添加完整的项目文档README.md

- 提供详细的功能特性说明和算法介绍
- 包含完整的安装和使用指南
- 添加电缆规格配置表格
- 更新输出示例以反映最新功能
- 完善项目结构说明和参数配置
This commit is contained in:
dmy
2026-01-02 01:24:02 +08:00
parent b5718a0cc2
commit d563905f28
3 changed files with 341 additions and 70 deletions

241
esau_williams.py Normal file
View File

@@ -0,0 +1,241 @@
import numpy as np
import pandas as pd
from scipy.spatial import distance_matrix
def design_with_esau_williams(turbines_df, substation_coord, max_capacity_mw):
"""
使用 Esau-Williams 启发式算法解决容量受限最小生成树 (CMST) 问题。
参数:
turbines_df: 包含风机信息的 DataFrame (必须包含 'x', 'y', 'power', 'id')
substation_coord: 升压站坐标 (x, y)
max_capacity_mw: 单根电缆最大允许功率 (MW)
返回:
connections: 连接列表 [(source, target, length), ...]
turbines_with_cluster: 带有 'cluster' 列的 turbines DataFrame (用于兼容性)
"""
# 数据准备
n_turbines = len(turbines_df)
coords = turbines_df[['x', 'y']].values
powers = turbines_df['power'].values
ids = turbines_df['id'].values
# 升压站坐标
if substation_coord.ndim > 1:
sx, sy = substation_coord[0][0], substation_coord[0][1]
else:
sx, sy = substation_coord[0], substation_coord[1]
# 1. 计算距离矩阵
# 风机到风机
dist_matrix = distance_matrix(coords, coords)
# 风机到升压站
dists_to_sub = np.sqrt((coords[:, 0] - sx)**2 + (coords[:, 1] - sy)**2)
# 2. 初始化组件 (Components)
# 初始状态下,每个风机是一个独立的组件,直接连接到升压站
# 为了方便查找,我们维护一个 components 字典
# key: component_root_id (代表该组件的唯一标识)
# value: {
# 'members': {node_idx, ...},
# 'total_power': float,
# 'gate_node': int (连接到升压站的节点索引),
# 'gate_cost': float (gate_node 到升压站的距离)
# }
components = {}
for i in range(n_turbines):
components[i] = {
'members': {i},
'total_power': powers[i],
'gate_node': i,
'gate_cost': dists_to_sub[i]
}
# 记录已经建立的连接 (不包括通往升压站的默认连接)
# 格式: (u, v, length)
established_edges = []
# 记录已建立连接的坐标,用于交叉检查: [((x1, y1), (x2, y2)), ...]
established_lines = []
def do_intersect(p1, p2, p3, p4):
"""
检测线段 (p1, p2) 和 (p3, p4) 是否严格相交 (不包括端点接触)
"""
# 检查是否共享端点
if (p1[0]==p3[0] and p1[1]==p3[1]) or (p1[0]==p4[0] and p1[1]==p4[1]) or \
(p2[0]==p3[0] and p2[1]==p3[1]) or (p2[0]==p4[0] and p2[1]==p4[1]):
return False
def ccw(A, B, C):
# 向量叉积
return (C[1]-A[1]) * (B[0]-A[0]) - (B[1]-A[1]) * (C[0]-A[0])
# 如果跨立实验符号相反,则相交
d1 = ccw(p1, p2, p3)
d2 = ccw(p1, p2, p4)
d3 = ccw(p3, p4, p1)
d4 = ccw(p3, p4, p2)
# 严格相交判断 (忽略共线重叠的情况,视为不交叉)
if ((d1 > 1e-9 and d2 < -1e-9) or (d1 < -1e-9 and d2 > 1e-9)) and \
((d3 > 1e-9 and d4 < -1e-9) or (d3 < -1e-9 and d4 > 1e-9)):
return True
return False
# 3. 迭代优化
while True:
# 预先收集当前所有组件的 Gate Edges (连接升压站的线段)
# 格式: {cid: (gate_node_coord, substation_coord)}
current_gate_lines = {}
sub_coord_tuple = (sx, sy)
for cid, data in components.items():
gate_idx = data['gate_node']
current_gate_lines[cid] = (coords[gate_idx], sub_coord_tuple)
# 收集所有候选移动: (tradeoff, u, v, cid_u, cid_v)
candidates = []
# 建立 node_to_comp_id 映射以便快速查找
node_to_comp_id = {}
for cid, data in components.items():
for member in data['members']:
node_to_comp_id[member] = cid
# 遍历所有边 (i, j)
for i in range(n_turbines):
cid_i = node_to_comp_id[i]
gate_cost_i = components[cid_i]['gate_cost']
for j in range(n_turbines):
if i == j: continue
cid_j = node_to_comp_id[j]
# 必须是不同组件
if cid_i == cid_j:
continue
# 检查容量约束
if components[cid_i]['total_power'] + components[cid_j]['total_power'] > max_capacity_mw:
continue
# 计算 Tradeoff
dist_ij = dist_matrix[i, j]
tradeoff = dist_ij - gate_cost_i
# 只有当 tradeoff < 0 时,合并才是有益的
if tradeoff < -1e-9:
candidates.append((tradeoff, i, j, cid_i, cid_j))
# 按 tradeoff 排序 (从小到大,越小越好)
candidates.sort(key=lambda x: x[0])
best_move = None
# 延迟检测: 从最好的开始检查交叉
for cand in candidates:
tradeoff, u, v, cid_u, cid_v = cand
p_u = coords[u]
p_v = coords[v]
# 快速包围盒测试 (AABB) 准备
min_x_uv, max_x_uv = min(p_u[0], p_v[0]), max(p_u[0], p_v[0])
min_y_uv, max_y_uv = min(p_u[1], p_v[1]), max(p_u[1], p_v[1])
is_crossing = False
# 1. 检查与已固定的内部边的交叉
for line in established_lines:
p_a, p_b = line[0], line[1]
if max(p_a[0], p_b[0]) < min_x_uv or min(p_a[0], p_b[0]) > max_x_uv or \
max(p_a[1], p_b[1]) < min_y_uv or min(p_a[1], p_b[1]) > max_y_uv:
continue
if do_intersect(p_u, p_v, p_a, p_b):
is_crossing = True
break
if is_crossing:
continue
# 2. 检查与所有活跃 Gate Edges 的交叉 (排除被移除的那个)
# 正在合并 cid_u -> cid_v意味着 cid_u 的 Gate 将被移除。
# 但 cid_v 的 Gate 以及其他所有组件的 Gate 仍然存在。
for cid, gate_line in current_gate_lines.items():
if cid == cid_u:
continue # 这个 Gate 即将移除,不构成障碍
p_a, p_b = gate_line[0], gate_line[1]
if max(p_a[0], p_b[0]) < min_x_uv or min(p_a[0], p_b[0]) > max_x_uv or \
max(p_a[1], p_b[1]) < min_y_uv or min(p_a[1], p_b[1]) > max_y_uv:
continue
if do_intersect(p_u, p_v, p_a, p_b):
is_crossing = True
break
if not is_crossing:
best_move = (u, v, cid_u, cid_v)
break
# 如果没有找到有益的合并,或者所有可行合并都会增加成本,则停止
if best_move is None:
break
# 执行合并
u, v, cid_u, cid_v = best_move
# 将 cid_u 并入 cid_v
# 1. 记录新边
established_edges.append((u, v, dist_matrix[u, v]))
established_lines.append((coords[u], coords[v]))
# 2. 更新组件信息
comp_u = components[cid_u]
comp_v = components[cid_v]
# 合并成员
comp_v['members'].update(comp_u['members'])
comp_v['total_power'] += comp_u['total_power']
# Gate 节点和 Cost 保持 cid_v 的不变
# (因为我们将 U 接到了 V 上U 的原 gate 被移除V 的 gate 仍是通往升压站的路径)
# 3. 删除旧组件
del components[cid_u]
# 4. 构建最终结果
connections = []
# 添加内部边 (风机间)
for u, v, length in established_edges:
source = f'turbine_{u}'
target = f'turbine_{v}'
connections.append((source, target, length))
# 添加 Gate 边 (风机到升压站)
# 此时 components 中剩下的每个组件都有一个 gate_node 连接到 Substation
cluster_mapping = {} # node_id -> cluster_id (0..N-1)
for idx, (cid, data) in enumerate(components.items()):
gate_node = data['gate_node']
gate_cost = data['gate_cost']
connections.append((f'turbine_{gate_node}', 'substation', gate_cost))
# 记录 cluster id
for member in data['members']:
cluster_mapping[member] = idx
# 更新 turbines DataFrame
turbines_with_cluster = turbines_df.copy()
turbines_with_cluster['cluster'] = turbines_with_cluster['id'].map(cluster_mapping)
return connections, turbines_with_cluster