore wind farm cable layout using MST and K-means algorithms, with realistic constraints and CAD export.
|
||||||
|
|
||||||
|
## 1. System Overview
|
||||||
|
The system simulates and designs the collection system (inter-array cables) for an offshore wind farm.
|
||||||
|
It compares two main algorithms:
|
||||||
|
1. **MST (Minimum Spanning Tree)**: Global optimization of cable length. (Note: Often creates overloaded branches in large farms).
|
||||||
|
2. **Sector Clustering (K-means)**: Angular clustering to divide turbines into radial "strings" or "loops" feeding the substation. This is the preferred method for large offshore farms to ensure cable capacity constraints are met.
|
||||||
|
|
||||||
|
## 2. Key Implementations
|
||||||
|
|
||||||
|
### A. Data Handling
|
||||||
|
- **Generation**: Can generate random or grid layouts.
|
||||||
|
- **Import**: Supports reading coordinates from `coordinates.xlsx` (Columns: Type, ID, X, Y, Power).
|
||||||
|
- **Units**:
|
||||||
|
- Power in **MW** (input).
|
||||||
|
- Coordinates in **meters**.
|
||||||
|
- Voltage: **66 kV** (Code constant `VOLTAGE_LEVEL`).
|
||||||
|
|
||||||
|
### B. Algorithms
|
||||||
|
- **Angular K-means**:
|
||||||
|
- Uses `(cosθ, sinθ)` of the angle relative to substation for clustering.
|
||||||
|
- Eliminates cable crossings between sectors.
|
||||||
|
- **Dynamic Cluster Sizing**:
|
||||||
|
- Automatically calculates the required number of clusters (feeders) based on: `Total_Power / Max_Cable_Capacity`.
|
||||||
|
- Ensures no string exceeds the thermal limit of the largest available cable.
|
||||||
|
|
||||||
|
### C. Electrical Modeling
|
||||||
|
- **Cable Sizing**: Selects from standard cross-sections (35mm² to 400mm²).
|
||||||
|
- **Constraint**: Max cable capacity (400mm²) is approx. **50.4 MW** at 66kV/0.95PF.
|
||||||
|
- **Loss Calc**: $I^2 R$ losses.
|
||||||
|
|
||||||
|
### D. Visualization & Export
|
||||||
|
- **Matplotlib**: Shows layout with color-coded cables (Green=Thin -> Red=Thick).
|
||||||
|
- **DXF Export**: Uses `ezdxf` to generate `.dxf` files compatible with CAD.
|
||||||
|
- Layers: `Substation`, `Turbines`, `Cable_XXmm`.
|
||||||
|
- entities: Circles (Turbines), Polylines (Substation), Lines (Cables).
|
||||||
|
|
||||||
|
## 3. Critical Logic & Constants
|
||||||
|
- **Voltage**: 66,000 V
|
||||||
|
- **Power Factor**: 0.95
|
||||||
|
- **Max Current (400mm²)**: 580 A * 0.8 (derating) = 464 A.
|
||||||
|
- **Unit Conversion**: Critical fix applied to convert MW to Watts for current calculation (`power * 1e6`).
|
||||||
|
|
||||||
|
## 4. Current State & file Structure
|
||||||
|
- `main.py`: Core logic.
|
||||||
|
- `coordinates.xlsx`: Input data (if present).
|
||||||
|
- `wind_farm_design_imported.png`: Latest visualization.
|
||||||
|
- `wind_farm_design.dxf`: Latest CAD export.
|
||||||
|
|
||||||
|
## 5. Known Behaviors
|
||||||
|
- **MST Method**: Will report extremely high costs/losses for large farms because it creates a single tree structure that massively overloads the root cables. This is expected behavior (physically invalid but mathematically correct for unconstrained MST).
|
||||||
|
- **K-means Method**: Produces realistic, valid designs with appropriate cable tapering (e.g., 400mm² at root, 35mm² at leaves).
|
||||||
|
|
||||||
|
## 6. Future Improvements (Optional)
|
||||||
|
- **Obstacle Avoidance**: Currently assumes open ocean.
|
||||||
|
- **Loop Topology**: Current design is radial strings. Reliability could be improved with loop/ring structures.
|
||||||
|
- **Substation Placement Optimization**: Currently fixed or calculated as centroid.
|
||||||
Reference in New Issue
Block a user