Add MIP module for collector layout optimization
This commit is contained in:
142
mip.py
Normal file
142
mip.py
Normal file
@@ -0,0 +1,142 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy.spatial import distance_matrix
|
||||
from scipy.sparse.csgraph import minimum_spanning_tree
|
||||
from collections import defaultdict
|
||||
import pulp
|
||||
|
||||
|
||||
def design_with_mip(
|
||||
turbines,
|
||||
substation,
|
||||
cable_specs=None,
|
||||
voltage=66000,
|
||||
power_factor=0.95,
|
||||
system_params=None,
|
||||
max_clusters=None,
|
||||
time_limit=300, # seconds
|
||||
evaluate_func=None,
|
||||
total_invest_func=None,
|
||||
get_max_capacity_func=None,
|
||||
):
|
||||
"""
|
||||
使用混合整数规划(MIP)优化集电线路布局
|
||||
:param turbines: 风机DataFrame
|
||||
:param substation: 升压站坐标
|
||||
:param cable_specs: 电缆规格
|
||||
:param system_params: 系统参数(用于NPV计算)
|
||||
:param max_clusters: 最大簇数,默认基于功率计算
|
||||
:param time_limit: 求解时间限制(秒)
|
||||
:param evaluate_func: 评估函数
|
||||
:param total_invest_func: 总投资计算函数
|
||||
:param get_max_capacity_func: 获取最大容量函数
|
||||
:return: 连接列表和带有簇信息的turbines
|
||||
"""
|
||||
if get_max_capacity_func:
|
||||
max_mw = get_max_capacity_func(cable_specs, voltage, power_factor)
|
||||
else:
|
||||
max_mw = 100.0 # 默认值
|
||||
|
||||
total_power = turbines["power"].sum()
|
||||
if max_clusters is None:
|
||||
max_clusters = int(np.ceil(total_power / max_mw))
|
||||
n_turbines = len(turbines)
|
||||
|
||||
# 预计算距离矩阵
|
||||
all_coords = np.vstack([substation, turbines[["x", "y"]].values])
|
||||
dist_matrix_full = distance_matrix(all_coords, all_coords)
|
||||
|
||||
# MIP 模型
|
||||
prob = pulp.LpProblem("WindFarmCollectorMIP", pulp.LpMinimize)
|
||||
|
||||
# 决策变量:风机分配到簇 (binary)
|
||||
x = pulp.LpVariable.dicts(
|
||||
"assign", (range(n_turbines), range(max_clusters)), cat="Binary"
|
||||
)
|
||||
|
||||
# 簇使用变量 (binary)
|
||||
y = pulp.LpVariable.dicts("use_cluster", range(max_clusters), cat="Binary")
|
||||
|
||||
# 目标函数:最小化总成本 (简化版:距离成本)
|
||||
# 这里使用简化成本:簇内距离 + 到升压站距离
|
||||
prob += pulp.lpSum(
|
||||
[
|
||||
dist_matrix_full[i + 1, j + 1] * x[i][k] * x[j][k]
|
||||
for i in range(n_turbines)
|
||||
for j in range(n_turbines)
|
||||
for k in range(max_clusters)
|
||||
if i < j
|
||||
]
|
||||
) + pulp.lpSum(
|
||||
[
|
||||
dist_matrix_full[0, i + 1] * y[k] # 假设每个簇连接到升压站
|
||||
for i in range(n_turbines)
|
||||
for k in range(max_clusters)
|
||||
]
|
||||
)
|
||||
|
||||
# 约束:每个风机分配到一个簇
|
||||
for i in range(n_turbines):
|
||||
prob += pulp.lpSum([x[i][k] for k in range(max_clusters)]) == 1
|
||||
|
||||
# 簇功率约束
|
||||
for k in range(max_clusters):
|
||||
prob += (
|
||||
pulp.lpSum([turbines.iloc[i]["power"] * x[i][k] for i in range(n_turbines)])
|
||||
<= max_mw * y[k]
|
||||
)
|
||||
|
||||
# 如果簇未使用,则无分配
|
||||
for k in range(max_clusters):
|
||||
for i in range(n_turbines):
|
||||
prob += x[i][k] <= y[k]
|
||||
|
||||
# 求解
|
||||
solver = pulp.PULP_CBC_CMD(timeLimit=time_limit)
|
||||
status = prob.solve(solver)
|
||||
|
||||
if pulp.LpStatus[prob.status] != "Optimal":
|
||||
print(f"MIP not optimal: {pulp.LpStatus[prob.status]}")
|
||||
# 返回默认方案,如 MST
|
||||
from main import design_with_mst
|
||||
|
||||
return design_with_mst(turbines, substation)
|
||||
|
||||
# 提取结果
|
||||
cluster_assign = [-1] * n_turbines
|
||||
for i in range(n_turbines):
|
||||
for k in range(max_clusters):
|
||||
if pulp.value(x[i][k]) > 0.5:
|
||||
cluster_assign[i] = k
|
||||
break
|
||||
|
||||
# 构建连接
|
||||
clusters = defaultdict(list)
|
||||
for i, c in enumerate(cluster_assign):
|
||||
clusters[c].append(i)
|
||||
|
||||
connections = []
|
||||
for c, members in clusters.items():
|
||||
if len(members) == 0:
|
||||
continue
|
||||
coords = turbines.iloc[members][["x", "y"]].values
|
||||
if len(members) > 1:
|
||||
dm = distance_matrix(coords, coords)
|
||||
mst = minimum_spanning_tree(dm).toarray()
|
||||
for i in range(len(members)):
|
||||
for j in range(len(members)):
|
||||
if mst[i, j] > 0:
|
||||
connections.append(
|
||||
(
|
||||
f"turbine_{members[i]}",
|
||||
f"turbine_{members[j]}",
|
||||
mst[i, j],
|
||||
)
|
||||
)
|
||||
# 连接到升压站
|
||||
dists = [dist_matrix_full[0, m + 1] for m in members]
|
||||
closest = members[np.argmin(dists)]
|
||||
connections.append((f"turbine_{closest}", "substation", min(dists)))
|
||||
|
||||
turbines["cluster"] = cluster_assign
|
||||
return connections, turbines
|
||||
Reference in New Issue
Block a user