Add MIP module for collector layout optimization

This commit is contained in:
dmy
2026-01-08 09:54:40 +08:00
parent 46e929bfce
commit 4230d2221d
3 changed files with 201 additions and 3 deletions

13
gui.py
View File

@@ -91,6 +91,7 @@ def index():
"current_file_container": None, # 替换 label 为 container
"info_container": None, # 新增信息展示容器
"ga_switch": None, # 遗传算法开关
"mip_switch": None, # MIP开关
}
def update_info_panel():
@@ -677,8 +678,9 @@ def index():
refs["log_box"].clear()
log_queue = queue.Queue()
# 获取遗传算法开关状态
# 获取开关状态
use_ga = refs["ga_switch"].value if refs["ga_switch"] else False
use_mip = refs["mip_switch"].value if refs["mip_switch"] else False
class QueueLogger(io.StringIO):
def write(self, message):
@@ -728,6 +730,7 @@ def index():
interactive=False,
plot_results=False,
use_ga=use_ga,
use_mip=use_mip,
)
# 在后台线程运行计算任务
@@ -920,8 +923,6 @@ def index():
# with refs["current_file_container"]:
# ui.label("未选择文件").classes("text-xs text-gray-500 italic ml-1")
# 3. 运行按钮
refs["run_btn"] = (
ui.button(
@@ -937,6 +938,12 @@ def index():
"color=orange"
)
# 5. MIP开关
with ui.column().classes("flex-1 gap-0 justify-center items-center"):
refs["mip_switch"] = ui.switch("启用MIP", value=False).props(
"color=blue"
)
with ui.column().classes("w-full gap-4"):
# 新增:信息展示卡片
with (

49
main.py
View File

@@ -15,6 +15,11 @@ from sklearn.cluster import KMeans
from esau_williams import design_with_esau_williams
from ga import design_with_ga
try:
from mip import design_with_mip
except ImportError:
design_with_mip = None
# 设置matplotlib支持中文显示
plt.rcParams["font.sans-serif"] = ["Microsoft YaHei", "SimHei", "Arial"]
plt.rcParams["axes.unicode_minus"] = False
@@ -1399,6 +1404,7 @@ def compare_design_methods(
interactive=True,
plot_results=True,
use_ga=False,
use_mip=False,
):
"""
比较MST和三种电缆方案下的K-means设计方法
@@ -1709,6 +1715,49 @@ def compare_design_methods(
f" [GA] Cost: ¥{eval_ga['total_cost']:,.2f} | Loss: {eval_ga['total_loss']:.2f} kW | Circuits: {n_circuits_ga}"
)
if use_mip and design_with_mip:
# --- Run 5: Mixed Integer Programming ---
mip_name = f"{name} (MIP)"
conns_mip, turbines_mip = design_with_mip(
turbines.copy(),
substation,
current_specs,
voltage,
power_factor,
system_params,
evaluate_func=evaluate_design,
total_invest_func=total_investment,
get_max_capacity_func=get_max_cable_capacity_mw,
)
eval_mip = evaluate_design(
turbines,
conns_mip,
substation,
cable_specs=current_specs,
is_offshore=is_offshore,
method_name=mip_name,
voltage=voltage,
power_factor=power_factor,
)
n_circuits_mip = sum(
1
for d in eval_mip["details"]
if d["source"] == "substation" or d["target"] == "substation"
)
comparison_results.append(
{
"name": mip_name,
"cost": eval_mip["total_cost"],
"loss": eval_mip["total_loss"],
"eval": eval_mip,
"turbines": turbines_mip,
"specs": current_specs,
}
)
print(
f" [MIP] Cost: ¥{eval_mip['total_cost']:,.2f} | Loss: {eval_mip['total_loss']:.2f} kW | Circuits: {n_circuits_mip}"
)
# 记录最佳
if eval_rot["total_cost"] < best_cost:
best_cost = eval_rot["total_cost"]

142
mip.py Normal file
View File

@@ -0,0 +1,142 @@
import numpy as np
import pandas as pd
from scipy.spatial import distance_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
from collections import defaultdict
import pulp
def design_with_mip(
turbines,
substation,
cable_specs=None,
voltage=66000,
power_factor=0.95,
system_params=None,
max_clusters=None,
time_limit=300, # seconds
evaluate_func=None,
total_invest_func=None,
get_max_capacity_func=None,
):
"""
使用混合整数规划(MIP)优化集电线路布局
:param turbines: 风机DataFrame
:param substation: 升压站坐标
:param cable_specs: 电缆规格
:param system_params: 系统参数用于NPV计算
:param max_clusters: 最大簇数,默认基于功率计算
:param time_limit: 求解时间限制(秒)
:param evaluate_func: 评估函数
:param total_invest_func: 总投资计算函数
:param get_max_capacity_func: 获取最大容量函数
:return: 连接列表和带有簇信息的turbines
"""
if get_max_capacity_func:
max_mw = get_max_capacity_func(cable_specs, voltage, power_factor)
else:
max_mw = 100.0 # 默认值
total_power = turbines["power"].sum()
if max_clusters is None:
max_clusters = int(np.ceil(total_power / max_mw))
n_turbines = len(turbines)
# 预计算距离矩阵
all_coords = np.vstack([substation, turbines[["x", "y"]].values])
dist_matrix_full = distance_matrix(all_coords, all_coords)
# MIP 模型
prob = pulp.LpProblem("WindFarmCollectorMIP", pulp.LpMinimize)
# 决策变量:风机分配到簇 (binary)
x = pulp.LpVariable.dicts(
"assign", (range(n_turbines), range(max_clusters)), cat="Binary"
)
# 簇使用变量 (binary)
y = pulp.LpVariable.dicts("use_cluster", range(max_clusters), cat="Binary")
# 目标函数:最小化总成本 (简化版:距离成本)
# 这里使用简化成本:簇内距离 + 到升压站距离
prob += pulp.lpSum(
[
dist_matrix_full[i + 1, j + 1] * x[i][k] * x[j][k]
for i in range(n_turbines)
for j in range(n_turbines)
for k in range(max_clusters)
if i < j
]
) + pulp.lpSum(
[
dist_matrix_full[0, i + 1] * y[k] # 假设每个簇连接到升压站
for i in range(n_turbines)
for k in range(max_clusters)
]
)
# 约束:每个风机分配到一个簇
for i in range(n_turbines):
prob += pulp.lpSum([x[i][k] for k in range(max_clusters)]) == 1
# 簇功率约束
for k in range(max_clusters):
prob += (
pulp.lpSum([turbines.iloc[i]["power"] * x[i][k] for i in range(n_turbines)])
<= max_mw * y[k]
)
# 如果簇未使用,则无分配
for k in range(max_clusters):
for i in range(n_turbines):
prob += x[i][k] <= y[k]
# 求解
solver = pulp.PULP_CBC_CMD(timeLimit=time_limit)
status = prob.solve(solver)
if pulp.LpStatus[prob.status] != "Optimal":
print(f"MIP not optimal: {pulp.LpStatus[prob.status]}")
# 返回默认方案,如 MST
from main import design_with_mst
return design_with_mst(turbines, substation)
# 提取结果
cluster_assign = [-1] * n_turbines
for i in range(n_turbines):
for k in range(max_clusters):
if pulp.value(x[i][k]) > 0.5:
cluster_assign[i] = k
break
# 构建连接
clusters = defaultdict(list)
for i, c in enumerate(cluster_assign):
clusters[c].append(i)
connections = []
for c, members in clusters.items():
if len(members) == 0:
continue
coords = turbines.iloc[members][["x", "y"]].values
if len(members) > 1:
dm = distance_matrix(coords, coords)
mst = minimum_spanning_tree(dm).toarray()
for i in range(len(members)):
for j in range(len(members)):
if mst[i, j] > 0:
connections.append(
(
f"turbine_{members[i]}",
f"turbine_{members[j]}",
mst[i, j],
)
)
# 连接到升压站
dists = [dist_matrix_full[0, m + 1] for m in members]
closest = members[np.argmin(dists)]
connections.append((f"turbine_{closest}", "substation", min(dists)))
turbines["cluster"] = cluster_assign
return connections, turbines