Compare commits

...

10 Commits

Author SHA1 Message Date
dmy
d563905f28 添加完整的项目文档README.md
- 提供详细的功能特性说明和算法介绍
- 包含完整的安装和使用指南
- 添加电缆规格配置表格
- 更新输出示例以反映最新功能
- 完善项目结构说明和参数配置
2026-01-02 01:24:02 +08:00
dmy
b5718a0cc2 优化风电场设计方案对比算法:添加旋转算法和双模式对比
- 新增design_with_rotational_sweep函数:实现旋转优化算法
- 修改compare_design_methods函数:
  * 将MST结果纳入对比列表
  * 每个电缆场景运行Base和Rotational两种算法
  * 添加成本和损耗对比显示
  * 优化可视化展示和文件输出
- 改进算法选择逻辑:增强簇数计算的智能化
- 更新输出格式:区分不同算法结果并优化显示
2026-01-02 00:25:33 +08:00
dmy
6cac8806f0 更新风电场设计工具:扩展电缆规格并优化多方案比较功能
- 更新generate_template.py:增加电缆型号至9种,添加Optional字段完善数据结构
- 重构main.py比较流程:
  * 实现多方案结果存储机制
  * 添加交互式DXF导出选择功能(支持单方案/全部导出)
  * 优化多方案可视化对比展示
  * 改进Excel导出功能,整合所有方案数据
  * 增强用户交互体验和结果展示
2026-01-01 23:58:03 +08:00
dmy
34b0d70309 feat: 新增Excel报表导出功能 2026-01-01 16:25:55 +08:00
dmy
6454a2c01e feat: 增强DXF导出和命令行参数支持 2026-01-01 14:31:46 +08:00
dmy
2d50ab0df0 feat: 优化K-means簇数计算逻辑,基于风机数量与电缆型号数量 2026-01-01 13:56:02 +08:00
dmy
41e3cf355c fix: 调整海上风电场电缆成本计算方式 2026-01-01 13:24:44 +08:00
dmy
e6d98297b1 feat: 增加平台高度参数,优化电缆长度计算 2026-01-01 12:23:00 +08:00
dmy
e7e12745d1 feat: 优化风电场集电系统设计,支持电缆规格配置 2026-01-01 11:55:05 +08:00
dmy
4db9d138b8 feat: 优化风电场集电系统设计,支持电缆规格配置
主要更改:
• 新增电缆规格配置支持
  - Excel文件新增Cables工作表,支持自定义电缆参数(截面、载流量、电阻、成本)
  - 实现容量约束扫描算法(Capacitated Sweep),替代原有K-means方法
  - 动态计算所需回路数量,确保每条回路的电缆载流量符合约束

• 代码增强
  - main.py: 集成电缆规格参数,新增命令行参数支持(--clusters手动指定簇数)
  - generate_template.py: 模板文件新增Cables工作表,提供9种标准电缆规格(35mm²-400mm²)

• 文档更新
  - 新增project_context.md: 详细记录项目背景、算法逻辑、电气建模和当前状态
  - 新增GEMINI.md: 开发者偏好配置

优化后的设计更符合实际工程需求,支持电缆容量约束,输出更准确的成本和损耗评估。
2026-01-01 11:39:14 +08:00
6 changed files with 1148 additions and 207 deletions

9
GEMINI.md Normal file
View File

@@ -0,0 +1,9 @@
运行shell时使用powershell模式。
运行python代码前加载uv环境。
编写代码时,尽可能多加注释。
修改工程下的任何代码不需要询问我的同意。
在工程下执行shell不需要我的同意。
在工程下执行任何命令,不需要我的同意。
Please talk to me in Chinese.

146
README.md
View File

@@ -1,85 +1,73 @@
# 海上风电场集电线路设计优化工具
# 海上风电场集电系统设计工具
## 项目简介
一个用于设计和优化海上风电场集电系统的Python工具支持多种布局算法和电缆优化方案。
这是一个用于海上风电场集电线路拓扑设计和优化的Python工具。它专注于解决大规模海上风电场的集电系统规划问题通过算法比较不同设计方案的经济性和技术指标。
## 功能特性
本项目特别针对**海上风电**场景进行了优化考虑了海缆的高昂成本、大功率风机6-10MW以及严格的电缆载流量约束。
- 🌊 多种风机布局生成(随机分布、规则网格)
- 🔌 多种集电系统设计算法:
- 最小生成树MST算法
- K-means聚类算法
- 容量扫描算法Capacitated Sweep
- 旋转优化算法Rotational Sweep
- 📊 多方案对比分析和可视化
- 📋 自动导出DXF图纸和Excel报告
- 🔧 智能电缆规格选择和成本优化
## 核心功能
### 1. 多种布局生成与导入
- **自动生成**支持生成规则的矩阵式Grid风机布局模拟海上风电场常见排布。
- **Excel导入**:支持从 `coordinates.xlsx` 导入自定义的风机和升压站坐标。
- 格式要求:包含 `Type` (Turbine/Substation), `ID`, `X`, `Y`, `Power` 列。
### 2. 智能拓扑优化算法
- **最小生成树 (MST)**
- 计算全局最短路径长度。
- *注意*在大规模风电场中纯MST往往会导致根部电缆严重过载仅作为理论最短路径参考。
- **扇区聚类 (Angular K-means)**
- **无交叉设计**:基于角度(扇区)进行聚类,从几何上杜绝不同回路间的电缆交叉。
- **容量约束**自动计算所需的最小回路数Clusters确保每条集电线路的总功率不超过海缆极限。
### 3. 精细化电气计算与选型
- **动态电缆选型**
- 基于实际潮流计算Power Flow为每一段线路选择最经济且满足载流量的电缆。
- 规格库:覆盖 35mm² 至 400mm² 海缆。
- 参数:电压等级 **66kV**,功率因数 0.95。
- **成本与损耗评估**
- 考虑海缆材料及敷设成本约为陆缆的5倍
- 计算全场集电线路的 $I^2R$ 损耗。
### 4. 工程级可视化与输出
- **可视化图表**
- 生成直观的拓扑连接图。
- **颜色编码**使用不同颜色和粗细区分不同截面的电缆如绿色细线为35mm²红色粗线为400mm²
- 自动保存为高清 PNG 图片。
- **CAD (DXF) 导出**
- 使用 `ezdxf` 生成 `.dxf` 文件。
- 分层管理:风机、升压站、各规格电缆分层显示,可直接导入 AutoCAD 进行后续工程设计。
## 安装说明
### 环境要求
- Python >= 3.10
- 推荐使用 [uv](https://github.com/astral-sh/uv) 进行依赖管理。
### 安装依赖
## 安装依赖
```bash
# 使用 uv (推荐)
uv add numpy pandas matplotlib scipy scikit-learn networkx ezdxf openpyxl
# 或使用 pip
pip install numpy pandas matplotlib scipy scikit-learn networkx ezdxf openpyxl
pip install numpy pandas matplotlib scikit-learn scipy networkx
```
## 使用方法
### 1. 运行主程序
### 基本用法
```bash
# 使用 uv
uv run main.py
# 或直接运行
python main.py
```
### 2. 数据输入模式
### 指定数据文件
程序会自动检测当前目录下是否存在 `coordinates.xlsx`
```bash
python main.py --excel wind_farm_coordinates.xlsx
```
- **存在**:优先读取 Excel 文件中的坐标数据进行计算。
- **不存在**:自动生成 30 台风机的规则布局Grid Layout进行演示。
### 覆盖默认簇数
### 3. 结果输出
```bash
python main.py --clusters 20
```
程序运行结束后会:
1. 在终端打印详细的成本、损耗及电缆统计数据。
2. 弹窗显示拓扑对比图,并保存为 `wind_farm_design_imported.png` (或 `offshore_...png`)。
3. 生成 CAD 图纸文件 `wind_farm_design.dxf`
## 算法说明
### 1. MST Method最小生成树
- 使用最小生成树连接所有风机到海上变电站
- 简单高效,适合初步设计
### 2. K-means Clustering
- 将风机分组到多个回路中
- 平衡每回路的功率分配
### 3. Capacitated Sweep容量扫描
- 考虑电缆容量约束的智能分组
- 支持多种电缆规格自动选择
### 4. Rotational Sweep旋转优化
- 在容量扫描基础上进行旋转优化
- 进一步降低总成本和损耗
## 输出文件
1. **可视化图片**`wind_farm_design_comparison.png`
- 不同算法的设计方案对比图
2. **CAD图纸**`wind_farm_design.dxf`
- 可导入CAD软件的详细设计图纸
3. **数据报告**`wind_farm_design.xlsx`
- 包含所有方案的详细技术参数和成本分析
## 关键参数说明
@@ -91,18 +79,36 @@ POWER_FACTOR = 0.95 # 功率因数
cost_multiplier = 5.0 # 海缆相对于陆缆的成本倍数
```
## 电缆规格配置
项目支持多种电缆规格,可在 `generate_template.py` 中配置:
| 截面积(mm²) | 容量(MW) | 电阻(Ω/km) | 成本(元/m) |
|-------------|----------|------------|------------|
| 35 | 150 | 0.524 | 80 |
| 70 | 215 | 0.268 | 120 |
| 95 | 260 | 0.193 | 150 |
| 120 | 295 | 0.153 | 180 |
| 150 | 330 | 0.124 | 220 |
| 185 | 370 | 0.0991 | 270 |
| 240 | 425 | 0.0754 | 350 |
| 300 | 500 | 0.0601 | 450 |
| 400 | 580 | 0.0470 | 600 |
## 输出示例
```text
系统设计参数: 总功率 2000.0 MW, 单回路最大容量 50.4 MW
计算建议回路数(簇数): 48 (最小需求 40)
===== 开始比较电缆方案 =====
[Sector Clustering] 电缆统计:
70mm²: 48 条
185mm²: 37 条
400mm²: 40 条
--- All Cables (Base) ---
[Base] Cost: ¥12,456,789.12 | Loss: 234.56 kW
[Rotational] Cost: ¥12,234,567.89 | Loss: 223.45 kW
成功导出DXF文件: wind_farm_design.dxf
--- High Current (Base) ---
[Base] Cost: ¥11,987,654.32 | Loss: 245.67 kW
[Rotational] Cost: ¥11,876,543.21 | Loss: 234.56 kW
推荐方案: High Current (Rotational) (默认)
```
## 许可证

241
esau_williams.py Normal file
View File

@@ -0,0 +1,241 @@
import numpy as np
import pandas as pd
from scipy.spatial import distance_matrix
def design_with_esau_williams(turbines_df, substation_coord, max_capacity_mw):
"""
使用 Esau-Williams 启发式算法解决容量受限最小生成树 (CMST) 问题。
参数:
turbines_df: 包含风机信息的 DataFrame (必须包含 'x', 'y', 'power', 'id')
substation_coord: 升压站坐标 (x, y)
max_capacity_mw: 单根电缆最大允许功率 (MW)
返回:
connections: 连接列表 [(source, target, length), ...]
turbines_with_cluster: 带有 'cluster' 列的 turbines DataFrame (用于兼容性)
"""
# 数据准备
n_turbines = len(turbines_df)
coords = turbines_df[['x', 'y']].values
powers = turbines_df['power'].values
ids = turbines_df['id'].values
# 升压站坐标
if substation_coord.ndim > 1:
sx, sy = substation_coord[0][0], substation_coord[0][1]
else:
sx, sy = substation_coord[0], substation_coord[1]
# 1. 计算距离矩阵
# 风机到风机
dist_matrix = distance_matrix(coords, coords)
# 风机到升压站
dists_to_sub = np.sqrt((coords[:, 0] - sx)**2 + (coords[:, 1] - sy)**2)
# 2. 初始化组件 (Components)
# 初始状态下,每个风机是一个独立的组件,直接连接到升压站
# 为了方便查找,我们维护一个 components 字典
# key: component_root_id (代表该组件的唯一标识)
# value: {
# 'members': {node_idx, ...},
# 'total_power': float,
# 'gate_node': int (连接到升压站的节点索引),
# 'gate_cost': float (gate_node 到升压站的距离)
# }
components = {}
for i in range(n_turbines):
components[i] = {
'members': {i},
'total_power': powers[i],
'gate_node': i,
'gate_cost': dists_to_sub[i]
}
# 记录已经建立的连接 (不包括通往升压站的默认连接)
# 格式: (u, v, length)
established_edges = []
# 记录已建立连接的坐标,用于交叉检查: [((x1, y1), (x2, y2)), ...]
established_lines = []
def do_intersect(p1, p2, p3, p4):
"""
检测线段 (p1, p2) 和 (p3, p4) 是否严格相交 (不包括端点接触)
"""
# 检查是否共享端点
if (p1[0]==p3[0] and p1[1]==p3[1]) or (p1[0]==p4[0] and p1[1]==p4[1]) or \
(p2[0]==p3[0] and p2[1]==p3[1]) or (p2[0]==p4[0] and p2[1]==p4[1]):
return False
def ccw(A, B, C):
# 向量叉积
return (C[1]-A[1]) * (B[0]-A[0]) - (B[1]-A[1]) * (C[0]-A[0])
# 如果跨立实验符号相反,则相交
d1 = ccw(p1, p2, p3)
d2 = ccw(p1, p2, p4)
d3 = ccw(p3, p4, p1)
d4 = ccw(p3, p4, p2)
# 严格相交判断 (忽略共线重叠的情况,视为不交叉)
if ((d1 > 1e-9 and d2 < -1e-9) or (d1 < -1e-9 and d2 > 1e-9)) and \
((d3 > 1e-9 and d4 < -1e-9) or (d3 < -1e-9 and d4 > 1e-9)):
return True
return False
# 3. 迭代优化
while True:
# 预先收集当前所有组件的 Gate Edges (连接升压站的线段)
# 格式: {cid: (gate_node_coord, substation_coord)}
current_gate_lines = {}
sub_coord_tuple = (sx, sy)
for cid, data in components.items():
gate_idx = data['gate_node']
current_gate_lines[cid] = (coords[gate_idx], sub_coord_tuple)
# 收集所有候选移动: (tradeoff, u, v, cid_u, cid_v)
candidates = []
# 建立 node_to_comp_id 映射以便快速查找
node_to_comp_id = {}
for cid, data in components.items():
for member in data['members']:
node_to_comp_id[member] = cid
# 遍历所有边 (i, j)
for i in range(n_turbines):
cid_i = node_to_comp_id[i]
gate_cost_i = components[cid_i]['gate_cost']
for j in range(n_turbines):
if i == j: continue
cid_j = node_to_comp_id[j]
# 必须是不同组件
if cid_i == cid_j:
continue
# 检查容量约束
if components[cid_i]['total_power'] + components[cid_j]['total_power'] > max_capacity_mw:
continue
# 计算 Tradeoff
dist_ij = dist_matrix[i, j]
tradeoff = dist_ij - gate_cost_i
# 只有当 tradeoff < 0 时,合并才是有益的
if tradeoff < -1e-9:
candidates.append((tradeoff, i, j, cid_i, cid_j))
# 按 tradeoff 排序 (从小到大,越小越好)
candidates.sort(key=lambda x: x[0])
best_move = None
# 延迟检测: 从最好的开始检查交叉
for cand in candidates:
tradeoff, u, v, cid_u, cid_v = cand
p_u = coords[u]
p_v = coords[v]
# 快速包围盒测试 (AABB) 准备
min_x_uv, max_x_uv = min(p_u[0], p_v[0]), max(p_u[0], p_v[0])
min_y_uv, max_y_uv = min(p_u[1], p_v[1]), max(p_u[1], p_v[1])
is_crossing = False
# 1. 检查与已固定的内部边的交叉
for line in established_lines:
p_a, p_b = line[0], line[1]
if max(p_a[0], p_b[0]) < min_x_uv or min(p_a[0], p_b[0]) > max_x_uv or \
max(p_a[1], p_b[1]) < min_y_uv or min(p_a[1], p_b[1]) > max_y_uv:
continue
if do_intersect(p_u, p_v, p_a, p_b):
is_crossing = True
break
if is_crossing:
continue
# 2. 检查与所有活跃 Gate Edges 的交叉 (排除被移除的那个)
# 正在合并 cid_u -> cid_v意味着 cid_u 的 Gate 将被移除。
# 但 cid_v 的 Gate 以及其他所有组件的 Gate 仍然存在。
for cid, gate_line in current_gate_lines.items():
if cid == cid_u:
continue # 这个 Gate 即将移除,不构成障碍
p_a, p_b = gate_line[0], gate_line[1]
if max(p_a[0], p_b[0]) < min_x_uv or min(p_a[0], p_b[0]) > max_x_uv or \
max(p_a[1], p_b[1]) < min_y_uv or min(p_a[1], p_b[1]) > max_y_uv:
continue
if do_intersect(p_u, p_v, p_a, p_b):
is_crossing = True
break
if not is_crossing:
best_move = (u, v, cid_u, cid_v)
break
# 如果没有找到有益的合并,或者所有可行合并都会增加成本,则停止
if best_move is None:
break
# 执行合并
u, v, cid_u, cid_v = best_move
# 将 cid_u 并入 cid_v
# 1. 记录新边
established_edges.append((u, v, dist_matrix[u, v]))
established_lines.append((coords[u], coords[v]))
# 2. 更新组件信息
comp_u = components[cid_u]
comp_v = components[cid_v]
# 合并成员
comp_v['members'].update(comp_u['members'])
comp_v['total_power'] += comp_u['total_power']
# Gate 节点和 Cost 保持 cid_v 的不变
# (因为我们将 U 接到了 V 上U 的原 gate 被移除V 的 gate 仍是通往升压站的路径)
# 3. 删除旧组件
del components[cid_u]
# 4. 构建最终结果
connections = []
# 添加内部边 (风机间)
for u, v, length in established_edges:
source = f'turbine_{u}'
target = f'turbine_{v}'
connections.append((source, target, length))
# 添加 Gate 边 (风机到升压站)
# 此时 components 中剩下的每个组件都有一个 gate_node 连接到 Substation
cluster_mapping = {} # node_id -> cluster_id (0..N-1)
for idx, (cid, data) in enumerate(components.items()):
gate_node = data['gate_node']
gate_cost = data['gate_cost']
connections.append((f'turbine_{gate_node}', 'substation', gate_cost))
# 记录 cluster id
for member in data['members']:
cluster_mapping[member] = idx
# 更新 turbines DataFrame
turbines_with_cluster = turbines_df.copy()
turbines_with_cluster['cluster'] = turbines_with_cluster['id'].map(cluster_mapping)
return connections, turbines_with_cluster

View File

@@ -11,7 +11,8 @@ def create_template():
'ID': 'Sub1',
'X': 4000,
'Y': -800,
'Power': 0
'Power': 0,
'PlatformHeight': 0
})
# Add Turbines (Grid layout)
@@ -29,15 +30,32 @@ def create_template():
'ID': i,
'X': x,
'Y': y,
'Power': np.random.uniform(6.0, 10.0)
'Power': np.random.uniform(6.0, 10.0),
'PlatformHeight': 0
})
df = pd.DataFrame(data)
# Create Cable data
cable_data = [
{'CrossSection': 35, 'Capacity': 150, 'Resistance': 0.524, 'Cost': 80, 'Optional': ''},
{'CrossSection': 70, 'Capacity': 215, 'Resistance': 0.268, 'Cost': 120, 'Optional': ''},
{'CrossSection': 95, 'Capacity': 260, 'Resistance': 0.193, 'Cost': 150, 'Optional': ''},
{'CrossSection': 120, 'Capacity': 295, 'Resistance': 0.153, 'Cost': 180, 'Optional': ''},
{'CrossSection': 150, 'Capacity': 330, 'Resistance': 0.124, 'Cost': 220, 'Optional': ''},
{'CrossSection': 185, 'Capacity': 370, 'Resistance': 0.0991, 'Cost': 270, 'Optional': ''},
{'CrossSection': 240, 'Capacity': 425, 'Resistance': 0.0754, 'Cost': 350, 'Optional': ''},
{'CrossSection': 300, 'Capacity': 500, 'Resistance': 0.0601, 'Cost': 450, 'Optional': ''},
{'CrossSection': 400, 'Capacity': 580, 'Resistance': 0.0470, 'Cost': 600, 'Optional': ''}
]
df_cables = pd.DataFrame(cable_data)
# Save to Excel
output_file = 'coordinates.xlsx'
df.to_excel(output_file, index=False)
print(f"Created sample file: {output_file}")
with pd.ExcelWriter(output_file) as writer:
df.to_excel(writer, sheet_name='Coordinates', index=False)
df_cables.to_excel(writer, sheet_name='Cables', index=False)
print(f"Created sample file: {output_file} with sheets 'Coordinates' and 'Cables'")
if __name__ == "__main__":
create_template()

854
main.py
View File

@@ -7,11 +7,18 @@ from sklearn.cluster import KMeans
from collections import defaultdict
import networkx as nx
import math
import argparse
import os
from esau_williams import design_with_esau_williams
# 设置matplotlib支持中文显示
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei', 'SimHei', 'Arial']
plt.rcParams['axes.unicode_minus'] = False
# 常量定义
VOLTAGE_LEVEL = 66000 # 66kV
POWER_FACTOR = 0.95
# 1. 生成风电场数据(实际应用中替换为真实坐标)
def generate_wind_farm_data(n_turbines=30, seed=42, layout='random', spacing=800):
"""
@@ -61,6 +68,7 @@ def generate_wind_farm_data(n_turbines=30, seed=42, layout='random', spacing=800
'x': x_coords,
'y': y_coords,
'power': power_ratings,
'platform_height': np.zeros(n_turbines),
'cumulative_power': np.zeros(n_turbines) # 用于后续计算
})
@@ -69,11 +77,19 @@ def generate_wind_farm_data(n_turbines=30, seed=42, layout='random', spacing=800
# 1.5 从Excel加载数据
def load_data_from_excel(file_path):
"""
从Excel文件读取风机和升压站坐标
Excel格式要求包含列: Type (Turbine/Substation), ID, X, Y, Power
从Excel文件读取风机和升压站坐标,以及可选的电缆规格
Excel格式要求:
- Sheet 'Coordinates' (或第一个Sheet): Type (Turbine/Substation), ID, X, Y, Power
- Sheet 'Cables' (可选): CrossSection, Capacity, Resistance, Cost
"""
try:
df = pd.read_excel(file_path)
xl = pd.ExcelFile(file_path)
# 读取坐标数据
if 'Coordinates' in xl.sheet_names:
df = pd.read_excel(xl, 'Coordinates')
else:
df = pd.read_excel(xl, 0)
# 标准化列名(忽略大小写)
df.columns = [c.capitalize() for c in df.columns]
@@ -94,6 +110,15 @@ def load_data_from_excel(file_path):
if len(turbines_df) == 0:
raise ValueError("未在文件中找到风机(Turbine)数据")
# 尝试获取平台高度列 (兼容不同命名)
platform_height_col = None
for col in turbines_df.columns:
if col.lower().replace(' ', '') == 'platformheight':
platform_height_col = col
break
platform_heights = turbines_df[platform_height_col].values if platform_height_col else np.zeros(len(turbines_df))
# 重置索引并整理格式
turbines = pd.DataFrame({
'id': range(len(turbines_df)),
@@ -101,11 +126,41 @@ def load_data_from_excel(file_path):
'x': turbines_df['X'].values,
'y': turbines_df['Y'].values,
'power': turbines_df['Power'].values,
'platform_height': platform_heights,
'cumulative_power': np.zeros(len(turbines_df))
})
# 读取电缆数据 (如果存在)
cable_specs = None
if 'Cables' in xl.sheet_names:
cables_df = pd.read_excel(xl, 'Cables')
# 标准化列名
cables_df.columns = [c.replace(' ', '').capitalize() for c in cables_df.columns] # Handle 'Cross Section' vs 'CrossSection'
# 尝试匹配列
# 目标格式: (截面mm², 载流量A, 电阻Ω/km, 基准价格元/m, 是否可选)
specs = []
for _, row in cables_df.iterrows():
# 容错处理列名
section = row.get('Crosssection', row.get('Section', 0))
capacity = row.get('Capacity', row.get('Current', 0))
resistance = row.get('Resistance', 0)
cost = row.get('Cost', row.get('Price', 0))
optional_val = str(row.get('Optional', '')).strip().upper()
is_optional = (optional_val == 'Y')
if section > 0 and capacity > 0:
specs.append((section, capacity, resistance, cost, is_optional))
if specs:
specs.sort(key=lambda x: x[1]) # 按载流量排序
cable_specs = specs
print(f"成功加载: {len(turbines)} 台风机, {len(substation)} 座升压站")
return turbines, substation
if cable_specs:
print(f"成功加载: {len(cable_specs)} 种电缆规格")
return turbines, substation, cable_specs
except Exception as e:
print(f"读取Excel文件失败: {str(e)}")
@@ -220,20 +275,254 @@ def design_with_kmeans(turbines, substation, n_clusters=3):
return cluster_connections + substation_connections, turbines
# 常量定义
VOLTAGE_LEVEL = 66000 # 66kV
POWER_FACTOR = 0.95
# 4. 电缆选型函数(简化版)
def select_cable(power, length, is_offshore=False):
# 3.5 带容量约束的扇区扫描算法 (Capacitated Sweep) - 基础版
def design_with_capacitated_sweep(turbines, substation, cable_specs=None):
"""
基于功率和长度选择合适的电缆截面
:param is_offshore: 是否为海上环境(成本更高)
使用带容量约束的扇区扫描算法设计集电线路 (基础版:单次扫描)
原理:
1. 计算所有风机相对于升压站的角度。
2. 找到角度间隔最大的位置作为起始“切割线”,以避免切断密集的风机群。
3. 沿圆周方向扫描,贪婪地将风机加入当前回路,直到达到电缆容量上限。
4. 满载后开启新回路。
"""
# 成本乘数:海缆材料+敷设成本通常是陆缆的4-6倍
cost_multiplier = 5.0 if is_offshore else 1.0
# 1. 获取电缆最大容量
max_mw = get_max_cable_capacity_mw(cable_specs)
# print(f"DEBUG: 扇区扫描算法启动 - 单回路容量限制: {max_mw:.2f} MW")
# 电缆规格库: (截面mm², 载流量A, 电阻Ω/km, 基准价格元/m)
substation_coord = substation[0]
# 2. 计算角度 (使用 arctan2 返回 -pi 到 pi)
# 避免直接修改原始DataFrame使用副本
work_df = turbines.copy()
dx = work_df['x'] - substation_coord[0]
dy = work_df['y'] - substation_coord[1]
work_df['angle'] = np.arctan2(dy, dx)
# 3. 寻找最佳起始角度 (最大角度间隙)
# 按角度排序
work_df = work_df.sort_values('angle').reset_index(drop=True) # 重置索引方便切片
angles = work_df['angle'].values
n = len(angles)
if n > 1:
# 计算相邻角度差
diffs = np.diff(angles)
# 计算首尾角度差 (跨越 ±pi 处)
wrap_diff = (2 * np.pi) - (angles[-1] - angles[0])
diffs = np.append(diffs, wrap_diff)
# 找到最大间隙的索引
max_gap_idx = np.argmax(diffs)
# 旋转数组,使最大间隙成为新的起点
start_idx = (max_gap_idx + 1) % n
if start_idx != 0:
work_df = pd.concat([work_df.iloc[start_idx:], work_df.iloc[:start_idx]]).reset_index(drop=True)
# 4. 贪婪分组 (Capacity Constrained Clustering)
work_df['cluster'] = -1
cluster_id = 0
current_power = 0
current_indices = []
for i, row in work_df.iterrows():
p = row['power']
if len(current_indices) > 0 and (current_power + p > max_mw):
work_df.loc[current_indices, 'cluster'] = cluster_id
cluster_id += 1
current_power = 0
current_indices = []
current_indices.append(i)
current_power += p
if current_indices:
work_df.loc[current_indices, 'cluster'] = cluster_id
cluster_id += 1
# 建立 id -> cluster 的映射
id_to_cluster = dict(zip(work_df['id'], work_df['cluster']))
turbines['cluster'] = turbines['id'].map(id_to_cluster)
# 5. 对每个簇内部进行MST连接
cluster_connections = []
substation_connections = []
n_clusters = cluster_id
for cid in range(n_clusters):
cluster_turbines = turbines[turbines['cluster'] == cid]
if len(cluster_turbines) == 0:
continue
cluster_indices = cluster_turbines.index.tolist()
coords = cluster_turbines[['x', 'y']].values
if len(cluster_indices) > 1:
dist_matrix = distance_matrix(coords, coords)
mst = minimum_spanning_tree(dist_matrix).toarray()
for i in range(len(cluster_indices)):
for j in range(len(cluster_indices)):
if mst[i, j] > 0:
source = f'turbine_{cluster_indices[i]}'
target = f'turbine_{cluster_indices[j]}'
cluster_connections.append((source, target, mst[i, j]))
# 连接到升压站
dists = np.sqrt((cluster_turbines['x'] - substation_coord[0])**2 +
(cluster_turbines['y'] - substation_coord[1])**2)
closest_id = dists.idxmin()
min_dist = dists.min()
substation_connections.append((f'turbine_{closest_id}', 'substation', min_dist))
return cluster_connections + substation_connections, turbines
# 3.6 旋转扫描算法 (Rotational Sweep) - 优化版
def design_with_rotational_sweep(turbines, substation, cable_specs=None):
"""
使用带容量约束的扇区扫描算法设计集电线路 (优化版:旋转扫描)
原理:
1. 计算所有风机相对于升压站的角度并排序。
2. 遍历所有可能的起始角度(即尝试以每一台风机作为扫描的起点)。
3. 对每种起始角度,贪婪地将风机加入回路直到满载。
4. 对每种分组方案计算MST成本选出总成本最低的方案。
"""
# 1. 获取电缆最大容量
max_mw = get_max_cable_capacity_mw(cable_specs)
# print(f"DEBUG: 扇区扫描算法启动 - 单回路容量限制: {max_mw:.2f} MW")
substation_coord = substation[0]
# 2. 计算角度 (使用 arctan2 返回 -pi 到 pi)
work_df = turbines.copy()
dx = work_df['x'] - substation_coord[0]
dy = work_df['y'] - substation_coord[1]
work_df['angle'] = np.arctan2(dy, dx)
# 按角度排序
work_df = work_df.sort_values('angle').reset_index(drop=True)
n_turbines = len(work_df)
best_cost = float('inf')
best_connections = []
best_turbines_state = None
best_start_idx = -1
# 遍历所有可能的起始点
for start_idx in range(n_turbines):
# 构建当前旋转顺序的风机列表
if start_idx == 0:
current_df = work_df.copy()
else:
current_df = pd.concat([work_df.iloc[start_idx:], work_df.iloc[:start_idx]]).reset_index(drop=True)
# --- 贪婪分组 ---
current_df['cluster'] = -1
cluster_id = 0
current_power = 0
current_indices_in_df = []
powers = current_df['power'].values
for i in range(n_turbines):
p = powers[i]
if len(current_indices_in_df) > 0 and (current_power + p > max_mw):
current_df.loc[current_indices_in_df, 'cluster'] = cluster_id
cluster_id += 1
current_power = 0
current_indices_in_df = []
current_indices_in_df.append(i)
current_power += p
if current_indices_in_df:
current_df.loc[current_indices_in_df, 'cluster'] = cluster_id
cluster_id += 1
# --- 计算该分组方案的成本 ---
current_total_length = 0
n_clusters = cluster_id
for cid in range(n_clusters):
cluster_rows = current_df[current_df['cluster'] == cid]
if len(cluster_rows) == 0: continue
# 1. 簇内 MST 长度
coords = cluster_rows[['x', 'y']].values
if len(cluster_rows) > 1:
dm = distance_matrix(coords, coords)
mst = minimum_spanning_tree(dm).toarray()
mst_len = mst.sum()
current_total_length += mst_len
# 2. 连接升压站长度
dists = np.sqrt((cluster_rows['x'] - substation_coord[0])**2 +
(cluster_rows['y'] - substation_coord[1])**2)
min_dist = dists.min()
current_total_length += min_dist
# --- 比较并保存最佳结果 ---
if current_total_length < best_cost:
best_cost = current_total_length
best_start_idx = start_idx
best_id_to_cluster = dict(zip(current_df['id'], current_df['cluster']))
# --- 根据最佳方案重新生成详细连接 ---
turbines['cluster'] = turbines['id'].map(best_id_to_cluster)
final_connections = []
unique_clusters = turbines['cluster'].unique()
unique_clusters = [c for c in unique_clusters if not pd.isna(c) and c >= 0]
for cid in unique_clusters:
cluster_turbines = turbines[turbines['cluster'] == cid]
if len(cluster_turbines) == 0: continue
cluster_indices = cluster_turbines.index.tolist()
coords = cluster_turbines[['x', 'y']].values
if len(cluster_indices) > 1:
dist_matrix_local = distance_matrix(coords, coords)
mst = minimum_spanning_tree(dist_matrix_local).toarray()
for i in range(len(cluster_indices)):
for j in range(len(cluster_indices)):
if mst[i, j] > 0:
source = f'turbine_{cluster_indices[i]}'
target = f'turbine_{cluster_indices[j]}'
final_connections.append((source, target, mst[i, j]))
dists = np.sqrt((cluster_turbines['x'] - substation_coord[0])**2 +
(cluster_turbines['y'] - substation_coord[1])**2)
closest_idx_in_df = dists.idxmin()
min_dist = dists.min()
final_connections.append((f'turbine_{closest_idx_in_df}', 'substation', min_dist))
return final_connections, turbines
def get_max_cable_capacity_mw(cable_specs=None):
"""
计算给定电缆规格中能够承载的最大功率 (单位: MW)。
基于提供的电缆规格列表,选取最大载流量,结合系统电压和功率因数计算理论最大传输功率。
参数:
cable_specs (list, optional): 电缆规格列表。每个元素应包含 (截面积, 额定电流, 单价, 损耗系数)。
返回:
float: 最大功率承载能力 (MW)。
异常:
Exception: 当未提供 cable_specs 时抛出,提示截面不满足。
"""
if cable_specs is None:
# Default cable specs if not provided (same as in evaluate_design)
cable_specs = [
(35, 150, 0.524, 80),
(70, 215, 0.268, 120),
@@ -242,44 +531,23 @@ def select_cable(power, length, is_offshore=False):
(150, 330, 0.124, 220),
(185, 370, 0.0991, 270),
(240, 425, 0.0754, 350),
(300, 500, 0.0601, 450), # 增加大截面适应海上大功率
(300, 500, 0.0601, 450),
(400, 580, 0.0470, 600)
]
# 估算电流
# power是MW, 换算成W需要 * 1e6
current = (power * 1e6) / (np.sqrt(3) * VOLTAGE_LEVEL * POWER_FACTOR)
# 从所有电缆规格中找到最大的额定电流容量
max_current_capacity = max(spec[1] for spec in cable_specs)
# 选择满足载流量的最小电缆
selected_spec = None
for spec in cable_specs:
if current <= spec[1] * 0.8: # 80%负载率
selected_spec = spec
break
if selected_spec is None:
selected_spec = cable_specs[-1]
resistance = selected_spec[2] * length / 1000 # 电阻(Ω)
cost = selected_spec[3] * length * cost_multiplier # 电缆成本(含敷设)
return {
'cross_section': selected_spec[0],
'current_capacity': selected_spec[1],
'resistance': resistance,
'cost': cost,
'current': current
}
def get_max_cable_capacity_mw():
"""计算最大电缆(400mm2)能承载的最大功率(MW)"""
# 400mm2载流量580A
max_current = 580 * 0.8 # 80%降额
# 计算最大功率P = √3 * U * I * cosφ
# 这里假设降额系数为 1 (不降额)
max_current = max_current_capacity * 1
max_power_w = np.sqrt(3) * VOLTAGE_LEVEL * max_current * POWER_FACTOR
return max_power_w / 1e6 # MW
# 将单位从 W 转换为 MW
return max_power_w / 1e6
# 5. 计算集电线路方案成本
def evaluate_design(turbines, connections, substation, is_offshore=False):
def evaluate_design(turbines, connections, substation, cable_specs=None, is_offshore=False, method_name="Unknown Method"):
"""评估设计方案的总成本和损耗"""
total_cost = 0
total_loss = 0
@@ -320,14 +588,31 @@ def evaluate_design(turbines, connections, substation, is_offshore=False):
except nx.NetworkXNoPath:
pass
# DEBUG: 打印最大功率流
max_power = max(power_flow.values()) if power_flow else 0
print(f"DEBUG: 最大线路功率 = {max_power:.2f} MW")
# DEBUG: 打印最大功率流 (不含升压站本身)
node_powers = [v for k, v in power_flow.items() if k != 'substation']
max_power = max(node_powers) if node_powers else 0
print(f"DEBUG [{method_name}]: 最大线路功率 = {max_power:.2f} MW")
# 计算成本和损耗
detailed_connections = []
for source, target, length in connections:
# Determine vertical length (PlatformHeight)
vertical_length = 0
if source.startswith('turbine_'):
tid = int(source.split('_')[1])
vertical_length += turbines.loc[tid, 'platform_height']
if target.startswith('turbine_'):
tid = int(target.split('_')[1])
vertical_length += turbines.loc[tid, 'platform_height']
# Calculate effective length with margin
# Total Length = (Horizontal Distance + Vertical Up/Down) * 1.03
horizontal_length = length
effective_length = (horizontal_length + vertical_length) * 1.03
# 确定该段线路承载的总功率
if source.startswith('turbine_') and target.startswith('turbine_'):
# 风机间连接,取下游节点功率
@@ -345,13 +630,57 @@ def evaluate_design(turbines, connections, substation, is_offshore=False):
power = 0
# 电缆选型
cable = select_cable(power, length, is_offshore=is_offshore)
# 成本乘数如果Excel中已包含敷设费用则设为1.0
cost_multiplier = 1.0 if is_offshore else 1.0
# 默认电缆规格库 (如果未提供)
if cable_specs is None:
cable_specs_to_use = [
(35, 150, 0.524, 80),
(70, 215, 0.268, 120),
(95, 260, 0.193, 150),
(120, 295, 0.153, 180),
(150, 330, 0.124, 220),
(185, 370, 0.0991, 270),
(240, 425, 0.0754, 350),
(300, 500, 0.0601, 450),
(400, 580, 0.0470, 600)
]
else:
cable_specs_to_use = cable_specs
# 估算电流
current = (power * 1e6) / (np.sqrt(3) * VOLTAGE_LEVEL * POWER_FACTOR)
# 选择满足载流量的最小电缆
selected_spec = None
for spec in cable_specs_to_use:
if current <= spec[1] * 1: # 100%负载率
selected_spec = spec
break
if selected_spec is None:
selected_spec = cable_specs_to_use[-1]
print(f"WARNING [{method_name}]: Current {current:.2f} A (Power: {power:.2f} MW) exceeds max cable capacity {selected_spec[1]} A!")
resistance = selected_spec[2] * effective_length / 1000 # 电阻(Ω)
cost = selected_spec[3] * effective_length * cost_multiplier # 电缆成本(含敷设)
cable = {
'cross_section': selected_spec[0],
'current_capacity': selected_spec[1],
'resistance': resistance,
'cost': cost,
'current': current
}
# 记录详细信息
detailed_connections.append({
'source': source,
'target': target,
'length': length,
'horizontal_length': horizontal_length,
'vertical_length': vertical_length,
'length': effective_length, # effective length used for stats
'power': power,
'cable': cable
})
@@ -385,15 +714,32 @@ def export_to_dxf(turbines, substation, connections_details, filename):
# 1. 建立图层
doc.layers.add('Substation', color=1) # Red
doc.layers.add('Turbines', color=5) # Blue
doc.layers.add('Cable_35mm', color=3) # Green
doc.layers.add('Cable_70mm', color=130)
doc.layers.add('Cable_95mm', color=150)
doc.layers.add('Cable_120mm', color=4) # Cyan
doc.layers.add('Cable_150mm', color=6) # Magenta
doc.layers.add('Cable_185mm', color=30) # Orange
doc.layers.add('Cable_240mm', color=1) # Red
doc.layers.add('Cable_300mm', color=250)
doc.layers.add('Cable_400mm', color=7) # White/Black
# 动态确定电缆颜色
# 提取所有使用到的电缆截面
used_sections = sorted(list(set(conn['cable']['cross_section'] for conn in connections_details)))
# 定义颜色映射规则 (AutoCAD Color Index)
# 1=Red, 2=Yellow, 3=Green, 4=Cyan, 5=Blue, 6=Magenta
color_rank = [
2, # 1st (Smallest): Yellow
3, # 2nd: Green
1, # 3rd: Red
5, # 4th: Blue
6 # 5th: Magenta
]
default_color = 3 # Others: Green
# 创建电缆图层
for i, section in enumerate(used_sections):
if i < len(color_rank):
c = color_rank[i]
else:
c = default_color
layer_name = f'Cable_{section}mm'
if layer_name not in doc.layers:
doc.layers.add(layer_name, color=c)
# 2. 绘制升压站
sx, sy = substation[0, 0], substation[0, 1]
@@ -418,7 +764,6 @@ def export_to_dxf(turbines, substation, connections_details, filename):
source, target = conn['source'], conn['target']
section = conn['cable']['cross_section']
# 获取坐标
if source == 'substation':
p1 = (substation[0, 0], substation[0, 1])
else:
@@ -436,8 +781,8 @@ def export_to_dxf(turbines, substation, connections_details, filename):
if layer_name not in doc.layers:
doc.layers.add(layer_name)
# 绘制线
msp.add_line(p1, p2, dxfattribs={'layer': layer_name})
# 绘制二维多段线
msp.add_lwpolyline([p1, p2], dxfattribs={'layer': layer_name})
# 添加电缆型号文字(可选,在线的中点)
# mid_x = (p1[0] + p2[0]) / 2
@@ -450,6 +795,103 @@ def export_to_dxf(turbines, substation, connections_details, filename):
except Exception as e:
print(f"导出DXF失败: {e}")
# 6.6 导出Excel报表
def export_to_excel(connections_details, filename):
"""
将设计方案详情导出为Excel文件
:param connections_details: evaluate_design返回的'details'列表
"""
data = []
for conn in connections_details:
data.append({
'Source': conn['source'],
'Target': conn['target'],
'Horizontal Length (m)': conn['horizontal_length'],
'Vertical Length (m)': conn['vertical_length'],
'Effective Length (m)': conn['length'],
'Cable Type (mm²)': conn['cable']['cross_section'],
'Current (A)': conn['cable']['current'],
'Power (MW)': conn['power'],
'Resistance (Ω)': conn['cable']['resistance'],
'Cost (¥)': conn['cable']['cost']
})
df = pd.DataFrame(data)
# 汇总统计
summary = {
'Total Cost (¥)': df['Cost (¥)'].sum(),
'Total Effective Length (m)': df['Effective Length (m)'].sum(),
'Total Vertical Length (m)': df['Vertical Length (m)'].sum()
}
summary_df = pd.DataFrame([summary])
try:
with pd.ExcelWriter(filename) as writer:
df.to_excel(writer, sheet_name='Cable Schedule', index=False)
summary_df.to_excel(writer, sheet_name='Summary', index=False)
print(f"成功导出Excel文件: {filename}")
except Exception as e:
print(f"导出Excel失败: {e}")
# 6.6 导出多方案对比Excel报表
def export_all_scenarios_to_excel(results, filename):
"""
导出所有方案的对比结果到 Excel
:param results: 包含各方案评估结果的列表
:param filename: 输出文件路径
"""
try:
with pd.ExcelWriter(filename) as writer:
# 1. 总览 Sheet
summary_data = []
for res in results:
# 获取回路数
n_circuits = 0
if 'turbines' in res and 'cluster' in res['turbines'].columns:
n_circuits = res['turbines']['cluster'].nunique()
summary_data.append({
'Scenario': res['name'],
'Total Cost (¥)': res['cost'],
'Total Loss (kW)': res['loss'],
'Num Circuits': n_circuits,
# 计算电缆统计
'Total Cable Length (m)': sum(d['length'] for d in res['eval']['details'])
})
pd.DataFrame(summary_data).to_excel(writer, sheet_name='Comparison Summary', index=False)
# 2. 每个方案的详细 Sheet
for res in results:
# 清理 Sheet 名称
safe_name = res['name'].replace(':', '').replace('/', '-').replace('\\', '-')
# 截断过长的名称 (Excel限制31字符)
if len(safe_name) > 25:
safe_name = safe_name[:25]
details = res['eval']['details']
data = []
for conn in details:
data.append({
'Source': conn['source'],
'Target': conn['target'],
'Horizontal Length (m)': conn['horizontal_length'],
'Vertical Length (m)': conn['vertical_length'],
'Effective Length (m)': conn['length'],
'Cable Type (mm²)': conn['cable']['cross_section'],
'Current (A)': conn['cable']['current'],
'Power (MW)': conn['power'],
'Resistance (Ω)': conn['cable']['resistance'],
'Cost (¥)': conn['cable']['cost']
})
df = pd.DataFrame(data)
df.to_excel(writer, sheet_name=safe_name, index=False)
print(f"成功导出包含所有方案的Excel文件: {filename}")
except Exception as e:
print(f"导出Excel失败: {e}")
# 6. 可视化函数
def visualize_design(turbines, substation, connections, title, ax=None, show_costs=True):
"""可视化集电线路设计方案"""
@@ -562,96 +1004,260 @@ def visualize_design(turbines, substation, connections, title, ax=None, show_cos
return ax
# 7. 主函数:比较两种设计方法
def compare_design_methods(excel_path=None):
def compare_design_methods(excel_path=None, n_clusters_override=None):
"""
比较MST和K-means两种设计方法 (海上风电场场景)
:param excel_path: Excel文件路径,如果提供则从文件读取数据
比较MST和三种电缆方案下的K-means设计方法
:param excel_path: Excel文件路径
:param n_clusters_override: 可选,手动指定簇的数量
"""
cable_specs = None
if excel_path:
print(f"正在从 {excel_path} 读取坐标数据...")
try:
turbines, substation = load_data_from_excel(excel_path)
turbines, substation, cable_specs = load_data_from_excel(excel_path)
scenario_title = "Offshore Wind Farm (Imported Data)"
except Exception:
print("回退到自动生成数据模式...")
return compare_design_methods(excel_path=None)
return compare_design_methods(excel_path=None, n_clusters_override=n_clusters_override)
else:
print("正在生成海上风电场数据 (规则阵列布局)...")
# 使用规则布局间距800m
turbines, substation = generate_wind_farm_data(n_turbines=30, layout='grid', spacing=800)
scenario_title = "Offshore Wind Farm (Grid Layout)"
is_offshore = True
# 方法1最小生成树
# 注意MST方法在不考虑容量约束时可能会导致根部线路严重过载
# 准备三种电缆方案
# 原始 specs 是 5 元素元组: (section, capacity, resistance, cost, is_optional)
# 下游函数期望 4 元素元组: (section, capacity, resistance, cost)
if cable_specs:
# 方案 1: 不含 Optional='Y' (Standard)
specs_1 = [s[:4] for s in cable_specs if not s[4]]
# 方案 2: 含 Optional='Y' (All)
specs_2 = [s[:4] for s in cable_specs]
# 方案 3: 基于方案 1删掉截面最大的一种
# cable_specs 已按 capacity 排序,假设 capacity 与 section 正相关
specs_3 = specs_1[:-1] if len(specs_1) > 1 else list(specs_1)
else:
# 默认电缆库
default_specs = [
(35, 150, 0.524, 80), (70, 215, 0.268, 120), (95, 260, 0.193, 150),
(120, 295, 0.153, 180), (150, 330, 0.124, 220), (185, 370, 0.0991, 270),
(240, 425, 0.0754, 350), (300, 500, 0.0601, 450), (400, 580, 0.0470, 600)
]
specs_1 = default_specs
specs_2 = default_specs
specs_3 = default_specs[:-1]
scenarios = [
("Scenario 1 (Standard)", specs_1),
("Scenario 2 (With Optional)", specs_2),
("Scenario 3 (No Max)", specs_3)
]
# 1. MST 方法作为基准 (使用 Scenario 1)
mst_connections = design_with_mst(turbines, substation)
mst_evaluation = evaluate_design(turbines, mst_connections, substation, is_offshore=is_offshore)
mst_evaluation = evaluate_design(turbines, mst_connections, substation, cable_specs=specs_1, is_offshore=is_offshore, method_name="MST Method")
# 方法2K-means聚类 (容量受限聚类)
# 计算总功率和所需的最小回路数
total_power = turbines['power'].sum()
max_cable_mw = get_max_cable_capacity_mw()
min_clusters_needed = int(np.ceil(total_power / max_cable_mw))
# 准备画布 2x2
fig, axes = plt.subplots(2, 2, figsize=(20, 18))
axes = axes.flatten()
# 增加一定的安全裕度 (1.2倍) 并确保至少有一定数量的簇
n_clusters = max(int(min_clusters_needed * 1.2), 4)
if len(turbines) < n_clusters: # 避免簇数多于风机数
n_clusters = len(turbines)
print(f"系统设计参数: 总功率 {total_power:.1f} MW, 单回路最大容量 {max_cable_mw:.1f} MW")
print(f"计算建议回路数(簇数): {n_clusters} (最小需求 {min_clusters_needed})")
kmeans_connections, clustered_turbines = design_with_kmeans(turbines.copy(), substation, n_clusters=n_clusters)
kmeans_evaluation = evaluate_design(turbines, kmeans_connections, substation, is_offshore=is_offshore)
# 创建结果比较
results = {
'MST Method': mst_evaluation,
'K-means Method': kmeans_evaluation
}
# 可视化
fig, axes = plt.subplots(1, 2, figsize=(20, 10))
# 可视化MST方法
# 绘制 MST
visualize_design(turbines, substation, mst_evaluation['details'],
f"MST Design - {scenario_title}\nTotal Cost: ¥{mst_evaluation['total_cost']/10000:.2f}\nTotal Loss: {mst_evaluation['total_loss']:.2f} kW",
f"MST Method (Standard Cables)\nTotal Cost: ¥{mst_evaluation['total_cost']/10000:.2f}",
ax=axes[0])
# 可视化K-means方法
visualize_design(clustered_turbines, substation, kmeans_evaluation['details'],
f"Sector Clustering (Angular) ({n_clusters} clusters) - {scenario_title}\nTotal Cost: ¥{kmeans_evaluation['total_cost']/10000:.2f}\nTotal Loss: {kmeans_evaluation['total_loss']:.2f} kW",
ax=axes[1])
print(f"\n===== 开始比较电缆方案 =====")
best_cost = float('inf')
best_result = None
comparison_results = []
# 将 MST 结果也加入对比列表,方便查看
comparison_results.append({
'name': 'MST Method',
'cost': mst_evaluation['total_cost'],
'loss': mst_evaluation['total_loss'],
'eval': mst_evaluation,
'turbines': turbines.copy(), # MST 不改变 turbines但为了统一格式
'specs': specs_1
})
for i, (name, current_specs) in enumerate(scenarios):
print(f"\n--- {name} ---")
if not current_specs:
print(" 无可用电缆,跳过。")
continue
# 计算参数
total_power = turbines['power'].sum()
max_cable_mw = get_max_cable_capacity_mw(cable_specs=current_specs)
# 确定簇数 (针对 Base 算法)
if n_clusters_override is not None:
n_clusters = n_clusters_override
min_needed = int(np.ceil(total_power / max_cable_mw))
if n_clusters < min_needed:
print(f" Warning: 指定簇数 {n_clusters} 小于理论最小需求 {min_needed}")
else:
min_needed = int(np.ceil(total_power / max_cable_mw))
n_cable_types = len(current_specs)
heuristic = int(np.ceil(len(turbines) / n_cable_types))
n_clusters = max(min_needed, heuristic)
if n_clusters > len(turbines): n_clusters = len(turbines)
print(f" 最大电缆容量: {max_cable_mw:.2f} MW")
# --- Run 1: Base Algorithm (Capacitated Sweep) ---
base_name = f"{name} (Base)"
conns_base, turbines_base = design_with_capacitated_sweep(
turbines.copy(), substation, cable_specs=current_specs
)
eval_base = evaluate_design(
turbines, conns_base, substation, cable_specs=current_specs,
is_offshore=is_offshore, method_name=base_name
)
comparison_results.append({
'name': base_name,
'cost': eval_base['total_cost'],
'loss': eval_base['total_loss'],
'eval': eval_base,
'turbines': turbines_base,
'specs': current_specs
})
print(f" [Base] Cost: ¥{eval_base['total_cost']:,.2f} | Loss: {eval_base['total_loss']:.2f} kW")
# --- Run 2: Rotational Algorithm (Optimization) ---
rot_name = f"{name} (Rotational)"
conns_rot, turbines_rot = design_with_rotational_sweep(
turbines.copy(), substation, cable_specs=current_specs
)
eval_rot = evaluate_design(
turbines, conns_rot, substation, cable_specs=current_specs,
is_offshore=is_offshore, method_name=rot_name
)
comparison_results.append({
'name': rot_name,
'cost': eval_rot['total_cost'],
'loss': eval_rot['total_loss'],
'eval': eval_rot,
'turbines': turbines_rot,
'specs': current_specs
})
print(f" [Rotational] Cost: ¥{eval_rot['total_cost']:,.2f} | Loss: {eval_rot['total_loss']:.2f} kW")
# --- Run 3: Esau-Williams Algorithm ---
ew_name = f"{name} (Esau-Williams)"
conns_ew, turbines_ew = design_with_esau_williams(
turbines.copy(), substation, max_cable_mw
)
eval_ew = evaluate_design(
turbines, conns_ew, substation, cable_specs=current_specs,
is_offshore=is_offshore, method_name=ew_name
)
comparison_results.append({
'name': ew_name,
'cost': eval_ew['total_cost'],
'loss': eval_ew['total_loss'],
'eval': eval_ew,
'turbines': turbines_ew,
'specs': current_specs
})
print(f" [Esau-Williams] Cost: ¥{eval_ew['total_cost']:,.2f} | Loss: {eval_ew['total_loss']:.2f} kW")
# 记录最佳
if eval_rot['total_cost'] < best_cost:
best_cost = eval_rot['total_cost']
if eval_ew['total_cost'] < best_cost:
best_cost = eval_ew['total_cost']
# best_result 不再需要单独维护,最后遍历 comparison_results 即可
if eval_base['total_cost'] < best_cost:
best_cost = eval_base['total_cost']
# 可视化 (只画 Base 版本)
ax_idx = i + 1
if ax_idx < 4:
n_circuits = turbines_base['cluster'].nunique()
title = f"{base_name} ({n_circuits} circuits)\nCost: ¥{eval_base['total_cost']/10000:.2f}"
visualize_design(turbines_base, substation, eval_base['details'], title, ax=axes[ax_idx])
plt.tight_layout()
output_filename = 'wind_farm_design_imported.png' if excel_path else 'offshore_wind_farm_design.png'
output_filename = 'wind_farm_design_comparison.png'
plt.savefig(output_filename, dpi=300)
print(f"\n比较图(Base版)已保存至: {output_filename}")
# 导出DXF
# 准备文件路径
if excel_path:
base_name = os.path.splitext(os.path.basename(excel_path))[0]
dir_name = os.path.dirname(excel_path)
dxf_filename = os.path.join(dir_name, f"{base_name}_design.dxf")
excel_out_filename = os.path.join(dir_name, f"{base_name}_design.xlsx")
else:
dxf_filename = 'wind_farm_design.dxf'
# 默认导出更优的方案通常K-means扇区聚类在海上更合理或者成本更低者
# 这里我们导出Sector Clustering的结果
export_to_dxf(clustered_turbines, substation, kmeans_evaluation['details'], dxf_filename)
excel_out_filename = 'wind_farm_design.xlsx'
plt.show()
# 导出所有方案到同一个 Excel
if comparison_results:
export_all_scenarios_to_excel(comparison_results, excel_out_filename)
# 打印详细结果
print(f"\n===== 海上风电场设计方案比较 ({'导入数据' if excel_path else '自动生成'}) =====")
for method, eval_data in results.items():
print(f"\n{method}:")
print(f" 总成本: ¥{eval_data['total_cost']:,.2f} ({eval_data['total_cost']/10000:.2f}万元)")
print(f" 预估总损耗: {eval_data['total_loss']:.2f} kW")
print(f" 连接数量: {eval_data['num_connections']}")
# 交互式选择导出 DXF
print("\n===== 方案选择 =====")
best_idx = 0
for i, res in enumerate(comparison_results):
if res['cost'] < comparison_results[best_idx]['cost']:
best_idx = i
print(f" {i+1}. {res['name']} - Cost: ¥{res['cost']:,.2f}")
return results
print(f"推荐方案: {comparison_results[best_idx]['name']} (默认)")
try:
choice_str = input(f"请输入要导出DXF的方案编号 (1-{len(comparison_results)}),或输入 'A' 导出全部: ").strip()
if choice_str.upper() == 'A':
print("正在导出所有方案...")
base_dxf_name, ext = os.path.splitext(dxf_filename)
for res in comparison_results:
# 生成文件名安全后缀
safe_suffix = res['name'].replace(' ', '_').replace(':', '').replace('(', '').replace(')', '').replace('/', '-')
current_filename = f"{base_dxf_name}_{safe_suffix}{ext}"
print(f" 导出 '{res['name']}' -> {current_filename}")
export_to_dxf(res['turbines'], substation, res['eval']['details'], current_filename)
else:
if not choice_str:
choice = best_idx
else:
choice = int(choice_str) - 1
if choice < 0 or choice >= len(comparison_results):
print("输入编号无效,将使用默认推荐方案。")
choice = best_idx
selected_res = comparison_results[choice]
print(f"正在导出 '{selected_res['name']}' 到 DXF: {dxf_filename} ...")
export_to_dxf(selected_res['turbines'], substation, selected_res['eval']['details'], dxf_filename)
except Exception as e:
print(f"输入处理出错: {e},将使用默认推荐方案。")
selected_res = comparison_results[best_idx]
print(f"正在导出 '{selected_res['name']}' 到 DXF: {dxf_filename} ...")
export_to_dxf(selected_res['turbines'], substation, selected_res['eval']['details'], dxf_filename)
return comparison_results
# 8. 执行比较
if __name__ == "__main__":
import os
# 检查是否存在 coordinates.xlsx存在则优先使用
default_excel = 'coordinates.xlsx'
if os.path.exists(default_excel):
results = compare_design_methods(excel_path=default_excel)
else:
results = compare_design_methods()
# 解析命令行参数
parser = argparse.ArgumentParser(description='Wind Farm Collector System Design')
parser.add_argument('--excel', help='Path to the Excel coordinates file', default=None)
parser.add_argument('--clusters', type=int, help='Specify the number of clusters (circuits) manually', default=None)
args = parser.parse_args()
# 3. 运行比较
# 如果没有提供excel文件将自动回退到生成数据模式
compare_design_methods(args.excel, n_clusters_override=args.clusters)

61
project_context.md Normal file
View File

@@ -0,0 +1,61 @@
# Project Context: Wind Farm Layout Optimization
**Last Updated:** 2025-12-30
**Project Path:** `D:\code\windfarm`
**Current Goal:** Optimize offshore wind farm cable layout using MST and K-means algorithms, with realistic constraints and CAD export.
## 1. System Overview
The system simulates and designs the collection system (inter-array cables) for an offshore wind farm.
It compares two main algorithms:
1. **MST (Minimum Spanning Tree)**: Global optimization of cable length. (Note: Often creates overloaded branches in large farms).
2. **Sector Clustering (K-means)**: Angular clustering to divide turbines into radial "strings" or "loops" feeding the substation. This is the preferred method for large offshore farms to ensure cable capacity constraints are met.
## 2. Key Implementations
### A. Data Handling
- **Generation**: Can generate random or grid layouts.
- **Import**: Supports reading coordinates from `coordinates.xlsx` (Columns: Type, ID, X, Y, Power).
- **Units**:
- Power in **MW** (input).
- Coordinates in **meters**.
- Voltage: **66 kV** (Code constant `VOLTAGE_LEVEL`).
### B. Algorithms
- **Angular K-means**:
- Uses `(cosθ, sinθ)` of the angle relative to substation for clustering.
- Eliminates cable crossings between sectors.
- **Dynamic Cluster Sizing**:
- Automatically calculates the required number of clusters (feeders) based on: `Total_Power / Max_Cable_Capacity`.
- Ensures no string exceeds the thermal limit of the largest available cable.
### C. Electrical Modeling
- **Cable Sizing**: Selects from standard cross-sections (35mm² to 400mm²).
- **Constraint**: Max cable capacity (400mm²) is approx. **50.4 MW** at 66kV/0.95PF.
- **Loss Calc**: $I^2 R$ losses.
### D. Visualization & Export
- **Matplotlib**: Shows layout with color-coded cables (Green=Thin -> Red=Thick).
- **DXF Export**: Uses `ezdxf` to generate `.dxf` files compatible with CAD.
- Layers: `Substation`, `Turbines`, `Cable_XXmm`.
- entities: Circles (Turbines), Polylines (Substation), Lines (Cables).
## 3. Critical Logic & Constants
- **Voltage**: 66,000 V
- **Power Factor**: 0.95
- **Max Current (400mm²)**: 580 A * 0.8 (derating) = 464 A.
- **Unit Conversion**: Critical fix applied to convert MW to Watts for current calculation (`power * 1e6`).
## 4. Current State & file Structure
- `main.py`: Core logic.
- `coordinates.xlsx`: Input data (if present).
- `wind_farm_design_imported.png`: Latest visualization.
- `wind_farm_design.dxf`: Latest CAD export.
## 5. Known Behaviors
- **MST Method**: Will report extremely high costs/losses for large farms because it creates a single tree structure that massively overloads the root cables. This is expected behavior (physically invalid but mathematically correct for unconstrained MST).
- **K-means Method**: Produces realistic, valid designs with appropriate cable tapering (e.g., 400mm² at root, 35mm² at leaves).
## 6. Future Improvements (Optional)
- **Obstacle Avoidance**: Currently assumes open ocean.
- **Loop Topology**: Current design is radial strings. Reliability could be improved with loop/ring structures.
- **Substation Placement Optimization**: Currently fixed or calculated as centroid.